
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:9, No:4, 2015

217

 

 

 
Abstract—Stratified double extreme ranked set sampling 

(SDERSS) method is introduced and considered for estimating the 
population mean. The SDERSS is compared with the simple random 
sampling (SRS), stratified ranked set sampling (SRSS) and stratified 
simple set sampling (SSRS). It is shown that the SDERSS estimator 
is an unbiased of the population mean and more efficient than the 
estimators using SRS, SRSS and SSRS when the underlying 
distribution of the variable of interest is symmetric or asymmetric.  

 
Keywords—Double extreme ranked set sampling, Extreme 

ranked set sampling, Ranked set sampling, Stratified double extreme 
ranked set sampling.  

I. INTRODUCTION 

OONE denies the importance and the benefit of ranked 
set sampling method which was first proposed by 

McIntyre [11] for estimating the mean pasture and forage 
yields, and  without proving he claimed that RSSX  is an 
unbiased estimator for the population mean  , his method 

was developed and modified by many authors. Takahasi and 
Wakimoto [16] have established an accurate mathematical 
theory of ranked set sampling and they get the same results. 
Dell and Clutter [9] showed that the mean of the RSS is an 
unbiased estimator of the population mean, whatever or not 
there are errors in ranking. Samawi et al. [14] investigated the 
variety of extreme ranked set sample (ERSS) for estimating 
the population mean. Samawi [13] introduced the stratified 
ranked set sample method for estimating the population mean. 
Al-Saleh and Al-Kadiri [5] introduced double ranked set 
sampling for estimating the population mean. Samawi [15] 
suggested double extreme ranked set sample with application 
to regression estimator. Jemain et al. [10] suggested multistage 
extreme ranked set samples for estimating the population 
mean and they showed that the efficiency of the mean 
estimator using MERSS can be increased for specific value of 
the sample size n by increase the number of stages. For more 
about RSS see [4], [7], [12], [1] and [2], [3], and [8]. 

In this paper, new estimator using stratified double extreme 
ranked set sampling is suggested to estimate the population 
mean of symmetric and asymmetric distributions. The 
organization of this paper is as follows: In Section II, we 
present the stratified double extreme ranked set sampling. In 
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Section III some notations and basic results are introduced. A 
simulation study is considered in Section IV. Finally, 
conclusions are introduced in Section V. 

II. STRATIFIED DOUBLE EXTREME RANKED SET SAMPLING  

In stratified sampling the population of N  units is first 
divided into L subpopulations of LNNN ,,, 21   units, 

respectively. These subpopulations are no overlapping and 
together they comprise the whole population, so that 

NNNN L  21 . The subpopulations are called 

strata. To obtain the full benefit from stratification, the values 
of the hN   1, 2, ,h L   must be known. When the strata 

have been determined, a sample is drawn from each, the 
drawings being made in different strata. The sample sizes 
within the strata are denoted by 

1 2, , , Ln n n , respectively. 

The appropriate allocation of samples to different strata is very 
important in stratified sampling, in this article, the type of 
allocation method is proportional to stratum size. If a simple 
random sample is taken in each stratum, the whole procedure 
is described as stratified simple random sampling (SSRS).  

The stratified double extreme ranked set sampling (DERSS) 
is described as: 
Step 1. Identify 3n  elements from the target population and 

divide these elements randomly into 2n  sets each of 
size n elements. 

Step 2. For each set in step 2, if the sample size is even, select 

from the first 
2

2n  sets the smallest ranked unit, and 

from the second 
2

2n  sets the largest ranked unit. If the 

sample size is odd, select from the first 
2

)1( nn  sets 

choose the smallest  ranked unit, and from the next n 
sets choose the median of each set, and from  the other 

2

)1( nn  sets choose the largest ranked unit. This step 

yields n sets  each of size n.  
Step 3. Apply the ERSS procedure again on the sets obtained 

from Step (2) to obtain a  DERSS of size n. 
The cycle can be repeated m times if needed to get a sample 

of size nm units.  
Step 4. If the double extreme ranked set sample is used in each 

stratum, the whole procedure is described as stratified 
double extreme ranked set sampling (SDERSS).  
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To illustrate the method, let us consider the following 
example, which combines an even and an odd sample size in 
two strata.  
Example 1: Suppose we have two strata, 2L   ( 1,2)h  , and 

in the first stratum we have 64 elements divided into 16 sets, 4 
elements in each set, and in the second stratum we have 27 
elements divided into 9 sets, 3 elements in each set, as the 
following: 
Stratum (1): Assume the 64 elements are 
 

(1) (1) (1) (2) (2) (2) (3) (3) (3) (4) (4) (4)
11 12 44 11 12 44 11 12 44 11 12 44, , , , , , , , , , , , , , ,X X X X X X X X X X X X   

 
After ranking the elements in each set we obtain 
 

 (1) (1) (1) (1) (1) (1) (1) (1)
11 14 21 24 31 34 41 44, , , , , , , , , , ,X X X X X X X X   

 (2) (2) (2) (2) (2) (2) (2) (2)
11 14 21 24 31 34 41 44, , , , , , , , , , ,X X X X X X X X   

 (3) (3) (3) (3) (3) (3) (3) (3)
11 14 21 24 31 34 41 44, , , , , , , , , , ,X X X X X X X X   

 (4) (4) (4) (4) (4) (4) (4) (4)
11 14 21 24 31 34 41 44, , , , , , , , , , ,X X X X X X X X    . 

 
We will apply the ERSS on each of the 16 elements to get 

four sets as: 

 Set (1):  (1) (1) (1) (1)
1 (11) (21) (31) (41), , ,S X X X X ,  

 Set (2): 
 (2) (2) (2) (2)

2 (11) (21) (31) (41), , ,S X X X X
 

 Set (3):  (3) (3) (3) (3)
3 (14) (24) (34) (44), , ,S X X X X ,  

 Set (4): 
 (4) (4) (4) (4)

4 (14) (24) (34) (44), , ,S X X X X
 

The notation for the sets 
4321 ,,, SSSS  after ordering as: 

 

 *)1(
)41(

*)1(
)31(

*)1(
)21(

*)1(
)11(

*
1 ,,, XXXXS  , 

 *)2(
)41(

*)2(
)31(

*)2(
)21(

*)2(
)11(

*
2 ,,, XXXXS   

 *)3(
)44(

*)3(
)34(

*)3(
)24(

*)3(
)14(

*
3 ,,, XXXXS  , 

 *)4(
)44(

*)4(
)34(

*)4(
)24(

*)4(
)14(

*
4 ,,, XXXXS  . 

 
We apply ERSS again on the 16 elements in ERSS to get 

the elements of the double extreme ranked set sample in the 
first stratum (h = 1), (1)* (2)* (3)* (4)*

(11) (11) (44) (44), , ,X X X X . 

Stratum (2): Assume the 27 elements are 
 

(1) (1) (1) (2) (2) (2) (3) (3) (3)
11 12 33 11 12 33 11 12 33, , , , , , , , , , ,Y Y Y Y Y Y Y Y Y   . 

 
After ranking the elements in each set we obtain 
 

 (1) (1) (1) (1) (1) (1)
(11) (13) (21) (23) (31) (33), , , , , , , ,Y Y Y Y Y Y   , 

 (2) (2) (2) (2) (2) (2)
(11) (13) (21) (23) (31) (33), , , , , , , ,Y Y Y Y Y Y    

 (3) (3) (3) (3) (3) (3)
(11) (13) (21) (23) (31) (33), , , , , , , ,Y Y Y Y Y Y   . 

 
We will apply ERSS on each of the nine elements to get 

three sets as: 
 

 (1) (1) (1)
1 (11) (21) (31), ,S Y Y Y ,  (2) (2) (2)

2 (12) (22) (32), ,S Y Y Y ,  (3) (3) (3)
3 (13) (23) (33), ,S Y Y Y . 

 
These sets after ordering will be denoted as: 
 

 * (1)* (1)* (1)*
1 (11) (21) (31), ,S Y Y Y ,  * (2)* (2)* (2)*

2 (12) (22) (32), ,S Y Y Y ,

 * (3)* (3)* (3)*
3 (13) (23) (33), ,S Y Y Y . 

 
If we apply ERSS again on the 9 elements in the sets 

* * *
1 2 3, ,S S S , we will get the elements of the double extreme 

ranked set sample in the second stratum (h=2) (1)* (2)* (3)*
(11) (22) (33), ,Y Y Y . 

So the elements of SDERSS are  
 

(1)* (2)* (3)* (4)*
(11) (11) (44) (44), , ,X X X X , (1)* (2)* (3)*

(11) (22) (33), ,Y Y Y . 

III. NOTATIONS AND SOME BASIC RESULTS  

Al-Saleh and Al-Kadiri [2] studied the double ranked set 
sampling, and they showed that if *

( )iX , 1, 2, ,i n   are 

elements of DRSS with mean *
)(i  and variance 2*

)(i  then  

 

*
( )

1

1 n

i
in

 


   and  22 *2 *
( ) ( )

1 1

1 n n

i i
i in

   
 

 
    

  . 

 
Assume that the variable of interest X has density f(x) and 

cumulative distribution function F(x), with mean   and 

variance 2 . Let 
11 12 1, , , ;nX X X  

21 22, ,X X …, 

2 1 2; ; , , ,n n n nnX X X X   be n independent simple random 

samples each of size n. Let 
(1) (2) ( ), , ,i i i nX X X  be the order 

statistics of the ith sample 
1 2, , ,i i inX X X , 1,2,...i  ,n.  

Now, based on DERSS, if the sample size n is even, we 
replace the ordered statistics 

(1) (2) ( ), , ,i i i nX X X   1, 2, ,i n   

obtained from an iid sample 
inii XXX ,,, 21  ,  1, 2, ,i n  , 

by *
1(1) ,X * * * *

2(1) ( )
(1) 1( )

2 2

, , , , ,n n n n
n

X X X X


  , and if the sample 

size n is odd, we replace the ordered statistics 

)()2()1( ,,, niii XXX    1, 2, ,i n   by 

* * *
1(1) 2(1) 1

(1)
2

, , , ,nX X X   * * *
1 1 3 ( )

( ) ( )
2 2 2

, , ,n n n n n
n

X X X     which are 

independent but not identically distributed random variables, 
where *

(1)iX  is the minimum of the ith sample, *

)
2

1
(
n

i
X  is the 

median of the ith sample and *
( )i nX  is the maximum of the ith 

sample in DERSS. 
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Now, using SDERSS if the sample size n is even, we 
replace the ordered statistics )()2()1( ,,,

hnhihihi XXX   

 1, 2, , hi n   and stratum h  1, 2, ,h L   by 

* * * *
1(1) 3 ( )

(1) ( )
2 2

, , , , ,
h h h h

h
h n n hn n

h h n
X X X X  , and if the sample size 

hn  is odd, we replace the ordered statistics 

)()2()1( ,,,
hnhihihi XXX    1, 2, , hi n   and stratum h 

 1,2, ,h L   by * *
1(1) 1

(1)
2

, , ,
hh n

h
X X   *

1 1
( )

2 2

,
h hn n

h
X  

 

* *
3 ( )

( )
2

, ,
h h h

h
n hn n

h n
X X   which are independent but not 

identically distributed random variables, where *
)1(hiX  is the 

minimum of the ith sample in hth stratum, *
1

( )
2

hn
hi

X 
 is the 

median of the ith sample in hth stratum and *
)( hnhiX  is the 

maximum of the ith sample in hth stratum. Let 
( ) ( )hi nF x  be the 

distribution function of the ith order statistic 
)( hnhiX  based on 

a random sample of size hn  from a distribution )(xFh
 in 

stratum h. Then  
 

     
( ) 1

( ) :0

1
( ) 1 ( ) , ,

, 1

h h

h

F x n ii
hi n i n h

h

F x u u du B F x x
B i n i

    
    

 
where 

: hi nB  is the Beta distribution with parameters 

 , 1hi n i  , and the beta function is      
 

,B
 

 
 

 


 
, 

where    1 !    . The mean and the variance of 
)(nhiX , 

respectively are given by  
 

( ) ( ) ( )
hhi n hi nx f x dx





   and variance 

 22
( ) ( ) ( ) ( )

h hhi n hi n hi nx f x dx 




  . 

 
The suggested estimator of the population mean using 

SDERSS is defined as 
 

2* * *
1 (1) ( )

31 1
* 2

1

2* * * *
2 (1) ( )1

31 1 2
2

1
,

1
,

h

h

h

h

h

h

hh
h

n
nL

SDERSS h hi hi n h
nh ih i

SDERSS
n

nL

SDERSS h hi hi n hn
hi nh ih i

X W X X if n iseven
n

X

X W X X X if n isodd
n

  



 
      

  
         

 
          

  

  

 

 

where h
h

N
W

N
 , 

hN  is the stratum size and N  is the total 

population size.  

The variance of 
*
SDERSSX  for even and odd sample size is 

given, respectively by 
 

 
 

 

2 2* 2* 2*
1 (1) ( )2

1 1 1* 2

1
2 2* 2* 2* 2

2 (1) ( ) 12
31 1 2

2

,

,

h

h

h

h

h

h

h h
h

n
nL

h
SDERSS hi hi n h

nh ih i

SDERSS
n

nL
h

SDERSS hi hi n hn
hinh ih i

W
Var X if n iseven

n

Var X

W
Var X if n isodd

n

 

  

   



 
    

  
        

 
         

  

  

 

Lemma 1. Let *
)(

*

)(
2

3
*

)1(
2

*
)1(1 ,,,,,

hh
h

hh nhn
n

n
h

n
h

h XXXX  
, 

where 
hni ,,2,1   and Lh ,,2,1   be SDERSS with even 

sample size. Let 
hX  be a continuous random variable in 

stratum h, with pdf )(xf h
, cdf )(xFh

, mean *
h  and variance 

*2
h . Let *

)1(hX  be the minimum of 
)1(

2

)1(2)1(1 ,,,
hn

h
hh XXX   

with cdf )(*
)1( xFh

, and *
)( hnhX  be the maximum of 

)(
)(

2

4
)(

2

2 ,,,
hh

h
h

h
h nhn

n
n

hn
n

h
XXX 

 with cdf )(*
)( xF

hnh
, then: 

(1)  
2

*
(1) ( ) 1 1 ( ) hn

h hF x F x   , and  
2

*
( ) ( ) ( ) h

h

n

h n hF x F x . 

(2)  
2 1* 2

(1) ( ) 1 ( ) ( )hn

h h h hf x n F x f x
  , and 

 
2 1* 2

( ) ( ) ( ) ( )h

h

n

h n h h hf x n F x f x
 . 

Proof: To prove (1), 

     
( ) 1

( ) :0

1
( ) 1 ( ) .

, 1

h h

h h

F x n ii
hi n i n h

h

F x u u du B F x
B i n i

  
    

 

For 1i , we get  *
(1) 1: 1( ) ( )

hh n hF x B F x  11 1 ( ) hn

hF x  

 
2

1 1 ( ) hn

hF x    

 
and 

 
     

( ) 1
( ) :0

1
( ) 1 ( )

, 1

h h

h h

F x n ii
hi n i n h

h

F x u u du B F x
B i n i

  
   . 

 

For 
hni  , we get *

( ) :( ) ( )
h h h hh n n n hnF x B F x   

 : ( ) h

h h

n

n n hB F x     
2

( ) hn

hF x . 

 
Part (2) of Lemma (1) can be proved by taking the first 

derivative of part (1), respectively. 
Lemma 2. Suppose that the population distribution is 
symmetric, then * * *

(1) ( ) 2
hh h n h     and 2* 2*

(1) ( )hh h n  . 

Proof: By using the facts that ( ) ( )h hf x f x  and 

( ) 1 ( )h hF x F x   , and the results of Lemma 1, it will lead us 

to the result.  
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Lemma 3. SDERSSX  is an unbiased estimator of a symmetric 
population mean.  
Proof. We have two cases:  
First: If the sample sizes in the strata ,hn  1,2, ,h L   are 

even, we have 
 

2* * *
1 (1) ( )

1 1 1
2

1
h

h

h

n
L n

SDERSS h hi hi n
nh ih i

X W X X
n   

 
     
 

    

  2* * *
1 (1) ( )

1 1 1
2

1
h

h

h

n
L n

SDERSS h hi hi n
nh ih i

E X E W X X
n   

  
          

  

2
* *

(1) ( )
1 1 1

2

1
( ) ( )

h

h

h

n
L n

h hi hi n
nh ih i

W E X E X
n   

 
     
 

    

2
* *

(1) ( )
1 1 1

2

1
h

h

h

n
L n

h h h n
nh ih i

W
n

 
   

 
     
 

   . 

 
Since the distribution is symmetric about  , then 

* * *
(1) ( ) 2

hh h n h    . Therefore, 

 

 * *
1

1 1

1 hnL

SDERSS h hi
h ih

E X W
n


 

  
   

  
   

 
It was shown by [2] that  
 









 



hn

i
hi

h
h n 1

*1  , 

 *
1

1

L

SDERSS h h
h

E X W  


    
 
 . 

 
Second: If the sample sizes in the strata , 1,2, ,hn h L   are 

odd, we have 
 

 
1

2* * * *
2 (1) ( )1

11 1 2 1
2

1
h

hh
h
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Since the distribution is symmetric about the  , then we 

have 
(1)
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Lemma 4. If the distribution is symmetric about  , then 

   SDERSS SRSVar X Var X . 

Proof. If the sample sizes in the strata Lhnh ,,1,   are 

even, the variance of SERSSX  is 
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Nevertheless, 2* 2

hi h   for each stratum Lh ,,2,1  , this 

implies 
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The proof in case of odd sample sizes is similar. 
Example 2: For the uniform distribution with parameters   
and  ;   ,U , the probability density function and the 

cumulative distribution function are defined as 
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The mean and the variance are given, respectively by  
 

2

 
 , and  

12

2
2  
 . 

 
Now, for  ,0U , the mean and the variance, respectively 

are 
2

  , 
12

2
2   . 

From [6], formula for the variance of *
)1(hX  and *

)(nhX  

which are equal since the distribution is symmetric about the 
mean, for stratum h in case of even sample size, can be 
defined as  
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Case 1. The efficiency of 
*

1SDERSSX  relative to SSRSX . Now, 
the variance of SDERSS in case of even sample size can be 
calculated as  
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The variance of SSRS for  ,0U  is defined as 
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The efficiency of 
*

1SDERSSX  relative to SSRSX  is  
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Algebraically it is not easy to show that the last quantity is 

greater than 1, so some different cases are considered, two or 
three strata, the following results are obtained: 
1. If 2,1,2  hL  when 41 n  and 62 n  with total 

10n ,  *
1, 2.3011SDERSS SSRSeff X X  . 

2. If 2,1,2  hL  when 61 n  and 82 n  with total 14n , 

 *
1, 4.2737SDERSS SSRSeff X X  . 

3. If 2,1,2  hL  when 81 n  and 102 n  with total 

18n ,  *
1, 6.9311SDERSS SSRSeff X X  . 

4. If 3,2,1,3  hL  when 41 n , 42 n  and 63 n  with 

total 14n ,  *
1, 2.0399SDERSS SSRSeff X X  . 

5. If 3,2,1,3  hL  when 41 n , 62 n  and 83 n  with 

total 18n ,  *
1, 3.1112SDERSS SSRSeff X X  . 

6. If 3,2,1,3  hL  when 61 n , 62 n  and 63 n  with 

total 18n ,  *
1, 3.2546SDERSS SSRSeff X X  . 

Case 2: The efficiency of 
*

1SDERSSX  relative to SRSX . 
Now, the variance of SRS for  ,0U  is given by  
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The efficiency of 
*

1SDERSSX  relative to SRSX  is  
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1. If 2,1,2  hL  when 41 n  and 62 n  with total 

10n ,  *
1, 45.9415SDERSS SRSeff X X  . 

2. If 2,1,2  hL  when 61 n  and 82 n  with total 

14n ,  *
1, 119.6708SDERSS SRSeff X X  . 

3. If 2,1,2  hL  when 81 n  and 102 n  with total 

18n ,  *
1, 249.5197SDERSS SRSeff X X  . 

4. If 3,2,1,3  hL  when 41 n , 42 n  and 63 n  with 

total 14n ,  *
1, 85.6810SDERSS SRSeff X X  . 

5. If 3,2,1,3  hL  when 41 n , 62 n  and 83 n  with 

total 18n ,  *
1, 167.9995SDERSS SRSeff X X  . 

IV. SIMULATION STUDY  

A simulation study is conducted to investigate the 
performance of SDERSS for estimating the population mean 
with respect to SRS, SSRS and SRSS. Symmetric 
distributions, namely; uniform and normal and asymmetric 
distributions namely exponential, gamma and Weibull have 
been considered for samples of sizes ,18,15,12,9n  

assuming that the population is partitioned into two or three 
strata. Using 100000 replications, estimates of the means, 
variances and mean square errors were computed.  

When the underlying distribution is symmetric, the 
efficiency of SDERSS relative to , ,SRS SSRS SRSS is 

given by 
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and if the distribution is asymmetric, the efficiency of 
SDERSS relative to SSRS and SRSS is defined in terms of 
mean square error (MSE) as  
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where 

      2

T T TMSE X Var X Bias X     , 

, ,T SSRS SRSS SDQRSS . 
 

The values of the relative efficiency and bias found under 
different distributional assumptions are provided in Tables I-
III. 

 
TABLE I 

THE RELATIVE EFFICIENCY FOR ESTIMATING THE POPULATION MEAN USING 

SDERSS WITH RESPECT TO SRSS, SSRS AND SRS WITH SAMPLE SIZE N = 9 

AND N = 12 

Distribution 

n = 9: 

41 n , 52 n  
n = 12: 

51 n  , 72 n  

SRSS SSRS SRS SRSS SSRS SRS 

Uniform (0,1) 20.75 26.65 26.25 33.17 34.44 35.67 

Normal (0,1) 18.66 21.89 20.64 29.45 31.01 29.85 

Exponential (1) 16.95 16.53 16.25 19.35 20.44 19.23 

Gamma (1,2) 16.02 15.76 15.54 19.65 19.83 20.21 

Weibull (1,2) 14.65 13.95 14.97 19.78 19.82 19.37 
 

TABLE II 
THE RELATIVE EFFICIENCY FOR ESTIMATING THE POPULATION MEAN USING 

SDERSS WITH RESPECT TO SRSS, SSRS AND SRS WITH SAMPLE SIZE N =15 

AND N =18 

 
Distribution 

n =15: 31 n , 52 n ,

73 n  

n=18: 41 n , 62 n ,

83 n  

SRSS SSRS SRS SRSS SSRS SRS 

Uniform (0,1) 46.74 50.23 48.96 60.42 63.76 61.65 

Normal (0,1) 31.78 34.76 33.76 46.54 49.78 48.98 

Exponential (1) 20.97 22.64 20.78 22.67 22.96 22.87 

Gamma (1,2) 19.87 20.65 19.43 21.73 21.23 19.87 

Weibull (1,2) 19.87 20.51 19.98 21.14 21.05 21.79 
 

TABLE III 
THE VALUES OF BIAS OF SDERSS FOR DIFFERENT DISTRIBUTIONS AND 

DIFFERENT NUMBERS OF STRATA 
Exponential (1) Gamma (1,2) Weibull (1,2) 

When 9n  and two strata 41 n  and 52 n  

0.0713 0.2323 0.8573 

When 12n  and two strata 51 n  and 72 n  

0.0345 0.2427 0.4017 

When 15n  and three strata 31 n , 52 n and 73 n  

0.0127 0.0834 0.0022 

When 18n  and three strata 41 n , 62 n and 83 n . 

0.0439 0.1119 0.0315 

Based on simulation study, we can conclude that:  
A gain in efficiency is attained using SDERSS method as 

opposed to the other contending methods that have been 
discussed when estimating the population mean of the variable 
of interest. When the performance of SDERSS are compared 
to either SRSS, SSRS or SRS, it is found that SDERSS is 
more efficient, as shown by all the values of relative efficiency 
which are greater than 1. When the performances of all 
estimators are compared, the efficiency of SDERSS estimator 
is found to be more superior when the underlying distributions 
are symmetric as compared to asymmetric. The relative 
efficiency of SDERSS estimator to those estimators based on 
SRS, SSRS and SRSS are increasing as the sample size 
increases.  

V. CONCLUSIONS  

In this paper, we have suggested a new estimator of the 
population mean using SDERSS. The performance of the 
estimator based on SDERSS is compared with those found 
using SRSS, SSRS and SRS for the same number of measured 
units. It is found that SDERSS produces estimator of the 
population mean that is unbiased of symmetric distributions 
and SDERSS is more efficient than SRSS, SSRS and SRS. 
Thus, SDERSS should be more preferred than SRSS, SSRS 
and SRS for both symmetric and asymmetric distributions. 
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