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A TFETI Domain Decompositon Solver for Von
Mises Elastoplasticity Model with Combination of

Linear Isotropic-Kinematic Hardening
Martin Cermak, Stanislav Sysala

Abstract—In this paper we present the efficient parallel
implementation of elastoplastic problems based on the TFETI (Total
Finite Element Tearing and Interconnecting) domain decomposition
method. This approach allow us to use parallel solution and compute
this nonlinear problem on the supercomputers and decrease the
solution time and compute problems with millions of DOFs. In
our approach we consider an associated elastoplastic model with
the von Mises plastic criterion and the combination of linear
isotropic-kinematic hardening law. This model is discretized by
the implicit Euler method in time and by the finite element
method in space. We consider the system of nonlinear equations
with a strongly semismooth and strongly monotone operator. The
semismooth Newton method is applied to solve this nonlinear
system. Corresponding linearized problems arising in the Newton
iterations are solved in parallel by the above mentioned TFETI. The
implementation of this problem is realized in our in-house MatSol
packages developed in MatLab.

Keywords—Isotropic-kinematic hardening, TFETI, domain
decomposition, parallel solution.

I. INTRODUCTION

THE goal of this paper is to present the efficient parallel
implementation of elastoplastic problems based on the

TFETI (Total Finite Element Tearing and Interconnecting)
domain decomposition method [5]. We consider an associated
elastoplasticity with the von Mises plastic criterion and
the combination of linear isotropic-kinematic hardening law
(see e.g. [9], [15], [11]). The corresponding elastoplastic
constitutive problem is discretized by the implicit Euler
method in time and consequently a nonlinear stress-strain
relation is solved by the return mapping concept (see e.g. [15],
[1]). This approach leads to solving a nonlinear variational
equation with respect to the primal unknown displacement in
each time step.

By a finite element space discretization of the one time step
problem, we get a system of nonlinear equations. A suitable
choice for solution of the nonlinear system is the semismooth
Newton method since the strong semismoothness together
with other properties ensure local quadratic convergence.
Semismooth functions in finite dimensional spaces and
the semismooth Newton method were introduced in [16].
Semismoothness in elastoplasticity was investigated for
example in [18], [19].
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For the linearized system in each Newton iteration, we
can use the FETI domain decompositon method, originally
introduced by Farhat and Roux [7] and theoretically analyzed
by Mandel and Tezaur [13]. In our approach we use
modification of FETI method, called TFETI. Hence all
subdomain stiffness matrices are singular with a priori known
kernels. With known kernel basis we can regularize effectively
the stiffness matrix without extra fill in and use any standard
sparse Cholesky type decomposition method for nonsingular
matrices [2].

In Numerical experiments we will use our in-house software
package MatSol [12] developed in Matlab.

II. ELASTOPLASTIC MODELS

Let us consider a deformable body occupying a domain
Ω ⊂ R

3 with a Lipschitz continuous boundary Γ = ∂Ω. State
of the body during the loading process is described by the
Cauchy stress tensor σ ∈ S, the displacement u ∈ R

3 and the
small strain tensor ε ∈ S. Here S = R

3×3
sym is the space of all

symmetric second order tensors. More details can be found in
[15]. The mentioned variables depend on the spatial variable
x ∈ Ω and the time variable t ∈ [t0, t

∗].
Let the boundary Γ be fixed on a part ΓU that has a nonzero

Lebesgue measure with respect to Γ, i.e., we prescribe the
homogeneous Dirichlet boundary condition on ΓU :

u(x, t) = 0 ∀(x, t) ∈ ΓU × [t0, t
∗]. (1)

On the rest of the boundary ΓN = Γ \ ΓU , we prescribe the
Neumann boundary conditions

σ(x, t)n(x) = F (x, t) ∀(x, t) ∈ ΓN × [t0, t
∗], (2)

where n(x) denotes the exterior unit normal and F (x, t)
denotes a prescribed surface forces at the point x ∈ ΓN and
the time t ∈ [t0, t

∗].
The small strain tensor is related to the displacement by the

linear relation

ε(u) =
1

2

(∇u+ (∇u)T
)
. (3)

The equilibrium equation has form

−div(σ(x, t)) = g(x, t) ∀(x, t) ∈ Ω× [t0, t
∗], (4)

where g(x, t) ∈ R
3 represents the volume force acting at the

point x ∈ Ω and the time t ∈ [t0, t
∗].
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For a weak formulation of the investigated problem, we
introduce the space of kinematically admissible displacements,

V =
{
v ∈ [H1(Ω)]3 : v = 0 on ΓU

}
. (5)

Then the conditions (4)–(2) can be written in a weak sense by∫
Ω
〈σ, ε(v)〉F dx =

∫
Ω
gT vdx

+
∫
ΓN

FT vds ∀v ∈ V, ∀t ∈ [t0, t
∗].

(6)

Here ε(v) is defined by (3), 〈., .〉F and ‖.‖F denote the
Frobenius scalar product and the corresponding norm on the
space S, respectively. We assume that the functions σ, F, g are
sufficiently smooth such that the integrals in (6) are correctly
defined in the Lebesgue sense.

The elastoplastic initial-value constitutive model consists
of the following components:

1) Additive decomposition of the strain tensor into the
elastic and plastic parts:

ε = εe + εp. (7)

2) Linear elastic law between the stress and the elastic
strain:

σ = Cεe, (8)

where C is the fourth order tensor.
3) The von Mises yield function coupled with an isotropic

hardening variable κ:

Φ(σ, β, κ) =

√
3

2
‖dev(σ − β)‖F − (σD +Hmκ) ≤ 0,

(9)
where σD, Hm > 0 denote the initial yield stress and
the hardening modulus, respectively.

4) The associated plastic flow rule:

ε̇p = γ̇
∂Φ

∂σ
= γ̇

√
3

2
n̂(σ − β), γ̇ ≥ 0, (10)

where

n̂(τ − ω) =
dev(τ − ω)

‖dev(τ − ω)‖F , τ, ω ∈ S, (11)

and ε̇p and γ̇ denote the time derivative of the plastic
strain and the plastic multiplier, respectively.

5) The kinematic hardening law based on the accumulated
plastic strain rate

c−1
0 β̇ = −γ̇

∂Φ

∂β
= γ̇

√
3

2
n̂(σ − β), (12)

where c0 > 0 is a linear kinematic hardening modulus.
6) The isotropic hardening law based on the accumulated

plastic strain rate:

κ̇ =

√
2

3
‖ε̇p‖F = γ̇. (13)

Notice that the second equality in (13) follows from (10).
7) The loading/unloading conditions:

γ̇ ≥ 0, Φ(σ, β, κ) ≤ 0, γ̇Φ(σ, β, κ) = 0. (14)

8) The initial conditions:

ε(x, t0) = εe(x, t0) = εp(x, t0) = σ(x, t0) = 0
β(x, t0) = 0, κ(x, t0) = 0, x ∈ Ω.

(15)

III. TIME DISCRETIZED ELASTOPLASTIC MODEL

Let us consider the following discretization of the time
interval

t0 < t1 < . . . < tk < . . . < tN = t∗.

Let us denote σk = σk(x) = σ(x, tk), x ∈ Ω and similarly
for other variables. To approximate the time derivatives, we
use the implicit Euler method. This method is often used
in mathematical and engineering literature, see e.g. [9], [15].
Then by (7) and (8),

ε̇p(tk+1) ≈ εpk+1−εpk
�tk+1

=
C

−1(σt
k+1−σk+1)

�tk+1
,

�tk+1 = tk+1 − tk,

(16)

where

σt
k+1 := σk + C�εk+1, �εk+1 = εk+1 − εk. (17)

Here σt
k+1 is the trial stress tensor. By (7)–(17), we

can formulate the time discretized elastoplastic constitutive
problem as follows. Given the values σk, βk, κk, εk of the
stress, the kinematic hardening, the isotropic hardening, and
the strain, respectively, at the time tk and given the incremental
strain �εk+1 for the interval [tk, tk+1], solve the following
system of algebraic equations

C
−1(σt

k+1 − σk+1) = �γk+1

√
3

2
n̂(σk+1 − βk+1)(18)

c−1
0 (βk+1 − βk) = �γk+1

√
3

2
n̂(σk+1 − βk+1)(19)

κk+1 − κk = �γk+1 (20)

for the unknowns σk+1, βk+1, κk+1, and �γk+1, subject to
the constraints

�γk+1 ≥ 0, Φ(σk+1, βk+1, κk+1) ≤ 0,
�γk+1Φ(σk+1, βk+1, κk+1) = 0.

(21)

This constitutive problem can be solved explicitly by the return
mapping concept (see e.g. [1], [15]). It means that we firstly
verify whether Φ(σt

k+1, βk, κk) ≤ 0 (elastic predictor). If this
inequality holds then

�γk+1 = 0, σk+1 = σt
k+1, �σk+1 = C�εk+1,

βk+1 = βk, κk+1 = κk,
(22)

is the solution of the discretized constitutive problem.
Conversely, Φ(σt

k+1, βk, κk) > 0, then by the plastic corrector
we obtain �γk+1 = 2

3
1
αΦk,

σk+1 = σt
k+1 − 2μ

α

√
2
3Φkn̂k,

βk+1 = βk + c0
α

√
2
3Φkn̂k,

κk+1 = κk + 2
3αΦk,

(23)
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where
Φk = Φ(σt

k+1, βk, κk),

n̂k = n̂(σt
k+1 − βk),

α = 2μ+ c0 +
2
3Hm.

Notice that the second and third formulas in (23) are correctly
defined since the denominator ‖dev(σt

k+1 − βk)‖F > 0 for
Φ(σt

k+1, βk, κk) > 0. Let us define the stress and hardening
operators Tσ,k : S → S, Tβ,k : S → S, Tκ,k : S → R such
that for η ∈ S

Tσ,k(η) := Cη − 2μ

α

√
2

3
Φ+

k n̂k, (24)

Tβ,k(η) :=
c0
α

√
2

3
Φ+

k n̂k, (25)

Tκ,k(η) :=
2

3α
Φ+

k , (26)

respectively, where Φ+ denotes the positive part of the
function Φ. Then by (17), (20), (22), (23), (24), (25), and
(26),

�βk+1 = Tβ,k(�εk+1),
�κk+1 = Tκ,k(�εk+1),
�σk+1 = Tσ,k(�εk+1).

(27)

By [1], [19], the operator Tσ,k : S → S is potential, Lipschitz
continuous, strongly monotone, and strongly semismooth on
S.

Let us note that semismoothness was originally introduced
by Mifflin [14] for functionals. Qi and J. Sun [16]
extended the definition of semismoothness to vector-valued
function to investigate the superlinear convergence of the
Newton method. The strong semismoothness of the Lipschitz
continuous function Tσ,k(.) means that Tσ,k(.) is directionally
differentiable on S and has a quadratic approximate property
at any η ∈ S, i.e., for any ξ ∈ S, ξ → 0, and any
T o
σ,k(η + ξ) ∈ ∂Tσ,k(η + ξ),

Tσ,k(η + ξ)− Tσ,k(η)− T o
σ,k(η + ξ)ξ = O(‖ξ‖2F ). (28)

Here ∂Tσ,k(η + ξ) denotes the set of the Clark generalized
derivatives of Tσ,k at η + ξ. Then we can choose the Clark
generalized derivative T o

σ,k of Tσ,k in the following way:
1. If Φk ≤ 0, then

T o
σ,k(η) = C. (29)

2. If Φk > 0, then

T o
σ,k(η) = C− 2μ

α

√
2

3

(
n̂k ⊗ ∂Φk

∂η
+Φk

∂n̂k

∂η

)
, (30)

where

∂Φk

∂η
= 2μ

√
3

2
n̂k,

∂n̂k

∂η
= 2μ

Id − n̂k ⊗ n̂k

‖dev(σk + Cη − βk)‖F ,

Idξ := dev(ξ), ∀ξ ∈ S.

Notice that Tσ,k is not differentiable at η ∈ S, Φk = 0.
Otherwise T o

σ,k(η) = ∂Tσ,k(η)/∂η.

Let us recall that the stress, strain, kinematic hardening,
isotropic hardening, and displacement variables also depend
on a spatial variable x ∈ Ω. We consider the dependence of
Tσ,k(�εk) on x in the following sense:

Tσ,k(�εk) = Tσ,k(�εk)(x). (31)

Then we can substitute the stress operator Tσ,k, defined
by (24), into the balance equation (6) to obtain the time
discretized elastoplastic problem in the incremental form.

Problem 1: Given the stress field σk ∈ [L2(Ω)]3×3
sym, the

kinematic hardening field βk ∈ [L2(Ω)]3×3
sym, and the isotropic

hardening field κk ∈ L2(Ω) at the time tk, find the
displacement uk+1 = uk +�uk+1 ∈ V , where the increment
�uk+1 ∈ V solves the variational equation∫

Ω
〈Tσ,k(ε(�uk+1)), ε(v)〉F dx =

∫
Ω
�gTk+1vdx

+
∫
ΓN

�FT
k+1vds ∀v ∈ V,

(32)

with loading increments �Fk+1 = Fk+1 − Fk, �gk+1 =
gk+1 − gk. Set the stress, kinematic hardening, and isotropic
hardening fields σk+1 = σk +�σk+1, βk+1 = βk +�βk+1,
κk+1 = κk + �κk+1 in the next time step tk+1 from the
relations �σk+1 = Tσ,k(ε(�uk+1)),

�βk+1 = Tβ,k(ε(�uk+1)),
�κk+1 = Tκ,k(ε(�uk+1)),

(33)

almost everywhere in Ω.
Problem 1 can be equivalently formulated as a minimization
problem [18]. Since the operator Tσ,k is strongly monotone
and Lipschitz continuous on S, the non-linear equation (32)
has a unique solution �uk+1 ∈ V (see e.g. [8]).

We assume a polyhedral 3D domain Ω and use the linear
simplex elements. We get this nonlinear equation

find �uk+1 ∈ V :

vT
(
F k(�uk+1)−�fk+1

)
= 0 ∀v ∈ V ,

(34)

where �fk+1 is the increment of the load vector, F k is
a nonlinear operator, and space V is the set of admissible
displacements

V := {v ∈ R
n|BUv = o} .

The relation BUv = o represents Dirichlet boundary
conditions.

The non-linear system of Equation (34) is solved by the
semismooth Newton method and in the each Newton iteration
we solved this problem

find δui ∈ V :

vT
(
Kk,iδui −�fk+1 + F k(�uk,i)

)
= 0 ∀v ∈ V ,

(35)
and compute new approximation of displacement

�uk,i+1 = �uk,i + δui.

The problem (35) can be also equivalently rewritten as a
minimization problem:

find δui ∈ V : J(δui) ≤ J(v), ∀v ∈ V , (36)
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where

J(v) =
1

2
vTKk,iv − (�fk+1 − F k(v)

)T
v, v ∈ V .

(37)

IV. TFETI DOMAIN DECOMPOSITON METHOD

The system (36) of linear equations can be solved by the
TFETI domain decompositon method.

The basic difference between the original FETI method [7],
[6] and TFETI [5] is that all subdomains are kept floating
and Dirichlet boundary conditions are enforced by means of
a constraint matrix and Lagrange multipliers, similarly to the
gluing conditions along subdomain interfaces. This simplifies
implementation of the stiffness matrix pseudoinverse. The
main advantages is that the local stiffness matrices can by
effectively regularized and their kernels are known a priori
[2], have the same dimension and can be formed directly from
mesh data.

Let us consider a partition of the global domain Ω into NS

subdomains Ωs, s = 1, . . . , NS . We assign to each subdomain
Ωs the stiffness matrix Ks and the nodal load vector fs.
Objects Ks and fs are altered in each Newton iteration. The
matrix Ks represents the tangential symmetric and positive
semidefinite stiffness matrix of the subdomain Ωs. The vector
fs represents the increment of right hand side minus nonlinear
operator F k from equation (37) for the given subdomain
s. Rs shall be a matrix whose columns span the nullspace
(kernel) of Ks. Let Bs be a signed boolean matrix defining
connectivity of the subdomain s with neighbour subdomains,
it also enforces Dirichlet boundary conditions when TFETI is
used. They constitute global objects

K = diag(K1, . . . ,KNS ) ∈ R
Np×Np ,

R = diag(R1, . . . ,RNS ) ∈ R
Np×Nn ,

B = [B1, . . . ,BNS ] ∈ R
Nd×Np ,

f = [(f1)T , . . . , (fNS )T ]T ∈ R
Np×1,

where Np, Nd, Nn denote the primal dimension, the dual
dimension, and the null space dimension, respectively. Primal
dimension means the number of all DOFs including those
arising from duplication on the interfaces. Dual dimension is
the total number of equality constraints. Note that columns
of R also span the kernel of K, and K is a symmetric and
positive semidefinite matrix.

Let us apply the duality theory to the primal problem (36)

min
1

2
uTKu− uT f s.t. Bu = o (38)

and establish the notation

F = BK†BT , G = RTBT , d = BK†f , e = RT f .

K† denotes a pseudoinverse (generalized inverse) of K,
satisfying KK†K = K, and G is a so-called natural coarse
space matrix. We obtain a new minimization problem

min
1

2
λTFλ− λTd s.t. Gλ = e. (39)

Equality constraints Gλ = e can be homogenized by splitting
λ into μ + λ̃ where λ̃ satisfies Gλ̃ = e (e.g. λ̃ =

GT (GGT )−1e) and μ ∈ KerG. The homogenized problem
reads as follows:

min
1

2
μTFμ− μT d̃ s.t. Gμ = o, (40)

where d̃ = d − Fλ̃. Furthermore, the constraints Gμ = o
can be enforced by the projector PG onto the null space of
G:

PG = I−Q, Q = GTHG, H = (GGT )−1.

It holds ImPG = KerG, ImG = ImGT . We call the action
of H the coarse problem of FETI. By these means, the equality
constraints are incorporated into the objective function, and we
get an unconstrained minimation problem

min
1

2
μTPGFPGμ− μTPGd̃. (41)

Finally, the unconstrained minimization problem can be
written as a linear system. It holds that PGμ = μ for any
μ ∈ KerG. We can therefore omit one action of PG. The
final problem reads

PGFμ = PGd̃. (42)

Problem (42) can be solved with an arbitrary iterative linear
system solver. The conjugate gradient (CG) method is a good
choice thanks to the classical estimate of the spectral condition
number by Farhat, Mandel and Roux [6]:

κ(PGFPG|ImPG) ≤ C
H

h
. (43)

More details about TFETI and elastoplasticity can be found
in [4], [3].

V. NUMERICAL EXPERIMENTS

All numerical experiments were performed using Anselm
supercomputer located at IT4Innovations, Ostrava, Czech
Republic. The Anselm cluster consists of 209 compute nodes,
totaling 3344 compute cores with 15 TB of RAM and giving a
theoretical peak performance of over 94 Tflop/s. Each node is
a powerful x86-64 computer, equipped with 16 cores, at least
64GB RAM, and 500GB harddrive. Nodes are interconnected
by fully non-blocking fat-tree Infiniband network and equipped
with Intel Sandy Bridge processors.

The proposed algorithms were implemented in MatSol
library [12] developed in Matlab and parallelized using Matlab
Distributed Computing Server and Matlab Parallel Toolbox.
The MatSol library allow us to use parallel algorithm for
solving linearized problem by TFETI. The alternative software
package is PERMON [10], which is implemented in PETSc
[17]. PERMON is in progress nowadays.

The performance of our approach is demonstrated on an
elastoplastic homogeneous cube of sizes 1×1×1 dm (see Fig.
1). The cube is fixed on the lower face (z = 0) and Neuman
boundary condition in the form g(t) = pz = sin(500t) MPa
are prescribed on the upper face (z = 1). We consider the
time interval [0, 1] and divide it into 40 time steps. Fig. 1 also
depicts one of the considered decomposition and the meaning
of the discretization parameter h and the decomposition
parameter H . The elastoplastic body Ω is made from the
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Fig. 1. Geometry.

Fig. 2. Hysteresis curve for M = 0.25.

homogeneous isotropic material with parameters E = 200
GPa, ν = 0.33, σy = 450 MPa, Hm = M · 100 GPa,
and c0 = (1 − M) · 2/3Hm where E and ν are the Young
modulus and the Poisson ratio, respectively. Here M ∈ [0, 1]
is a weight variable which allow us change behaviour of our
model. It means that, in the case M = 0 we have only
kinematic hardening and for case M = 1 we get only isotropic
hardening.

To test numerical scalability, the domain Ω was partitioned
regularly from 23 = 8 to 83 = 512 subdomains. The parameter
N = Nx = Ny = Nz described the number of subdomains in
x direction, in y and z directions as well. We kept the constant
number Ns

p = 3, 993 of primal variables per subdomain and
the number of subdomains per core is also constant and set to
4. Therefore the total number of primal variables ranges from
27, 783 to 1, 594, 323. The stopping tolerances of the Newton
and the CG algorithms are εNewton = 10−4 and εCG = 10−8.
The other detail about problem setting can be found in the
Table I.

The examples of hysteresis curves are in Fig. 2 and Fig. 3.
These hysteresis curves represent dependence of displacement
in z - th direction on the surface forces. It was chosen the
node with [0.0; 0.0; 1.0] coordinates and was drawn for the
problem with the finest meshes.

In Tables II - V can be found the main results for

Fig. 3. Hysteresis curve for M = 0.75.

TABLE I
PROBLEM SETTING

N 2 4 6 8
No. of subdomains 8 64 216 512
No. of cores 3 17 55 129
No. of elements 48, 000 384, 000 1, 296, 000 3, 072, 000
Primal variables 27, 783 206, 763 680, 943 1, 594, 323

Fig. 4. Weak parallel scalability.

chosen decomposition of our benchmark and different values
of variable M . We observe the numbers of the Newton
and CG iterations are highest for M = 0 (only kinematic
hardening) and gradually decreases with increasing M . This
also corresponds with decreasing time of solution. We can also
see that the total time is only five times greater for N = 8
that for N = 2.

Fig. 4 and Fig. 5 depicts weak parallel scalability and
numerical scalability, respectively. In Fig. 4 we see that the
solution time grows up. On the other hand, from Fig. 5 we
observe that the total number of CG iterations grows up only
moderately.

VI. CONCLUSION

We proposed the algorithm which is efficient for parallel
implementation of elastoplastic problems. The performance of
our algorithm was demonstrated on the 3D elastoplastic unit
cube with prescribed loading history. Numerical results for
different mesh levels were presented and discussed. The graph
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TABLE II
RESULT FOR THE DECOMPOSITION GIVEN BY N = 8 AND DIFFERENT

VALUES OF M .

M 0.00 0.25 0.50 0.75 1.00
Tot. No. of New. iter. 111 106 105 104 102
Tot. No. of CG iters. 5, 016 4, 781 4, 728 4, 661 4, 537
Tot. solver time [s] 10, 047 9, 455 9, 431 9, 380 9, 191
Tot. time [s] 13, 02 12, 42 12, 33 12, 28 11, 95

TABLE III
RESULT FOR THE DECOMPOSITION GIVEN BY N = 6 AND DIFFERENT

VALUES OF M .

M 0.00 0.25 0.50 0.75 1.00
Tot. No. of New. iter. 111 108 107 106 104
Tot. No. of CG iters. 4, 988 4, 841 4, 792 4, 729 4, 596
Tot. solver time [s] 3, 442 3, 397 3, 347 3, 303 3, 230
Tot. time [s] 5, 073 5, 008 4, 939 4, 879 4, 722

Fig. 5. Numerical scalability.

of weak parallel scalability shows the solution time would be
better. On the other hand the graph of numerical scalability is
very promising.
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[15] E. A. de Souza Neto, D. Perić, D. R. J. Owen, Computational methods
for plasticity: theory and application. Wiley, 2008.

[16] L. Qi, J. Sun, A nonsmooth version of Newton’ s method, Math. Progr.,
58, 353–367, 1993.

[17] B.F. Smith et al: PETSc Web page. [Online]. Available:
http://www.mcs.anl.gov/petsc/

[18] S. Sysala, Application of a modified semismooth Newton method to some
elasto-plastic problems. Math. Comput. Simul. 82, 2004–2021, 2012.

[19] S. Sysala, Properties and simplifications of constitutive time-discretized
elastoplastic operators. Z. Angew. Math. Mech., 1–23, 2013.

Martin Cermak Martin Cermak was born in 1983 in Hranice, graduated
from the Faculty of Electrical Engineering and Computer Science of the
VSB-Technical University of Ostrava in 2008 in the field of Interface between
COMSOL and OOSol for Solving Contact Problems. He completed his PhD
studies in the field of Scalable algorithms for solving elasto-plastic problems
in 2012. Currently he is a junior researcher at the IT4Innovations National
Supercomputing Center. His current research interests concern mainly the
TFETI domain decomposition, parallel implementation, and elastoplastic
problems for equality and inequality.


