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 
Abstract—In this paper, reliable consensus of multi-agent systems 

with sampled-data is investigated. By using a suitable 
Lyapunov-Krasovskii functional and some techniques such as 
Wirtinger Inequality, Schur Complement and Kronecker Product, the 
results of such system are obtained by solving a set of Linear Matrix 
Inequalities (LMIs). One numerical example is included to show the 
effectiveness of the proposed criteria. 
 

Keywords—Multi-agent, Linear Matrix Inequalities (LMIs), 
Kronecker Product, Sampled-Data, Lyapunov method. 

I. INTRODUCTION 

N recent years, many problem of multi-agent systems has 
received considerable attentions due to their extensive 

applications in cooperative control of mobile autonomous 
robots, the design of distributed sensor networks, spacecraft 
formation flying and so on. A main problem in its systems is the 
consensus problem that it is the agreement of a group of agents 
on their states of leader by interaction [1]-[5]. Nevertheless, this 
problem recently has been applied in various fields such as 
vehicle systems [6], [7], groups of mobile autonomous agent 
[8], networked control systems [9], other applications. 
However, it is considered to use the problems of multi-agent 
systems due to the limited speed of information processing in 
the implementation of this system. Specially, it is well known 
that time-delay often causes unwanted signal like oscillations 
and noises of the system [4]. Thus, it is essential to study them. 
So motivated by this mentioned above, in this paper, new 
consensus problem for multi-agent systems with both sampled 
-data and reliable will be studied.  

At first, in industrial process control, the digital control, 
digital filtering, and signal processing are widely used, which 
makes the closed-loop systems hybrid so-called sampled-data 
system; its states suffer successive impulses at fixed times. The 
sampled-data system is a hybrid one involving continuous time 
and discrete time signals [10]. 

Next, networked control systems use data networks to close 
both information and control loops. Networked control systems 
integrate information, communications and control with control 
loops being closed through the network [11]. They are 
becoming increasingly important in industrial process control 
because of their cost-effectiveness, reduced weight and power 
requirement, simple installation and maintenance and high 
reliability. The problem of designing reliable control systems 
has been attracted since practical systems often have actuator 
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failures [11], [12]. It has been known that the class of reliable 
control systems is to stabilize the systems against actuator 
failures or to design fault-tolerant control systems. So the 
actuator failure model which consists of a scaling factor with 
upper and lower bounds to the signal to be measured or to the 
control action is introduced [13]. 

In this paper, reliable consensus of multi-agent systems with 
sampled-data was supposed. Also, in order to better results, this 
paper was used to Wirtinger-based integral inequality.  

Notation: n  is the n -dimensional Euclidean space, and 
m n denotes the set of all m n  real matrices. For symmetric 

matrices X  and Y , X Y means that the matrix X Y  is 
positive definite. TX denotes the transpose for X . If the context 
allows it, the dimensions of these matrices are often omitted. nI

, 0n
 respectively denote n n  identity matrix and zero matrix. 

X  denotes a basis for the null-space of X . For a given matrix
n nX  , we define  n n rX    as the right orthogonal 

complement of X by 0XX   .  dia   denotes the block 

diagonal matrix.   represents the elements the main diagonal 
of a symmetric matrix.   denotes the notation of Kronecker 
product.  

II. PROBLEM STATEMENTS 

Consider the multi-agent systems with the following 
dynamic of agent i  

 

( ) ( ) ( ), 1, ..., ,i i ix t Ax t Bu t i N                 (1) 

 

where N  is the number of agents, ( )
n

i
x t  R  is the state of agent 

i , ( )
m

i
u t R  is the consensus protocol, and n nA R and 

n mB R  are known constant matrices. 
An algorithm of consensus protocol can be described as 
 

( ) ( ( ) ( ))), 1, ..., ,

i

i ij i j

j N

u t g x t x t i N


                 (2) 

 
where  

ij
g  are the interconnection weights defining 

 
0 , if ag en t  is  co n n ec ted  to  ag en t ,

0 , o th e rw ise .

i j

i j

g i j

g









 

 
The multi-agent system is said to achieve consensus if the 

following definition. 
Definition 1. [17], [18] Given an undirected communication 

graph G , the multi-agent systems (1) are said to be consensus- 
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able under the protocol (2) if for any finite Nix
i

,...,1),0(  , the 

control protocol can asymptotically drive all agents close to 
each other, i.e., 
 

.,...,1,0||)()(||lim Nitxtx
jit




 

 
In this paper, it is concerned that actuator has behavior of 

faulty. The control input of actuator fault can be described as 
 

     Fu t Ru t              (5) 

 
where R  is the actuator fault matrix with   

 

 1 2, , , mR diag r r r  , 0 i i ir r r   , 1ir  ,  1,2, ,i m          (6) 

 
where ir and ir  1,2, ,i m   are given constants. When 1ir   , it 

means the complete failure of i-th actuator. If 1ir  , then i-th 

actuator is normal. 
Let us define  
 

    0 10 20 0, , , mR diag r r r  , 
0 2

i i
i

r r
r

                (7) 

    1 11 21 1, , , mR diag r r r  , 
1 2

i i
i

r r
r

                (8) 

  
Then, the actuator fault matrix R can be rewritten as 
 

   
0 1R R R J              (9) 

 
where  1 2 , , , mJ diag j j j   , 1 1ij   . 

The updating instant time of the Zero-Order Hold is denoted 
by kt .  We assume that the sampling intervals are bounded 

1k k st t h   . The state-feedback controller has a form    ku t x t . 

Defining   kh t t t  , we have     u t x t h t  , 
1k kt t t   , 

0,1, 2,k    .  

We obtain reliable following the consensus of multi-agent 
systems with sampled-data. With the concept introduced at 
(3)-(9), let us consider reliable consensus of multi-agent 
systems with sampled-data and actuator failures given by 
 

1

( ) ( ) ( ( )),

   1, ..., , 0,1, 2,  ,
i

i i ij j

j N

k k

x t Ax t g Bx t h t

i N t t t k





  

   





            (10) 

 
Then, the system (10) can be rewritten as 
 

     0 1( ) ( ) (t)Nx t I A x G B R R J x t h t       (11) 

 

where         
1 2

T n

N
x t x t x t x t  , [ ]

k k

ij N N
G a


 . 

Before deriving main results, the following lemmas are 
introduced. 
Lemma 1. (Reciprocally convex combination) [14]: For a 

scalar   in the interval (0,1), a given matrix 0n nR    , 

two matrices 
1

n mW   and 
2

n mW   , for all vector m   , 

let us define the function ( , R)  given by: 
 

1 1 2 2( , R)
1 1

1
T T T TW RW W RW     

 
 


 

  
Then, if there exists a matrix n mX   , then the following 

inequality holds  
 

1 1

(0,1)
2 2

( , R)min
*

T
W WR X

W WR
 

 
 


    
    

    

 

 
Lemma 2. (Wirtinger inequality): For a given matrix 0R   , 
the following inequality holds for all continuously 
differentiable function w  in [a, b]n . 
 

   

( ) ( )

1 3
( ) ( ) ( ) ( )

       
2

( ) ( ) ( )

b T
a

T T

b

a
where

w u Rw u du

w b w a R w b w a R
b a b a

w b w a w u du
b a

     
 

   






 

 
Lemma 3. (Kronecker product) [15]: Let   denote the 
notation of Kronecker product. Then, the following properties 
of the Kronecker product are easily established: 
    
  
       
  

,

,

,

.
T T T

i A B A B

ii A B C A C B C

iii A B C D AC BD

iv A B A B

   

     

   

  

 

 
Lemma 4. [16]: Let E , H and  F t  be real matrices of 

appropriate dimensions, and let  F t  satisfy    TF t F t I . 

Then, for any scalar 0  , the following matrix inequality 
holds: 
 

    1EF t H H F t E H H EE           

III. MAIN RESULT 

In this section, we propose new stability and stabilization 
criteria for system (9). The notations of several matrices are 
defined as: 

 
( )

( )

1 1
( ) ( ) ( ( )) ( ) ( ) ( )

( ) ( ) M

t t h tT T T T
M t h t t h

M

t x t x t h t x t h x s ds x s ds
h t h h t




 

 
    

  , 

     1 50 0 ,  1, 2, ,5
T

i ni n i ne I i 
      , 

1 2 3 4       ,    1 1 1
T T

N Ne I P I P e      , 

     2 1 1 1 2 1 21T T
N d Ne I Q e h e I Q e      , 

   3 1 2 1 3 2 3
T T

N Ne I Q e e I Q e     , 

1 2 1 2

11 2 5 1 2 5
4

12 3 2 3

2 3 6 2 3 6

2 2

*

2 2

TT T T T

T T T T T T
N N

T T T T
N

T T T T T T

e e e e

I R I Me e e e e e

I Re e e e

e e e e e e

    
                      

         

=
 , 
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1

0

* 3
N

N

I R
R

I R

 
   

, 1 2     , 

   1 1 0 2
T

NI A e G BR e      ,  2 1 2
TG BR J e    , 

1 1H G BR  , 
1 1H G BR  ,   2 1 1

TTGG BR BR   , 

   1 1 1 1 1

T Te G PBR G PBR e    , 

 
1 2 2

1

2 1

2 2

0 0

0 0

0 0

T T T
M

M N

h e e

h I X

e I

e I



 




 
 

       
  

 

 
Now we have Theorem 1. 
Theorem 1. For given scalars 

Mh , 
ir , 

ir , , and the matrices A

, B , G , the agent in the system (11) converge to the state of 
leader, if there exist positive definite matrices n nP  , 

1
n nQ  , 

2
n nQ  , n nX  and positive scalar 

1 ,
2 , any 

matrix 2 2n nM   . Then system is asymptotically stable for 
~~~when satisfying the following LMIs: 
 

0               (12) 

1

1

0
*

N N

N

I R I M

I R

  
  

        (13) 

 
Proof: Let us consider the following Lyapunov-krasovskii 
functional candidate as 
 

              1 2 3 4V x t V x t V x t V x t V x t             (14) 

 
where 

       

 
 

 

 

1

2 1

3 2

4

( ( )) ( ) ( )

( ( )) ( ) ( )

( ( )) ( ) ( )

M

M

T
N

t T
Nt h t

t T
Nt h

t t T
M Nt h s

V x t x t I P x t

V x t x s I Q x s ds

V x t x s I Q x s ds

V x t h x u I R x u duds







 

 

 

 





   

 

 
By using Lemma 3 and 4 the time derivative of 

1V  is 

calculated as 
 

       
       

1 1 1

1 1 2 2 1

( ( )) ( )

( )

T T T
N N

T T T
N N

V x t t e I P I P e t

t e I P I P e t

   

   

   

     

     (15)  

    
By using Lemma 4, the upper-bound of time derivative of 2V  

is calculated as 
 

 

          
   

2 1( )

1 1 1 2 1 2

2

( ( )) ( ) ( )

1

t T
Nt h t

T T T
N Nd

T

d
V x t x s I Q x s ds

dt

t e I Q e h e I Q e t

t t

 

 


 

    

 


    (16) 

 
By using Lemma 4, the upper-bound of time derivative of 

3V  is 

calculated as 
 

         
   

3 1 1 1 3 2 3

3

( ( )) T T T
N N

T

V x t t e I Q e e I Q e t

t t

 

 

   

 

       (17) 

By using Lemma 4, the time derivative of 4V  is calculated as 
 

   2
4 ( ) ( )( ( )) ( ) ( )

M

t T
Nt h

T
M N M x u I R x u duV x t h x t I R x t h


         

 
Finally, by using Lemma 1 and 2, the upper-bound of time 

derivative of 4V  is calculated as 
 

          2
4 4

T T
M NV x t t h I R t           (18) 

 
By combining (15)-(18), an upper bound of V is obtained as: 

 

     
   

1 2 2 1

2

(

)

T T
N N

T
M N

V t e I P I P e

h I R t

  

  

    

 


              (19) 

 
Using Lemma 4 and Schur complement, stabilization criterion 

for the system (19) is equivalent to  
 

 
1 2 2

1

1

2 1

2 2

0 0 0
0 0

0 0

T T T
M

M N

h e e

h I R

e I

e I










 
 

      
  

            (20) 

 
It should be note that the stabilization condition (20) have the 

non-linear term 1R . So a simple method to solve it is to set 
1R X  , where 0  is a tuning parameter. If the LMIs (12) 

and (13) hold, then stability condition (11) is satisfied. This 
completes our proof. 

IV. NUMERICAL EXAMPLE 

In this section, one numerical example will be shown to 
illustrate the effectiveness of the proposed Theorem 1. 
Example 1. Consider the multi-agent systems (11). 
 

1 2

2 1
A

  
   

, 1 0

0 1
B

 
  
 

, 1 1

1 1
G

 
   

 

 
which satisfied with  0 Mh t h  . By applying Theorem 1, 

comparison with the same sampling interval
Mh , when 0.5ir  , 

1ir   and 1ir  , 1ir  . In fact, when 1ir  , 1ir  , it is non- reliable 

systems. So we compared the reliable systems with the 
non-reliable systems by using Theorem 1. Their results are 
listed in Figs. 1-3. 
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Fig. 1 The simulated result of   x t t h  for Example 1 

 
The switched interval

Mh is 0.5. Then, the result is shown in 

Fig. 1.  
 

  

(a) 
 

 

(b) 

Fig. 2 The result of  x t  for example 1 when (a) 0.5ir  , 1ir   and (b) 

1ir  , 1ir   

 
In order to confirm the this system result, we set that initial 

value of the state set up by    0 0 0
T

x  . The system (11) is 

asymptotically stable with reliable sampled-data stability.  
 

 
Fig. 3  1x t ,  2x t state trajectories of the systems for example 1 

 
The figure shows that  1x t ,  2x t state are set by initial states 

of  
 

     1 20 0 2 1.5
T T

x x    ,      3 40 0 1 1
T T

x x     . 

V. CONCLUSION 

In this paper, reliable consensus of multi-agent systems with 
sampled-data is proposed. To do this, constructing a suitable 
lemmas such as Wirtinger inequality, Reciprocally approach 
and Kronecker product, etc. To show the effectiveness of the 
proposed theorem, one numerical example was included. 
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