Bilinear and Bilateral Generating Functions for the Gauss’ Hypergeometric Polynomials

Manoj Singh, Mumtaz Ahmad Khan, Abdul Hakim Khan

Abstract-The object of the present paper is to investigate several general families of bilinear and bilateral generating functions with different argument for the Gauss' hypergeometric polynomials.

Mathematics Subject Classification(2010): Primary 42C05, Secondary 33C45.

Keywords-Appell's functions, Gauss hypergeometric functions, Heat polynomials, Kampe' de Fe'riet function, Laguerre polynomials, Lauricella's function, Saran's functions.

I. Introduction

IN 1994, S.D. Singh and M.S. Arora [9], gave the semi orthogonal property of the Gauss' hypergeometric polynomials with its application as follows:

$$
\begin{align*}
& \int_{0}^{\infty} x^{-1-b-m}(1+x)^{b-c-m} A_{m}^{(b, c)}(x) A_{n}^{(b, c)}(x) d x \\
& =0, \text { if } m<n \\
& =\frac{(b)_{n} n!\Gamma(c) \Gamma(-b) \Gamma(1+b)}{(c)_{n} \Gamma(1+b+n) \Gamma(c-b)}, \text { if } m=n \tag{1}
\end{align*}
$$

where $\operatorname{Re}(c)>0, \operatorname{Re}(b)<-m, \operatorname{Re}(b)>-n \Longrightarrow m=$ $n, b \neq-n$.

Later, in 2001, I.K. Khanna and V. Srinivasa Bhagavan [5] derive the generating functions by using the representations of the Lie group $\operatorname{SL}(2, C)$ (the complex special linear group).

The present paper is the extension of our earlier paper [6] in which Gauss' hypergeometric polynomials is defined by the relation

$$
\begin{align*}
A_{n}^{(b, c)}(x) & =x^{n}{ }_{2} F_{1}\left[\begin{array}{ccc}
-n, b & ; & 1 \\
c & ; & -\frac{1}{x}
\end{array}\right] \\
& =\sum_{r=0}^{\infty}(-1)^{r} \frac{(-n)_{r}(b)_{r}}{(c)_{r} r!} x^{n-r}, n=0,1,2, \ldots \tag{2}
\end{align*}
$$

provided that c is not zero nor a negative integer.
In view of the relation [see, E.D. Rainville [3], Th. 20, pp. 60],

$$
\begin{equation*}
{ }_{2} F_{1}[a, b ; c ; z]=(1-z)^{-a}{ }_{2} F_{1}\left[a, c-b ; c ; \frac{z}{z-1}\right] \tag{3}
\end{equation*}
$$

M. Singh is with Department of Mathematics, College of Science, Jazan University, Jazan, Saudi Arabia (e-mail: manojsingh221181@gmail.com).
M. A. Khan is with Department of Applied Mathematics, Faculty of Engineering, Aligarh Muslim University, Aligarh - 202002, U.P., India (email: mumtaz_ahmad_khan_2008@yahoo.com).
A. H. Khan is with Department of Applied Mathematics, Faculty of Engineering, Aligarh Muslim University, Aligarh - 202002, U.P., India (email: ahkhanamu@gmail.com).
the relation (2) can be written in an elegant form as

Also, by reversing the order of summation, (2) and (4) can be written as

$$
A_{n}^{(b, c)}(x)=\frac{(b)_{n}}{(c)_{n}}{ }_{2} F_{1}\left[\begin{array}{r}
-n, 1-c-n ; \tag{5}\\
1-b-n ;
\end{array}\right]
$$

and

$$
\begin{align*}
A_{n}^{(b, c)}(x)= & (-1)^{n} \frac{(c-b)_{n}}{(c)_{n}} \\
& \times{ }_{2} F_{1}\left[\begin{array}{c}
-n, 1-c-n ; \\
1+b-c-n ;
\end{array} 1+x\right] \tag{6}
\end{align*}
$$

Some of the definitions and notations used in the present paper are as follows:

Appell's functions of two variables are given by (see [7]).

$$
\begin{equation*}
F_{1}\left[a, b, b^{\prime} ; c ; x, y\right]=\sum_{n, k=0}^{\infty} \frac{(a)_{n+k}(b)_{n}\left(b^{\prime}\right)_{k}}{n!k!(c)_{n+k}} x^{n} y^{k} \tag{7}
\end{equation*}
$$

$F_{2}\left[a, b, b^{\prime} ; c, c^{\prime} ; x, y\right]=\sum_{n, k=0}^{\infty} \frac{(a)_{n+k}(b)_{n}\left(b^{\prime}\right)_{k}}{n!k!(c)_{n}\left(c^{\prime}\right)_{k}} x^{n} y^{k}$
$F_{3}\left[a, a^{\prime}, b, b^{\prime} ; c ; x, y\right]=\sum_{n, k=0}^{\infty} \frac{(a)_{n}\left(a^{\prime}\right)_{k}(b)_{n}\left(b^{\prime}\right)_{k}}{n!k!(c)_{n+k}} x^{n} y^{k}$
$F_{4}\left[a, b ; c, c^{\prime} ; x, y\right]=\sum_{n, k=0}^{\infty} \frac{(a)_{n+k}(b)_{n+k}}{n!k!(c)_{n}\left(c^{\prime}\right)_{k}} x^{n} y^{k}$
Saran's functions for three variables are given by (see [8]).

$$
F_{E}\left[\alpha_{1}, \alpha_{1}, \alpha_{1}, \beta_{1}, \beta_{2}, \beta_{2} ; \gamma_{1}, \gamma_{2}, \gamma_{3} ; x, y, z\right]
$$

$$
\begin{equation*}
=\sum_{m, n, p=0}^{\infty} \frac{\left(\alpha_{1}\right)_{m+n+p}\left(\beta_{1}\right)_{m}\left(\beta_{2}\right)_{n+p}}{\left(\gamma_{1}\right)_{m}\left(\gamma_{2}\right)_{n}\left(\gamma_{3}\right)_{p} m!n!p!} x^{m} y^{n} z^{p} \tag{11}
\end{equation*}
$$

$F_{G}\left[\alpha_{1}, \alpha_{1}, \alpha_{1}, \beta_{1}, \beta_{2}, \beta_{3} ; \gamma_{1}, \gamma_{2}, \gamma_{2} ; x, y, z\right]$
$=\sum_{m, n, p=0}^{\infty} \frac{\left(\alpha_{1}\right)_{m+n+p}\left(\beta_{1}\right)_{m}\left(\beta_{2}\right)_{n}\left(\beta_{3}\right)_{p}}{\left(\gamma_{1}\right)_{m}\left(\gamma_{2}\right)_{n+p} m!n!p!} x^{m} y^{n} z^{p}$
$F_{S}\left[\alpha_{1}, \alpha_{2}, \alpha_{2}, \beta_{1}, \beta_{2}, \beta_{3} ; \gamma_{1}, \gamma_{1}, \gamma_{1} ; x, y, z\right]$
$=\sum_{m, n, p=0}^{\infty} \frac{\left(\alpha_{1}\right)_{m}\left(\alpha_{2}\right)_{n+p}\left(\beta_{1}\right)_{m}\left(\beta_{2}\right)_{n}\left(\beta_{3}\right)_{p}}{\left(\gamma_{1}\right)_{m+n+p} m!n!p!} x^{m} y^{n} z^{p}$

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934
Vol:8, No:10, 2014

Lauricella's hypergeometric functions for n variables is defined by (see [4]).

$$
\begin{align*}
& F_{C}^{(n)}\left[a, b ; c_{1}, \ldots, c_{n} ; x_{1}, \ldots, x_{n}\right] \\
& =\sum_{m_{1}, \ldots, m_{n}=0}^{\infty} \frac{(a)_{m_{1}+\ldots+m_{n}}(b)_{m_{1}+\ldots+m_{n}}}{\left(c_{1}\right)_{m_{1}} \ldots\left(c_{n}\right)_{m_{n}}} \\
& \quad \times \frac{x_{1}^{m_{1}}}{m_{1}!} \ldots \frac{x_{n}^{m_{n}}}{m_{n}!} \tag{14}
\end{align*}
$$

$$
\begin{align*}
& F_{D}^{(n)}\left[a, b_{1}, \ldots, b_{n} ; c ; x_{1}, \ldots, x_{n}\right] \\
& =\sum_{m_{1}, \ldots, m_{n}=0}^{\infty} \frac{(a)_{m_{1}+\ldots+m_{n}}\left(b_{1}\right)_{m_{1} \ldots\left(b_{n}\right)_{m_{n}}}^{(c)_{m_{1}+\ldots+m_{n}}}}{} \\
& \times \frac{x_{1}^{m_{1}}}{m_{1}!} \cdots \frac{x_{n}^{m_{n}}}{m_{n}!} \tag{15}
\end{align*}
$$

Confluent form of Lauricella's functions for n variables is defined by (see [4]).

$$
\begin{align*}
& \psi_{2}^{(n)}\left[a, c_{1}, \ldots, c_{n} ; x_{1}, \ldots, x_{n}\right] \\
& =\sum_{m_{1}, \ldots, m_{n}=0}^{\infty} \frac{(a)_{m_{1}+\ldots+m_{n}}}{\left(c_{1}\right)_{m_{1}} \ldots\left(c_{n}\right)_{m_{n}}} \frac{x_{1}^{m_{1}}}{m_{1}!} \ldots \frac{x_{n}^{m_{n}}}{m_{n}!} \tag{16}
\end{align*}
$$

Similarly, a general triple hypergeometric series $F^{(3)}[x, y, z]$ (see [4], pp. 69) is defined as
$F^{(3)}[x, y, z]$
$=F^{(3)}\left[\begin{array}{l}(a)::(b) ;\left(b^{\prime}\right) ;\left(b^{\prime \prime}\right):(c) ;\left(c^{\prime}\right) ;\left(c^{\prime \prime}\right) ; \\ \left.(e)::(g) ;\left(g^{\prime}\right) ;\left(g^{\prime \prime}\right):(h) ;\left(h^{\prime}\right) ;\left(h^{\prime \prime}\right) ; x, z\right]\end{array}\right]$
$=\sum_{m, n, p=0}^{\infty} \Lambda(m, n, p) \frac{x^{m}}{m!} \frac{y^{n}}{n!} \frac{z^{p}}{p!}$
where for convenience
$\Lambda(m, n, p)=\frac{\prod_{j=1}^{A}\left(a_{j}\right)_{m+n+p}}{\prod_{j=1}^{B}\left(b_{j}\right)_{m+n}} \frac{\prod_{j=1}^{B^{\prime}}\left(b^{\prime}{ }_{j}\right)_{n+p}}{\prod_{j=1}^{E}\left(e_{j}\right)_{m+n+p} \prod_{j=1}^{G}\left(g_{j}\right)_{m+n}} \prod_{j=1}^{G^{\prime}}\left(g^{\prime}{ }_{j}\right)_{n+p} \quad$

$$
\times \frac{\prod_{j=1}^{B^{\prime \prime}}\left(b^{\prime \prime}{ }_{j}\right)_{p+m} \prod_{j=1}^{C}\left(c_{j}\right)_{m} \prod_{j=1}^{C^{\prime}}\left(c^{\prime}{ }_{j}\right)_{n} \prod_{j=1}^{C^{\prime \prime}}\left(c^{\prime \prime}{ }_{j}\right)_{p}}{\prod_{j=1}^{H}\left(h_{j}\right)_{m} \prod_{j=1}^{H^{\prime}}\left(h^{\prime}{ }_{j}\right)_{n} \prod_{j=1}^{H^{\prime \prime}}\left(h^{\prime \prime}{ }_{j}\right)_{p} \prod_{j=1}^{G^{\prime \prime}}\left(g^{\prime \prime}{ }_{j}\right)_{p+m}}
$$

II. Bilinear Generating Functions

By using the definition (2) and the Gaussian hypergeometric transformation (see, Rainville [3], Th. 21, pp. 60]

$$
\begin{equation*}
{ }_{2} F_{1}[a, b ; c ; z]=(1-z)^{c-a-b}{ }_{2} F_{1}[c-a, c-b ; c ; z] \tag{18}
\end{equation*}
$$

We thus obtain the bilinear generating function
$\sum_{n=0}^{\infty} \frac{(c+b)_{n}(c+m)_{n}}{(1+d)_{n} n!} A_{m+n}^{(-b-n, c)}(x) A_{n}^{(-d-n, e)}(y) t^{n}$
$=(1+x)^{m}\left(\frac{x}{1+x}\right)^{-b-c} F_{c}^{(3)}[c+m, c+b ; c, e, 1+d ;$

$$
\begin{equation*}
\left.-\frac{1}{x},-\frac{(1+x)^{2} t}{x}, \frac{(1+x)^{2} y t}{x}\right] \tag{19}
\end{equation*}
$$

where $F_{c}^{(3)}$ denote the Lauricella's function defined by (14, with $n=3$). An interesting special case of the generating function (19) would occurs when we set, $m=0, d=b$, $e=c$, and appealing the hypergeometric reduction formula (see, B.L. Sharma [1], pp. 716, (2.4)).
$F_{c}^{(3)}[\alpha+\beta+1, \beta+1 ; \alpha+1, \beta+1, \beta+1 ; x, y, z]$
$=(1+x-y-z)^{-\alpha-\beta-1}$

$$
\begin{equation*}
\times F_{4}\left[\frac{\alpha+\beta+1}{2}, \frac{\alpha+\beta+2}{2} ; \alpha+1, \beta+1 ; X, Y\right] \tag{20}
\end{equation*}
$$

where, $X=\frac{4 x}{(1+x-y-z)^{2}}, \quad Y=\frac{4 y z}{(1+x-y-z)^{2}}$ yields the generating relation

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{(c+b)_{n}(c)_{n}}{(1+b)_{n} n!} A_{n}^{(-b-n, c)}(x) A_{n}^{(-b-n, c)}(y) t^{n} \\
& =\{1+(1+x)(1+y) t\}^{-b-c} \\
& \quad \times F_{4}\left[\frac{1}{2}(c+b), \frac{1}{2}(c+b+1) ; 1+b, c ; \xi, \zeta\right] \tag{21}
\end{align*}
$$

where, $\xi=\frac{4 x y t}{(1+(1+x)(1+y) t)^{2}}, \quad \zeta=\frac{4 t}{(1+(1+x)(1+y) t)^{2}}$ and F_{4} is the Appell's function defined by (10).

Another bilinear generating function are obtained by using (2), which in conjunction with ([6], (2.25)),
$\sum_{n=0}^{\infty} \frac{(\lambda)_{n}(1+c)_{n}}{(1+b+c)_{n} n!} A_{m+n}^{(b,-c-n)}(x) t^{n}$
$=\frac{(1+b+c-m)_{m}}{(1+c-m)_{m}} x^{m}(1-x t)^{-\lambda}$

$$
\begin{equation*}
\times F_{1}\left[b,-m, \lambda ; 1+b+c-m ; \frac{1+x}{x},-\frac{(1+x) t}{1-x t}\right] \tag{22}
\end{equation*}
$$

readily gives the relation
$\sum_{n=0}^{\infty} \frac{(\lambda)_{n}(1+c)_{n}}{(1+b+c)_{n} n!} A_{n}^{(b,-c-n)}(x) A_{n}^{(d, e)}(y) t^{n}$
$=(1-x y t)^{-\lambda} \sum_{n=0}^{\infty} \frac{(\lambda)_{n}(d)_{n}(b)_{n}}{(e)_{n}(1+b+c)_{n} n!}(\chi)^{n}$

$$
\begin{equation*}
\times F_{2}[\lambda+n, d+n, b+n ; e+n, 1+b+c+n ; \psi, \omega] \tag{23}
\end{equation*}
$$

where, $\frac{\chi}{-(1+x)}=\frac{\psi}{x}=\frac{\omega}{-(1+x) y}=\frac{t}{1-x y t}$ and F_{2} is the Appell's function defined by (8)

The second member of (23) can indeed be written in terms of Srivastava triple hypergeometric series $F^{(3)}[x, y, z]$ defined by (17), and we thus obtain the alternative form of the bilinear generating function (23) as,
$\sum_{n=0}^{\infty} \frac{(\lambda)_{n}(1+c)_{n}}{(1+b+c)_{n} n!} A_{n}^{(b,-c-n)}(x) A_{n}^{(d, e)}(y) t^{n}=(1-x y t)^{-\lambda}$

$$
\times F^{(3)}\left[\begin{array}{l}
\lambda:: d ; \ldots ; \quad b \quad: \ldots ; \ldots ; \ldots ; \tag{24}\\
\ldots:: e ; \ldots ; 1+b+c: \ldots ; \ldots ; \ldots ;
\end{array} \chi, \psi, \omega\right]
$$

Again, when we set $\lambda=1+b+c$ in (24), along with ([7], pp. 35, (10))

$$
\begin{align*}
& F_{2}\left[a, b, b^{\prime} ; a, c^{\prime} ; x, y\right] \\
& =(1-x)^{-b} F_{1}\left[b^{\prime}, b, a-b ; c^{\prime} ; \frac{y}{1-x}, y\right] \tag{25}
\end{align*}
$$

Moreover, the power series identity ([4], 1.6(2)).

$$
\begin{equation*}
\sum_{m, n=0}^{\infty} f(m+n) \frac{x^{m}}{m!} \frac{y^{n}}{n!}=\sum_{N=0}^{\infty} f(N) \frac{(x+y)^{N}}{n!} \tag{26}
\end{equation*}
$$

We obtain generating function in the form

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{(1+c)_{n}}{n!} A_{n}^{(b,-c-n)}(x) A_{n}^{(d, e)}(y) t^{n} \\
& =(1+y t)^{-b}(1-x y t)^{-c-1} \\
& \quad \times F_{1}\left[d, b, 1+c ; e ;-\frac{1}{1+y t}, \frac{x t}{1-x y t}\right] \tag{27}
\end{align*}
$$

where F_{1} is the Appell's function defined by (7).
In view of the definition (2) and (4), which in conjunction with (18), we obtain some more bilinear generating function for $A_{n}^{(b, c)}(x)$ as given below:

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{(c+m)_{n}(1+e)_{n}}{(\lambda)_{n} n!} A_{m+n}^{(b, c)}(x) A_{n}^{(-d-n,-e-n)}(y) t^{n} \\
& =(1+x)^{m}\left(\frac{x}{1+x}\right)^{b-c} \\
& \times F_{G}[c+m, c+m, c+m, c-b, 1+e, d-e \\
& \left.\quad c, \lambda, \lambda ;-\frac{1}{x},(1+x)(1+y) t,(1+x) t\right] \tag{28}
\end{align*}
$$

Alternatively, equivalently using (2) along with (5), we obtain

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{(1+e)_{n}}{n!} A_{m+n}^{(b-n, c-n)}(x) A_{n}^{(d,-e-n)}(y) t^{n} \\
& =\frac{(b)_{m}}{(c)_{m}}(1+x)^{c+m-1} \\
& \quad \times F_{G}[1-b, 1-b, 1-b, 1-c-m, 1+e, d \\
& \left.\quad 1-b-m, 1-c, 1-c ; \frac{x}{1+x}, y t,-t\right] \tag{29}
\end{align*}
$$

where in (28) and (29) F_{G} are the Saran's function defined by (12).

Further, we obtain some more bilinear generating function by using the relation (2) along with (3) in an elegant form as

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{(\lambda)_{n}(c+m)_{n}}{(1+d)_{n} n!} A_{m+n}^{(b, c)}(x) A_{n}^{(-d-n, e)}(y) t^{n} \\
& =(1+x)^{m}\left(\frac{x}{1+x}\right)^{b-c} \\
& \quad \times F_{E}[c+m, c+m, c+m, c-b, \lambda, \lambda ; \\
& \left.\quad c, e, 1+d ;-\frac{1}{x},-(1+x) t,(1+x) y t\right] \tag{30}
\end{align*}
$$

or, equivalently

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{(\lambda)_{n}(1-c)_{n}}{(1+d)_{n} n!} A_{m+n}^{(b-n, c-n)}(x) A_{n}^{(-d-n, e)}(y) t^{n} \\
& =\frac{(b)_{m}}{(c)_{m}}(1+x)^{c+m-1} \\
& \quad \times F_{E}[1-b, 1-b, 1-b, 1-c-m, \lambda, \lambda ; \\
& \left.\quad 1-b-m, e, 1+d ; \frac{x}{1+x},-t, y t\right] \tag{31}
\end{align*}
$$

where in (30) and (31) F_{E} is the Saran's function defined by (11).

III. Bilateral Generating Functions

The polynomials $A_{n}^{(b, c)}(x)$ admits several bilateral generating functions. Firstly, we introduce three bilateral generating function by using the relation (2), each of which involved the Gaussian hypergeometric ${ }_{2} F_{1}$ function in terms of the Lauricella's triple hypergeometric series F_{4}, F_{8} and F_{7} (which, in the notation used by Saran's [8], are F_{E}, F_{G}, F_{S} respectively) are as follows:

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{(\lambda)_{n}(\mu)_{n}}{(1+b)_{n} n!} A_{n}^{(-b-n, c)}(x)_{2} F_{1}[\lambda+n, \beta ; \gamma ; y] t^{n} \\
& =F_{E}[\lambda, \lambda, \lambda, \beta, \mu, \mu ; \gamma, 1+b, c ; y, x t,-t] \tag{32}\\
& \sum_{n=0}^{\infty} \frac{(\lambda)_{n}(1+c)_{n}}{(\mu)_{n} n!} A_{n}^{(b,-c-n)}(x)_{2} F_{1}[\lambda+n, \beta ; \gamma ; y] t^{n} \\
& =F_{E}[\lambda, \lambda, \lambda, \beta, 1+c, b ; \gamma, \mu, \mu ; y, x t,-t] \tag{33}
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{(\lambda)_{n}(1+c)_{n}}{(\mu)_{n} n!} A_{n}^{(b,-c-n)}(x)_{2} F_{1}[\beta, \gamma ; \mu+n ; y] t^{n} \\
& =F_{S}[\beta, \lambda, \lambda, \gamma, 1+c, b ; \mu, \mu, \mu ; y, x t,-t] \tag{34}
\end{align*}
$$

Now, by using the definition (2) along with Laguerre polynomials (see [3], pp. 200, (1)), yields the generating function in the form

$$
\begin{align*}
& \sum_{n=0}^{\infty}\binom{m+n}{n} \frac{L_{m+n}^{(\alpha)}(x) A_{n}^{(-b-n, c)}(y)}{(1+b)_{n}} t^{n} \\
&=\binom{\alpha+m}{m} e^{x} \\
& \times \psi_{2}^{(3)}[\alpha+m+1 ; \alpha+1, c, 1+b ;-x,-t, y t] \tag{35}\\
& \sum_{n=0}^{\infty}\binom{m+n}{n} L_{m+n}^{(\alpha)}(x) A_{n}^{(b, c)}(y) t^{n} \\
&=\binom{\alpha+m}{m} e^{x}(1-y t)^{-\alpha-m-1} \\
& \quad \times \psi_{1}\left[\alpha+m+1, b ; c, 1+\alpha ; \frac{t}{1-y t},-\frac{x}{1-y t}\right] \tag{36}
\end{align*}
$$

ISSN: 2517-9934
Vol:8, No:10, 2014

Alternatively, equivalently using (5), we obtain

$$
\begin{align*}
& \sum_{n=0}^{\infty}\binom{m+n}{n} \frac{(1-c)_{n}}{(1-b)_{n}} L_{m+n}^{(\alpha)}(x) A_{n}^{(b-n, c-n)}(y) t^{n} \\
& =\binom{\alpha+m}{m} e^{x}(1-t)^{-\alpha-m-1} \\
& \quad \times \psi_{1}\left[\alpha+m+1,1-c ; 1-b, 1+\alpha ; \frac{y t}{1-t}, \frac{-x}{1-t}\right] \tag{37}
\end{align*}
$$

where, in (35) $\psi_{2}^{(3)}$ is the confluent form of Lauricella's function defined by (16), with $n=3$ and in (36) and (37) ψ_{1} is the confluent hypergeometric function of two variables (see [4], pp. 59, (41)).
The generalized heat polynomials $P_{n, \nu}(x, u)$ defined by (Haimo [2], p.736, (2.1)).

$$
\begin{equation*}
P_{n, \nu}(x, u)=\sum_{k=0}^{n} 2^{2 k}\binom{n}{k} \frac{\Gamma\left(\nu+n+\frac{1}{2}\right)}{\Gamma\left(\nu+n-k+\frac{1}{2}\right)} x^{2 n-2 k} u^{k} \tag{38}
\end{equation*}
$$

By reversing the order of summation, (38) can be written as

$$
\begin{align*}
P_{n, \nu}(x, u) & =(4 u)^{n}\left(\nu+\frac{1}{2}\right) \sum_{n=0}^{n} \frac{(-n)_{k}}{\left(\nu+\frac{1}{2}\right)_{k} k!}\left(\frac{-x^{2}}{4 u}\right)^{k} \\
& =(4 u)^{n} n!L_{n}^{\left(\nu-\frac{1}{2}\right)}\left(-\frac{x^{2}}{4 u}\right) \tag{39}
\end{align*}
$$

Further, involving the relation (39) with (2) and (5), another form of generating function equivalent to (35), (36) and (37) are obtained,

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{P_{m+n, \nu}(x, u) A_{n}^{(-b-n, c)}(y)}{(1+b)_{n} n!} t^{n} \\
& =(4 u)^{m}\left(\nu+\frac{1}{2}\right)_{m} \exp \left(\frac{-x^{2}}{4 u}\right) \\
& \quad \times \psi_{2}^{(3)}\left[\nu+m+\frac{1}{2} ; \nu+\frac{1}{2}, c, 1+b ; \frac{x^{2}}{4 u},-4 u t, 4 u y t\right] \tag{40}
\end{align*}
$$

$$
\sum_{n=0}^{\infty} P_{m+n, \nu}(x, u) A_{n}^{(b, c)}(y) \frac{t^{n}}{n!}
$$

$$
=(4 u)^{m}\left(\nu+\frac{1}{2}\right)_{m} \exp \left(\frac{-x^{2}}{4 u}\right)(1-4 u y t)^{-\nu-m-\frac{1}{2}}
$$

$$
\begin{equation*}
\times \psi_{1}\left[\nu+m+\frac{1}{2}, b ; c, \nu+\frac{1}{2} ; \frac{4 u t}{1-4 u y t}, \frac{x^{2}}{4 u(1-4 u y t)}\right] \tag{41}
\end{equation*}
$$

$$
\sum_{n=0}^{\infty} \frac{(1-c)_{n}}{(1-b)_{n}} P_{m+n, \nu}(x, u) A_{n}^{(b-n, c-n)}(y) \frac{t^{n}}{n!}
$$

$$
=(4 u)^{m}\left(\nu+\frac{1}{2}\right)_{m} \exp \left(\frac{-x^{2}}{4 u}\right)(1-4 u t)^{-\nu-m-\frac{1}{2}}
$$

$$
\times \psi_{1}\left[\nu+m+\frac{1}{2}, 1-c ; 1-b, \nu+\frac{1}{2}\right.
$$

$$
\begin{equation*}
\left.; \frac{4 u y t}{1-4 u t}, \frac{x^{2}}{4 u(1-4 u t)}\right] \tag{42}
\end{equation*}
$$

Again using the definition (2), along with Jacobi polynomials (see [3], (1), pp. 254), which in conjunction with (3) yields the generating relations
$\sum_{n=0}^{\infty} \frac{(1+\alpha+\beta)_{n}}{(1+b)_{n}} A_{n}^{(-b-n, c)}(x) P_{n}^{(\alpha, \beta)}(y) t^{n}$
$=\left(\frac{1+y}{2}\right)^{-\alpha-\beta-1} F_{c}^{(3)}[1+\alpha+\beta, 1+\alpha ;$

$$
\begin{equation*}
\left.1+b, c, 1+\alpha ;-\frac{2 t}{1+y}, \frac{y-1}{1+y}, \frac{2 x t}{1+y}\right] \tag{43}
\end{equation*}
$$

$\sum_{n=0}^{\infty} \frac{(\lambda)_{n}}{(1+b)_{n}} A_{n}^{(-b-n, c)}(x) P_{n}^{(\alpha, \beta-n)}(y) t^{n}$
$=\left(\frac{1+y}{2}\right)^{-\alpha-\beta-1} F_{E}[1+\alpha, 1+\alpha, 1+\alpha$,

$$
\begin{equation*}
\left.1+\alpha+\beta, \lambda, \lambda ; 1+\alpha, 1+b, c ; \frac{y-1}{y+1}, x t,-t\right] \tag{44}
\end{equation*}
$$

$\sum_{n=0}^{\infty} \frac{(1+c)_{n}}{(\lambda)_{n}} A_{n}^{(b,-c-n)}(x) P_{n}^{(\alpha, \beta-n)}(y) t^{n}$
$=\left(\frac{1+y}{2}\right)^{-\alpha-\beta-1} F_{G}[1+\alpha, 1+\alpha, 1+\alpha, ;$

$$
\begin{equation*}
\left.1+\alpha+\beta, 1+c, b 1+\alpha, \lambda, \lambda ; \frac{y-1}{y+1}, x t,-t\right] \tag{45}
\end{equation*}
$$

Next, some more generating functions are expressed by using (2), which in conjunction with Lauricella's triple hypergeometric function $F_{C}^{(S)}$ and $F_{D}^{(S)}$.

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{(\lambda)_{n}(\mu)_{n}}{(1+b)_{n} n!} A_{n}^{(-b-n, c)}(x) \\
& \times F_{C}^{(S)}\left[\lambda+n, \mu+n ; \rho_{1}, \ldots, \rho_{s} ; z_{1}, \ldots, z_{s}\right] t^{n} \\
& =F_{C}^{(S+2)}\left[\lambda, \mu ; \rho_{1}, \ldots, \rho_{s}, c, 1+b ; z_{1}, \ldots, z_{s},-t, x t\right] \tag{46}
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{(\lambda)_{n}(1+c)_{n}}{(\mu)_{n} n!} A_{n}^{(b,-c-n)}(x) \\
& \times F_{D}^{(S)}\left[\lambda+n, \nu_{1}, \ldots ., \nu_{s} ; \mu+n ; z_{1}, \ldots, z_{s}\right] t^{n} \\
& =F_{D}^{(S+2)}\left[\lambda, \nu_{1}, \ldots, \nu_{s}, b, 1+c ; \mu ; z_{1}, \ldots, z_{s},-t, x t\right] \tag{47}
\end{align*}
$$

where in (46) and (47) $F_{C}^{(S+2)}$ and $F_{D}^{(S+2)}$ denote the Lauricella's triple hypergeometric function defined by (14) and (15) with $n=s+2$.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934
Vol:8, No:10, 2014

REFERENCES

[1] B.L. Sharma, Integrals involving hypergeometric functions of two variables, Proc. Nat. Acad. Sci. India. Sec., A-36, 713-718, 1966.
[2] D.T. Haimo, Expansion in terms of generalized heat polynomials and their Appell transform, J. Math. Mech., 15, 735-758, 1966.
[3] E.D. Rainville, Special Functions, MacMillan, New York 1960.
[4] H.M. Srivastava and H.L. Manocha, A Treatise on generating functions, Halsted press (Ellis Horwood Limited, Chichester), John Wiley and sons, New York, Chichester Brisbane, Toronto, 1984.
[5] I.K. Khanna and V. Srinivasa Bhagavan, Lie Group-Theoretic origins of certain generating functions of the generalized hypergeometric polynomials, Integeral transform and Special function, Vol-11, No.2, 177-188, 2001.
[6] M. Singh, M.A. Khan, A.H. Khan and S. Sharma, Some generating functions for the Gauss' hypergeometric polynomials, Research Today: Mathematical and Computer Sciences,Vol.1, 3-13, 2013.
[7] P. Appell and J. Kampé de Fériet, Fonctions hypérgeométriques et hyperspheriques, Polynômes d' Hermite Gauthier-Villars, Paris, 1926.
[8] S. Saran, Hypergeometric functions of three variables, Ganita, India, Vol.1, No.5, 83-90, 1954.
[9] S.D. Bajpai and M.S. Arora, Some -orthogonality of a class of the Gauss hypergeometric polynomials, Anna. Math. Blasic Pascal, Vol-1, No.1, 75-83 (1994).

