
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:9, No:1, 2015

122

 

 

  
Abstract—ESPRIT-TLS method appears a good choice for high 

resolution fault detection in induction machines. It has a very high 

effectiveness in the frequency and amplitude identification. 

Contrariwise, it presents a high computation complexity which 

affects its implementation in real time fault diagnosis. To avoid this 

problem, a Fast-ESPRIT algorithm that combined the IIR band-pass 

filtering technique, the decimation technique and the original 

ESPRIT-TLS method was employed to enhance extracting accurately 

frequencies and their magnitudes from the wind stator current with 

less computation cost. The proposed algorithm has been applied to 

verify the wind turbine machine need in the implementation of an on-

line, fast, and proactive condition monitoring. This type of remote 

and periodic maintenance provides an acceptable machine lifetime, 

minimize its downtimes and maximize its productivity. The 

developed technique has evaluated by computer simulations under 

many fault scenarios. Study results prove the performance of Fast-

ESPRIT offering rapid and high resolution harmonics recognizing 

with minimum computation time and less memory cost. 

 

Keywords—Spectral Estimation, ESPRIT-TLS, Real Time, 

Diagnosis, Wind Turbine Faults, Band-Pass Filtering, Decimation.  

I. INTRODUCTION 

IND energy has become one of the popular renewable 

powers all over the world in electricity generation 

capacity. Wind turbines contain a complex electromecanical 

system which is prone to defects. Consequently, there is an 

increase need to implement a predictive monitoring scheme of 

wind turbines, allowing an early detection of 

electromechanical faults, in order to avoid catastrophic 

damage, to reduce maintenance costs, to ensure continuity of 

production and to minimize downtime. It means that stopping 

a wind installation for unexpected failures could lead to 

expensive repair. These faults cause a modulation impact in 

the magnetic field of the wind generator, which is 

characterized by the appearance of a significant harmonics 

(peaks) in the stator current spectrum. For this reason, most of 

the recent researches have been oriented their interest toward 

electrical monitoring, with focus on frequency analysis of 

stator current (CSA). This technique is more practical and less 

costly [1]-[4]. Furthermore, with recent digital signal 

processor (DSP) technology developments, motor and 

generator fault diagnosis can now be done in real-time [1]. 

ESPRIT is one high resolution or subspace method (HRM) 

which is widely adopted in electromechanical machine 
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diagnosis. It can be used for spectral estimation [3], [5], [6]. 

This algorithm allows very high spectral detection accuracy 

and a high resistance to noise compared to others methods like 

MUSIC and Root-MUSIC. Contrariwise, it require long 

computation time to find more frequency estimates when the 

autocorrelation matrix is large and the order of sampled data 

dimension increase. This fact makes its application in real 

time detection very limited despite its high precision. This 

article presents an ameliorated version of ESPRIT-TLS 

method for fast wind turbine faults detection and diagnosis 

based on a band pass filtering technique. The proposed 

improvement allows many advantages: reduction of 

computation time, saving of memory space and accuracy 

increase in a specified frequency bandwidth. The paper is 

organized as follows: the problem is formulated in Section II, 

the stator current signal is presented in Section III, and then 

Section IV describes wind turbine fault models. While Section 

V focuses on ESPRIT method theory, Section VI explains in 

details the proposed approach to enhance original ESPRIT 

algorithm. Simulation results are presented and discussed in 

Section VII. Finally, conclusions with future work are drawn 

in the last section.  

II. RELATED WORK 

Many research studies applying enhanced and advanced 

signal processing techniques have been used in the motor and 

generator stator current to monitor and to diagnose prospective 

electromechanical faults. The classical methods like 

periodogram and its extensions which are evaluated through a 

Fast Fourier Transform (FFT) are not a consistent estimator of 

the PSD because its variance does not tend to zero as the data 

length tends to infinity. Despite this drawback, the 

periodogram has been used extensively for failure detection in 

research works [4], [6]. The (FFT) does not give any 

information on the time at which a frequency component 

occurs. Therefore, the Short Time Fourier Transform approach 

(STFT) is used to remove this shortcoming. A disadvantage of 

this approach is the increased sampling time for a good 

frequency resolution [7]. The discrimination of the frequency 

components contained within the signal, is limited by the 

length of the window relative to the duration of the signal [8]. 

To overcome this problem, in [9] and [10] Discrete Wavelet 

Transform (DWT) is used to diagnose failures under transient 

conditions for wind energy conversion systems by analyzing 

frequencies with different resolutions. This method facilitates 

signal interpretation because it operates with all information 

contained in the signal by time-frequency redistribution. One 

limitation of this technique that it gives a good time resolution 
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and poor frequency resolution at high frequencies, and it 

provides a good frequency resolution and poor time resolution 

at low frequencies [4], [11]. Recently, high resolution methods 

(HRM) are applied to detect more frequencies with low SNR. 

In fact, MUSIC and ESPRIT techniques with its zooming 

extensions are conjugated to improve the identification of a 

large number of frequencies in a given range [12], [13]. In 

[14] a comparative performance analysis of (HRM) is made. 

This study has demonstrated that ESPRIT method has a high 

accuracy which exceeds all other algorithms even with the 

existence of an annoying noise. Moreover, these algorithms 

are based on an eigenanalysis of the autocorrelation matrix of 

a signal corrupted by noise. This decomposition requires a 

long computation time mainly when the size of the 

autocorrelation matrix and the number of data samples 

increase. In [15] a rank reduced ESPRIT technique is 

proposed to transform it into simplified low-complexity 

algorithm. However, this method presents performance 

deterioration mainly with the SNR decreasing and lowers 

harmonic amplitudes. Moreover, it has not focused on the 

minimization of the computational time execution for real 

applications. This work proposes a solution to overcome the 

complexity cost of ESPRIT in the purpose of its use in a real 

time wind turbine monitoring. 

III. STATOR CURRENT MODEL 

The application of CSA technique for diagnosis of wind 

turbine machine requires a well previously knowledge of 

various frequency and amplitudes components in stator current 

spectrum stemmed from the wind turbine generator in both 

healthy and faulty states. In fact, to build a correct detection of 

the wind turbine fault modulations and signatures in the stator 

current, it is necessary to construct a complex signal 

associated with the real one. This analytical signal model 

describes precisely the behavior and the evolution of the real 

stator current. It contains relevant fault information. For these 

reasons it is often used for command purposes. The studied 

wind generator stator current will be denoted by the discrete 

signal i[n]. This signal is considered as a sum of L complex 

sinusoids and white noise. It is obtained by sampling the 

continuous time current every Ts=1/Fs seconds. The induction 

generator stator current i[n] in presence of mechanical and/or 

electrical faults has a data model which can be expressed as 

follows [10]: 
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2 . .

1

k
k

s

f
L j n

F

k

k

i n I e b n
π ϕ

 
+ 

 

=

= +∑  (1) 

 

where i[n] corresponds to the n
th

 stator current sample with 

n=0, 1, 2...Ns-1. Ik, fk, and φk are the amplitude, the frequency 

and the phase of the k
th

 complex sinusoid (harmonic 

components) respectively, b[n] is a gaussian white noise. Fs is 

the sampling frequency and Ns is the number of data samples. 

L represents the number of researched harmonics.  

IV. WIND TURBINE FAULT MODELS 

The wind machine is subject to diverse electro-mechanical 

anomalies that involve mostly five components: the stator, the 

rotor, the bearings, gearbox and/or the air gap (eccentricity) 

[16]. These defects require a predictive recognition to avert 

any side effect provoking a breakdown or a fatal spoilage. 

Because it contains the totally relevant fault information, the 

stator current spectrum is examined to withdraw the sideband 

frequency components inserted by the fault. These fault 

frequencies are located around the fundamental line frequency 

and are called lower sideband and upper sideband 

components. This detection technique is used in collaboration 

with one bit vibration sensors for an early identifying of 

prospective electromechanical failures which can occurs in 

any time. A synopsis of wind turbine faults and their related 

frequencies formulas are presented in Table I. 

 
TABLE I 

WIND TURBINES FAULTS SIGNATURES 

Failure Harmonic Frequencies Parameters 

Broken rotor 
bars (brb) 0

1
brb

s
f f k s

P

 − = ±    

 
1,3,5,...k =  

Bearing 
damage (bng) 0 ,bng i of f k f= ±  

1,3,5,...k =
 

,

0.4

0.6

b r

i o

b r

n f
f

n f


= 



 

Misalignment 

(mis) 0mis rf f k f= ±  1,3,5,...k =  

Air gap  

eccentricity 

(ecc) 
0

1
1ecc

s
f f m

P

 − = ±     

 
1, 2,3,...m =  

 

f0 is the electrical supply frequency, s is the per-unit slip, P is 

the number of poles, fr is the rotor frequency, nb is the bearing 

balls number, fi,o is the inner and the outer frequencies 

depending on the bearing characteristics, and m, k∈ ℕ are the 

harmonic frequency index [4], [9], [10]. Slip s is defined as: 

 

s r

s

s
ω ω

ω
−

=  
(2) 

0120
s

f

P
ω =

 

(3) 

 

ωs is the generator synchronous speed, ωr is the relative 

mechanical speed of the generator. These harmonics are 

extensively used as diagnostic measures in the CSA approach. 

V. ESPRIT METHOD THEORY 

High resolution methods are recently used for fault 

diagnosis. They can detect and identify the faulty element 

based on its frequency. The most accurate and efficient 

technique is ESPRIT which belongs to the subspace 

parametric spectrum estimation methods. It is based on 

eigenvector decomposition which aims to separate the 

observation space in a signal subspace, containing only useful 

information, and its orthogonal complement, called noise 

subspace. The rotational invariance between both subspaces 

allows extracting of the parameters of spectral components 
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present within the investigated waveform [17], [18], [20]. 

A. Autocorrelation Matrix Estimation 

Based on the stator current model defined by (1), the 

autocorrelation matrix can be then estimated as [19]: 

 

( ) ( ) 2. . . .H H

i s b bR E i n i n R R S P S Iσ = = + = + 
 (4) 

 

It is composed by the sum of signal and noise 

autocorrelation matrices. Where H is the Hermitian transpose, 

σb² is the variance of the white noise, I is the identity matrix of 

size (Ns x Ns) and P is the power matrix of the harmonics: 

 
2 2 2

1 2 LP diag I I I =  ⋯  (5) 

 

S is the Vandermonde matrix defined by: 

 

[ ]1 i LS s s s= ⋯ ⋯  (6) 

( )2 . 4 . 2 . 1 .

1

k k k
s

s s s

T
f f f

j j j N
F F F

kS e e e
π π π

     
−     

     
 
 =
  

⋯

 

(7) 

 

The finite data length of the signal makes the computation 

of the autocorrelation matrix Ri inaccurate. For real purpose, 

this matrix is unknown and it must be singular. For effective 

detection, it is necessary to reduce the statistical fluctuations 

present in estimating the autocorrelation matrix by the 

averaging [7], [19]. In addition, the accuracy of ESPRIT 

depends on the dimension (M ≤ Ns) of Ri. It is possible to 

estimate it from the acquired data samples by [7], [19]: 

 

1ˆ .
1

H
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(8) 

 

where M is the data matrix order and D is a Hankel data 

matrix defined by: 

 

( ) ( )
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(9) 

 

The dimension of Ri should be high enough to have more 

eigenvalues for noise space and should be low enough to 

minimize the computation time cost. When the value of M 

decreases below Ns/3, it can be seen the increase of the 

frequency detection error. Contrariwise, if M increases beyond 

Ns/2, calculation time increases. So, there is a trade-off for the 

right choice of M. Empirically, the value of M is chosen to be 

bounded as shown in (10) to give a good performance: 
 

3 2

s sN N
M< <  (10) 

 

In this paper, the autocorrelation matrix dimension M is 

taken rounded down as: 

1ˆ
2

s
N

M Round
− =  

 
 (11)  

 

Evidently, the number of frequencies L is not a priori 

known. The frequency signal dimension order (FSDO) L must 

to be estimated by the minimization of a cost function MDL(k) 

named minimum description length. In order to obtain a robust 

estimate, (MDL) criterion is used as shown in the following 

formula [18] for k=1, 2,…, L: 
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(12)  

2sN Lρ = − − (13)  

 

where λi are eigenvalues autocorrelation matrix Ri. 

Analytically, the estimate of L can then be expressed in the 

form: 

 

( )( )ˆ arg minkL MDL k=  (14)  

 

However, ESPRIT performances are completely degraded 

by choosing a wrong FSDO value. 

B. Eigendecomposition of Autocorrelation Matrix 

The eigendecomposition of the autocorrelation matrix Ri is 

given by exploiting the eigenvalues {λ1, λ2,…, λM} and their 

corresponding signal eigenvectors {v1, v2,…, vM} [17]: 

 

1

. . . .
s

s b

N
H H H

i k k k s s s b b b

k
R R
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where:  

[ ] [ ]1 1,s L s LU v v E diag λ λ= =⋯ ⋯  (16)  

2

1 ,
s sb L N b b N LU v v E Iσ+ − = = ⋯

 

(17)  

 

Us represents the eigenvectors matrix of the signal space 

related to the L largest eigenvalues arranged in descending 

order. Whereas, Ub represents the eigenvectors matrix of the 

noise space related to the Ns-L eigenvectors that, ideally, have 

eigenvalues equal to the variance noise σb². Diagonal matrices 

ES and Eb contain eigenvalues λi corresponding to eigenvectors 

vi. 

C. Abbreviations Frequency Estimation 

ESPRIT-TLS method is based on the study of the signal 

subspace Es. It uses some rotational invariance properties 

founded naturally in the case of exponential. A decomposition 

of the matrix S into two matrices S1 and S2 is considered as 

follows:  
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S1 represents the first Ns-1 rows of the matrix S, S2 represents 

the last Ns-1 rows of the matrix S. The rotational invariance 

between both subspaces leads to: 

 

1 2S S= Φ  (19)  

 

The matrix Φ contains all information about L components 

frequencies. Nevertheless, the estimated matrices S can 

contain errors. Thereafter, the ESPRIT-TLS (total least-

squares) algorithm finds the matrix Φ by minimization of 

matrix error given by (20) and (21). The determination of this 

matrix can lead to obtain the frequency estimates defined by 

[20]: 
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(21)  

D. Harmonics Powers Estimation 

Once the searched frequencies components of the signal are 

estimated by ESPRIT, the values of their amplitudes and then 

their powers can be estimated. By using the 

eigendecomposition of the subspace signal [17], [19]: 
 

( )2

1

. . . .
L

H H

s k b k k

k

R S P S v vλ σ
=

= = +∑  (22)  

 

It is assumed that the eigenvectors of the signal subspace are 

normalized as follows: 

 

. 1H

k kv v =  (23)  

 

Thus, for k=1, 2,…, L: 
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Multiplying both sides of this equation by vk
H
: 
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According to (4), (11) and (21): 
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This equation can be simplified as follows: 
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Equation (22) can be written in: 

 

( )
2

2 2

1

. k

L
j f

k k k b

k

P Q e
π λ σ

=

= −∑  (29) 

 

This equation is a set of L linear equations with a number L 

of unknown harmonics powers. It is very easy to extract the 

harmonics powers vector P from (25) by simple resolution.  

VI. IMPROVED ESPRIT METHOD 

 

Fig. 1 Block diagram scheme of the Fast-ESPRIT algorithm 

 

The discrimination of all small amplitude frequency 

Three Phase Stator Current 

Sampling with Fs for Ns data points 

Computation of the current space vector id 
by (31) 

i1(t) i2(t) i3(t) 

 i1[n]  i2[n]  i3[n] 

  id[n] 

Estimation of Ri by (8) 
and eigendecomposition to obtain λi and vi 

 

Frequency 
estimates fk 

 

Powers 
estimates Pk 

 

IIR Pass-band filtering of bandwidth 

fBW =[fl, fh] 

 

Decimation of idf[n] by the factor Г 

 

  idf[n] 

Application of ESPRIT on decimated 
signal with Ns/ Г data samples 

 

   idfr[n] 

Estimation of L by (14) 

and calculation of Г by (30) 

 

id[n] λi 

   id[n] 
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components around f0 by ESPRIT method is difficult. This is 

mainly due to the significant computation time elapsed by this 

algorithm to find harmonic sideband components correctly. 

Furthermore, ESPRIT calculation cost increases when the size 

of the autocorrelation matrix and the number of data samples 

increase. It depends on the complexity of Ns
3
. This delay 

forms a major drawback that can cause a catastrophic 

evolution of a wind turbine fault which may lead to greatest 

damages. In order to apply a proactive, robust and real time 

wind turbine condition monitoring, an improved version of 

ESPRIT algorithm entitled Fast-ESPRIT was used. Fig. 1 

shows the block diagram scheme of different stages that Fast-

ESPRIT algorithm must execute to identify the fault harmonic 

frequencies and their powers. The ameliorated algorithm is 

based on both a band-pass IIR filtering and decimation 

technique in the fault frequency bandwidth [fl, fh], where fl, fh 

are the low cut-off and high cut-off frequency of the band-pass 

filter. This process provides a remarkable reduction in 

computation time and in data memory size. The decimation 

factor used in this research is computed with respect to the 

Nyquist criteria as [21]: 
 

0 0

0 0

95
2 4

95 500
6 12

Nyquist s
h

Nyquist s
h

F F
if f Hz

f f

F F
if Hz f Hz

f f


= <


Γ = 

 = ≤ <


 
(30)  

 

Fig. 2 shows the variation of Г according to fh. The 

decimation factor decreases with the increase of the maximum 

harmonics frequency detected in the signal. 
 

 

Fig. 2 Evolution of decimation factor with fault frequency 
 

In the first time, the acquired sequences i1,2,3[n] of the three 

phase stator current sampled at the frequency Fs, are used to 

calculate the stator current space vector as [22]:  

22

1 2 3 3
. .

,
3

j

d

i a i a i
i a e

π+ +
= =  (31)  

Where a, a
2
 are the spatial operators. This vector allows a fault 

diagnosis on all phase stator current instead of examining fault 

signature on each ones. With this method computation time 

will be minimized. In the second step, an estimation of the 

autocorrelation matrix Ri is realized and therefore the 

eigenvalues λi are extracted to estimate the number of 

researched harmonics L in the stator current signal with 

respect to MDL criterion seen in (14). Then, the signal 

sequence id[n] is filtered via a recursive Infinite Impulse 

Response (IIR) digital band-pass filter based on a least squares 

fit in the frequency range [fl, fh] characterizing the fault. This 

filter has a flat response in the desired bandwidth and its use is 

justified by the fact that it will be helpful to extract just the 

informations contained in the signal which are useful in the 

fault recognition which can occurs at any time. In the third 

stage, the received sequence of the stator current space vector 

idf[n] is decimated by a factor Г shown in (30). In addition, the 

applied decimation uses low-pass filter to ensure anti-aliasing. 

The motivation for this decimation is to reduce the cost 

processing and memory required for a cheaper 

implementation. Finally, the ESPRIT algorithm is applied on 

the decimated signal sequence having Ns/Г data samples to 

identify all frequency components and their powers contained 

in the signal. 

VII. SIMULATION RESULTS AND ANALYSIS 

The developed approach seen in the previous section has 

been applied and simulated under different scenarios of wind 

turbine fault types shown in Table I. To evaluate its 

performance in real time fault detection, Fast-ESPRIT 

algorithm has been integrated with a fault diagnosis controller 

which coordinates with vibration sensors localized in specific 

wind turbine mechanical components to monitor vibration 

levels. The controller decides and classifies the existence of a 

fault depending on vibration measurements collected by the 

sensors and the harmonic frequencies with their powers 

estimated by the Fast-ESPRIT method. Fig. 3 illustrates the 

explained technique. Besides, the applied diagnosis algorithm 

is based on the use of a fault frequency band switching which 

sweeps any prospective faults that may occur and 

subsequently classify them by type according to their 

frequencies. Thus, the diagnosis is made by the intervals of the 

spectrum reflecting the signature of a possible default [23], 

[25]. This means that the Fast-ESPRIT method will not be 

applied to the entire signal but only on a part that contains the 

target information to be extracted for analysis. In case of fault 

detection, a system alarm is triggered to alert monitoring and 

maintenance staff for an emergency intervention repair.  
 

TABLE II 
PARAMETERS USED IN THE SIMULATIONS 

Parameter Value 

s 0,033 

P 2 

f0 50 Hz 

fr 29,01 Hz 

nb 12 

Ns 1024 

Fs 1000 Hz 

Fundamental Stator Current Amplitude 10 A 

Computer Processor Intel Core2 Duo T6570 2,1 GHz 

 

This procedure provides many benefits because it allows 

high recognizing and classification of faults with economic 

and real time implementation [24]. Computer simulations are 

realized in Matlab for a faulty wind turbine generator using 2 

pair poles, 4kW/50Hz, 230/400V. The induction generator 
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stator current, is simulated by using the signal model 

described in (1) for the different failure kinds described in 

Table I. The parameters of the simulations are illustrated in 

Table II. 

 

 

Fig. 3 Intelligent wind turbine faults diagnosis by Fast-ESPRIT 

 

To simplify the simulation, a single phase of the generator 

stator current has been studied. The power of each fault is 

calculated based on its amplitude as follows: 
 

1010log
2
k

k

I
P

 =  
 

 (32)  

 

Before examining the stator current signal, it must be 

filtered to obtain in the output a composite signal having a 

totally negligible noise compared to the fundamental and its 

harmonics. 

A. Air Gap Eccentricity Detection  

Table IV shows the simulation results for identifying wind 

turbine generator air gap eccentricity fault signature in the 

goal to compare the performance of the original ESPRIT-TLS 

with the proposed Fast-ESPRIT. The harmonics characterizing 

this fault are given by Table III. 
 

TABLE III 

AIR GAP ECCENTRICITY FAULT PARAMETERS 

fecc (Hz) Iecc (A) Pecc (dB) Nh SNR (dB) 

25.825 
74.175 

0.4 
0.3 

-10.97 
-13.46 

3 
80 

 

This experiment was done with a high signal to noise ratio 

to determine the computing time and the required memory size 

in both algorithms. 
 

TABLE IV 

 COMPUTATION PERFORMANCE COMPARISON 

Method 
Data 

samples 

Harmonics 

fk/Pk 

Signal 
Memory size 

(KB) 

M 
Time 

(s) 

Original 
ESPRIT 

1024 
50.00Hz/ 16.99dB 

25.82 Hz/ -10.97dB 
74.17Hz/ -13.47dB 

16 511 4.3471 

Fast 

ESPRIT 
205 

49.99Hz/ 16.96dB 

25.81Hz/ -12.10dB 
74.17Hz/ -14.12dB 

3.2 102 0.03046 

 

It is very clear from Table IV that both original and fast 

ESPRIT algorithms provide satisfactory accuracy, and they 

correctly identify the L=3 harmonics despite with smallest 

powers case. The little performance difference observed in the 

Fast-ESPRIT is justified by the attenuations caused by the IIR 

band pass filter used. Furthermore, the obtained results 

confirm the important reduction of the computational time 

with 142.7 times, the memory size required for processing 

with 5 times and complexity has been changed from Ns
3
 to 

(Ns/Г)
3
.  

 

 

Fig. 4 Estimation of signal harmonics number by MDL criterion 

 

In addition, a negligible performance loss is observed in the 

power and frequency estimation caused by the band pass filter 

attenuations. Fig. 4 illustrates the estimation of the signal 

subspace dimension by means of the Rissanen criteria based 

on MDL function cost shown in (12) and (14). Fig. 5 shows 

the frequency response gain of the Yule-Walk IIR band pass 

filter used in the Fast-ESPRIT algorithm having an order 

h=25. Obviously, the filter has a flat response in the 

bandwidth target.  

 

 

Fig. 5 IIR filter Yule-Walk frequency response gain 
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Whereas, Fig. 6 illustrates graphically the power and 

frequency estimates given by the proposed method. It seems 

obviously that Fast-ESPRIT has detects all harmonics 

existents in the eccentricity fault range [20, 80]Hz with high 

precision. 

 

 

Fig. 6 Power and Frequency estimates by Fast-ESPRIT for 

eccentricity fault 

B. Broken Rotor Bars Detection 

The proposed Fast-ESPRIT method has been applied for a 

wind turbine generator stator current to detect broken rotor 

bars fault signature in the frequency range [15, 80]Hz. The 

characteristics of this fault harmonics are shown in Table V. 

The obtained results are averaged over fifty realizations. 
 

TABLE V 

BROKEN ROTOR BARS FAULT PARAMETERS 

fbrb (Hz) Ibrb (A) Pbrb (dB) Nh SNR (dB) 

22.525 
25.825 
70.875 
74.175 

0.3 
0.45 
0.35 
0.4 

-13.47 
-9.95 
-12.13 
-10.97 

5 20 

 

From Fig. 7, the Fast ESPRIT method flows a large 

calculation time with a large average estimation error rate for 

discriminating the fault harmonics and their powers contained 

in a very noisy stator current signal having SNR value less 

than or equal to 15dB. This can be interpreted by the delays 

caused by the algorithm search to find the eigenvalues and 

eigenvectors of the autocorrelation matrices in both signal and 

noise spaces. Contrariwise, the calculation time in question 

decreases gradually for a slightly noisy signal with 

SNR>15dB. The average estimation error declines also to fall 

to a minimum value for large values having SNR>55dB. The 

method finds difficulty in identifying faults in a very noisy 

environment. As shown in Fig. 8, for a stator current signal 

with a high annoying noise SNR<10dB, detection fault powers 

presents a considerable error and a remarkable instability 

level. 

This error rate decreases when the order of the Yule-Walk 

IIR band pass filter increases. However, the identification 

performance improves when signal to noise ratio SNR exceeds 

10dB. In this case, the average error rate estimation stabilizes 

gradually to reach an asymptotic value. Although the standard 

deviation of the average estimation error is low, thus by 

increasing the order of the Yule-Walk IIR band pass filter, the 

accuracy of the method is improved proportionately. By 

analyzing Fig. 9, the fault harmonics discrimination having 

low amplitudes is so difficult because the power average 

estimation error reaches a maximum value especially when the 

SNR decreases. 

 

 

Fig. 7 Evolution of fault powers estimation error and 

computation time with SNR 

 

 

Fig. 8 Variation of fault powers estimation error depending 

on IIR filter order and SNR 

 

Thus a satisfactory recognition results requires an SNR 

greater than 15dB. 

 

 

Fig. 9 Variation of fault powers estimation error according to 

fault amplitude and SNR 

 

Against, when the fault magnitude increases the algorithm 

becomes able to track automatically the harmonics more 

accurately. Fig. 10 provides the achieved detection by the 

proposed method of broken rotor bars fault harmonics. It is 

noted that the Fast-ESPRIT algorithm was able to separate 

spectral components much closer and lower accurately in an 

optimal computation time which equal to 0.03021 second. 
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Fig. 10 Power and Frequency estimates by Fast-ESPRIT for 

broken rotor bars fault 

C. Bearing Damage Detection 

In the third test, the proposed algorithm has been used to 

detect bearing damage fault signature in the frequency range 

[40, 200]Hz. Table VI gives the simulated fault parameters. 
 

TABLE VI 
BEARING DAMAGE FAULT PARAMETERS 

fbng (Hz) Ibng (A) Pbng (dB) Nh SNR (dB) 

89.248 

155.248 
0.2 

0.25 

-16.99 

-15.05 
3 20 

 

Fig. 11 shows that the proposed approach provides a 

satisfactory result with high accuracy with a minimum 

computation cost which reach 0.07093 second even if the 

frequency range is wide. It is noted that this computation time 

is the twice compared to the time required to detect the 

previous faults. 

 

 

Fig. 11 Power and Frequency estimates by Fast-ESPRIT for 

bearing damage fault 

D. Misalignment Detection 

In this simulation, Fast-ESPRIT method has been evaluated 

to identify an important number of harmonics charactering 

misalignment fault signature in the frequency bandwidth    

[10, 210]Hz as showed in Table VII.  

 
 

TABLE VII 

MISALIGNMENT FAULT PARAMETERS 

fmis (Hz) Imis (A) Pmis (dB) Nh SNR (dB) 

21 
37.03 

79 

95.05 
137.03 

195.05 

0.22 
0.33 

0.27 

0.37 
0.18 

0.15 

-16.16 
-12.64 

-14.38 

-11.65 
-17.90 

-19.49 

7 20 

The detection results are given in the following figure. 

 

 

Fig. 12 Power and Frequency estimates by Fast-ESPRIT for 

misalignment fault 

 

Referring to Fig. 12, the applied method offers good 

estimation ability with a very good computation cost equal to 

0.07178 second. As illustrated in Fig. 13, when the frequency 

bandwidth [fl, fh] characterizing a fault contains an upper 

bound fh which is increased and approaching or exceeding the 

value FNyquist/2=Fs/4, the decimation factor Г decreases and 

thereafter the signal data samples increases. This causes the 

increase of the signal autocorrelation matrix dimension. 

Consequently this leads to a large calculation time.  

Fig. 13 Computation time depending on Fault Frequency range 

and decimation factor 

 

On the other side, if fh < FNyquist/2 the computation time 

required by the Fast ESPRIT algorithm becomes minimal and 

it is almost without a big change despite the increase of the 

fault harmonics number contained in the stator current signal. 

This increase influences slightly on the calculation time which 

can be calculated as: 

 

s
c

N
T t= ∆

Γ
 (33)  

 

where ∆t is the time required to process one data sample. 

Another remark that can be added to this interpretation is that 

the increase of Fs leads to increase the size of the signal data 

samples. This causes the augmentation of the autocorrelation 

matrix dimension. As result, the Fast-ESPRIT method takes a 
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long time to discriminate all the frequencies contained in the 

processed signal with an acceptable accuracy. So in order to 

adapt accurately the detection algorithm to a real

application, there is a trade-off between the choice of an 

optimal sampling frequency in a side and the computation 

time in the other side. 

VIII. CONCLUSION 

ESPRIT method has better performances than others super 

resolution algorithms for identifying frequencies from a short 

data signal acquisition drowned in a noise. However, the main 

drawback of this technique is the high computational time 

especially when the size of the signal autocorrelation matrix 

increases. A new version of the ESPRIT algorithm is proposed 

in this paper entitled Fast-ESPRIT. An improvement is 

realized with an adequate IIR band pass filtering and an 

optimal decimation technique. This enhancement leads to low 

complexity, to satisfactory accuracy and to memory storage 

reduction algorithm. The proposed technique was applied 

under different wind turbine faults to evaluate its

ability. Analysis of the simulation results shows that estimator 

achieves remarkable performance estimation in extracting 

frequencies and amplitudes in a specified bandwidth than the 

original ESPRIT. Moreover, due to its advantages, Fast

ESPRIT method can be implementable for real time fault 

diagnosis. The future work will be focused to ameliorate Fast

ESPRIT detection efficiency in the case of low amplitudes 

harmonics.  
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