
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

705

Abstract—This paper describes the tradeoffs and the design from

scratch of a self-contained, easy-to-use health dashboard software
system that provides customizable data tracking for patients in smart
homes. The system is made up of different software modules and
comprises a front-end and a back-end component. Built with HTML,
CSS, and JavaScript, the front-end allows adding users, logging into
the system, selecting metrics, and specifying health goals. The back-
end consists of a NoSQL Mongo database, a Python script, and a
SimpleHTTPServer written in Python. The database stores user
profiles and health data in JSON format. The Python script makes use
of the PyMongo driver library to query the database and displays
formatted data as a daily snapshot of user health metrics against
target goals. Any number of standard and custom metrics can be
added to the system, and corresponding health data can be fed
automatically, via sensor APIs or manually, as text or picture data
files. A real-time METAR request API permits correlating weather
data with patient health, and an advanced query system is
implemented to allow trend analysis of selected health metrics over
custom time intervals. Available on the GitHub repository system,
the project is free to use for academic purposes of learning and
experimenting, or practical purposes by building on it.

Keywords—Flask, Java, JavaScript, health monitoring, long term

care, Mongo, Python, smart home, software engineering, webserver.

I. INTRODUCTION

OME automation for the elderly and disabled is the next
frontier in healthcare. The form of home automation

called assistive domotics [1] focuses on making it possible for
the elderly and disabled to remain at home, safe and
comfortable, yet get monitored in case assistance is needed.
Take a simple case: if a smart home system could keep track
of when a person gets up and goes to bed, and follow him or
her around during the day, it could furnish valuable
information about how the person is doing. In the case of
long-term-care patients, home automation is particularly
useful because it can provide valuable means for health
monitoring without moving the patients to a health-care
facility.

Smart homes can provide both the elderly and disabled with
many different types of emergency assistance systems,
security features, fall prevention, automated timers, and alerts.
In an intelligent environment like a smart home, monitoring
can range from simple tracking of motion and sleep data to
complex analysis of behavioral patterns via machine learning

Ritwik Dutta is with Archbishop Mitty High School, San Jose, CA 95129

USA (e-mail: ritzymail@gmail.com).
Marilyn Wolf is with the Electrical & Computer Engineering Department,

Georgia Institute of Technology, Atlanta, GA 30332 USA (e-mail:
marilyn.wolf@ece.gatech.edu).

algorithms [2]. Conference and journal papers abound with
details on concepts and technologies to monitor behavioral
patterns and health status [3]-[7]. Taking the cue from this
growing consciousness, government, academia, and business
professionals have responded to the situation by designing
educational programs, personal monitoring devices, and
technology that transmits patient health data to the care
provider [8]. For example, Mediware’s [9] Alternate Care
Solutions group has started providing software,
implementation, support, and consulting expertise for the
automation of home care. Similarly, LifeFone [10] has started
producing medical alert devices that provide quick response in
a medical emergency by connecting a patient to expert
emergency care agents. Taking this one step further, Apple
recently unveiled new software platforms during its
Worldwide Developers Conference that will organize data
from the growing number of mobile medical applications and
smart home gear on its iOS operating system [11], [12]. And,
not only is ADT Security Services now offering medical alert
monitoring [13], Comcast is talking telehealth [14] and is
getting ready to take the plunge into the health and wellness
business. Moreover, company mergers and acquisitions
centered around mobile health are also starting to happen [15].

A different class of companies has also sprung up to support
and help grow the healthcare automation businesses. For
example, Clear Care [16] and Boston Software [17] are
providing automation and software solutions connecting
families and care partners. Pegasystems [18] is offering agile
healthcare software solutions that enable healthcare
enterprises to intelligently automate their core business
functions, including new customer acquisition and on-
boarding, customer relationship management, risk
management, and compliance management. Omnicell [19]
automated healthcare solutions are enabling healthcare
facilities to improve efficiency, patient safety, medication
adherence, and regulatory compliance. The list goes on. In
fact, Capterra [20] has provided on its website a list of top
healthcare management software products.

An interesting recent development is that in order to
advance the state of the art in healthcare automation, not only
are companies like CitusTech [21] now offering healthcare
software engineering services to accelerate product
development, universities [22] are also offering software
engineering graduate programs in healthcare systems. But,
even without sophisticated devices, plugins and apps, that cost
significant money, a lot can be achieved by connecting simple
sensors, monitoring personnel, and caregivers. A step in the
right direction is Cornell University’s Wireless Human Health

An Extensible Software Infrastructure for Computer
Aided Custom Monitoring of Patients in Smart Homes

Ritwik Dutta, Marilyn Wolf

H

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

706

O
im
of
so
an
sy
to
se
pa
an
Th

fu
m
en
th
cl
im
w
fro
in
go

ov
pr
or
im
ta

fu
da
da
ty
re
ot
w
m
im

de
ob
m
so
m
da

fu
fu
Ad
w
di
us

2.
m

nline Monito
mplementing w
f the wide-s
olution to mon
nd really need
ystem and inf
ogether —reg
ensors, collect
atient data in
nd allowing th
he current pro
The primary

ully functiona
monitoring pati
ngineering pri
hat anyone can
lear and acce
mplementation

whether such a
om many sim

nformation. Th
oals.

The paper is
verall front-en
rovides an o
rganization.
mplementation
alks about futu

Simply state
unctionality fo
ata types in an
ata that is tra
ypes of metri
elated to a pa
thers that yie

weather) that a
motion, sleep, p
mplementation

There are tw
esigned – st
btained from

metrics receive
ource. All of

metrics are vie
ashboard, and

The “login”
unctionality fo
unctionality to
dd User butto

with specific
ialogs show a
ser.

The second p
 This page p

metric data for

or project [23
wireless techn
spreading Int
nitor human h
ded is a simp
frastructure th
gistering patie
ting data (man
an easy-to-un

he caregiver t
oject tries to ac
y objective of
al, free, and
ients. We wan
inciples to ou
n use. Easy sc
essible code h
n as well. Fin
a framework

mple sensors c
he paper desc

s organized as
nd interface d
overview of
In Section

n details. Sect
ure work.

II. PROJ

ed, the project
or patient track
n integrated so
acked is calle
ics —ones th
atient (e.g., m
eld informatio
affects the pat
photos, and w
n.
wo different
tandard and
files in a st

e data from
f the informa
ewed through
d query.
” page, sho
or adding an
o log into the
on gives a seri
health target
list of users w

page is the da
provides the
r a single day

3] that create
nology and ta
ternet to pro
health. Howe

ple-to-use and
hat allows tyi
ents, setting
nually or from
nderstand form
to act based o
chieve exactly

f our project h
open-source
nted deploy w
ur design, an
calability, sim
have been hig
nally, we also
can help rese

can be combin
cribes our jou

s follows. Sec
design of the

the softwar
IV, we go
tion V draws

JECT DESIGN

t described in
king through
oftware enviro
d a “metric”.
hat provide
motion, sleep
on about the
ient. We have

weather as the

classes of m
custom. Sta

tandardized d
any program

ation and data
three differen

own in Fig
nd deleting us

project to vie
ies of options
ts. The Dele
where one can

ashboard page
functionality

. The metrics

es a portable
aking full adv
ovide a con
ver, what is m

d extensible so
ing in all the
goals, incorp

m sensors), disp
mat on a dash

on the data co
y that.
has been to c
software syst

well-known so
nd develop a
mple deployme

gh priorities
o wanted to e
earch into ho
ned to yield v
urney to realiz

ction II descri
 project. Sec
re architectu

into the so
the conclusio

n this paper p
a variety of d
onment. Each
. There are d
information d

p, photos, etc
e environmen
e specifically

e metrics for o

metrics that w
andard metri

data format. C
mmatically acc

a about the
nt web pages

g. 1, provid
sers, as well
ew patient da
to create a ne

ete User and
n delete or log

 as illustrated
to view all

 can be displ

device
vantage

nvenient
missing
oftware

e pieces
porating
playing
hboard,

ollected.

create a
tem for
oftware-

system
ent, and
for the

evaluate
ow data
valuable
ze these

ibes the
tion III
re and
oftware
ons and

provides
different

type of
different
directly
c.), and
nt (e.g.,

chosen
our first

we have
ics are
Custom
cessible
various
: login,

des the
as the

ata. The
ew user

d Login
g in as a

d in Fig.
of the

ayed in

fou
ph
de

sel
for
da
da
eit

ur different w
hoto. Each m
termines how

The dashboa
lected) worth
r the last 10 d

ays, however,
ashboard page
ther specific (

ways: percenta
metric has

w it is to be dis

Fig. 1

Fig. 2 Da

Fig. 3

ard page dis
of data at any

days. In order
 the user mu

e is most usef
e.g., motion o

age, graph, raw
a display fo
played on the

Login page

ashboard page

Query page

splays only a
y one time; the
to view data

must go to th
ful for obtain
or sleep) or ge

w text/numbe
format field
e dashboard pa

a single day
e user can vie
trends over m

he query page
ning daily det
eneral (e.g., p

rs, and
which

age.

y’s (as
ew data
multiple

e. The
ails —

pictures

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

707

or weather).
The query page, shown in Fig. 3, is where the user can

select several metrics and a date range. Each metric’s daily
data is processed into a single number, and then each metric is
graphed over the selected date range. This page can be used to
view trends over time and make predictions about the future.

III. SOFTWARE OVERVIEW

The project essentially consists of a front-end and a back-
end. The front-end includes the three different webpages
described before to provide all the functionality on the user
side. The web pages are written using a combination of
HTML, CSS, and JavaScript. The back-end includes a Mongo
database [24], a Flask server [25], and a Python
SimpleHTTPServer [26].

The database stores all of the user metadata and the data for
the user metrics. MongoDB was chosen over an SQL type
database because it is easier to deploy and integrate.
Documents are stored in the database in JSON (JavaScript
Object Notation) format, and can be easily searched with
complex queries.

The Flask server processes the requests made by the front-
end, and returns the corresponding data from the database
back to the webpage. Flask was chosen over the more
common Django web framework due to the fact that it is
lighter and simpler to use.

The Python SimpleHTTPServer is a bare-bones HTTP
server and was chosen over more typical web servers such as
nginx or Apache because it has no external dependencies; the
only thing needed is that Python should be installed.

The project homepage is currently hosted on GitHub Pages
[27] and the code is hosted on the GitHub repository system.
The compressed version of the project is 15.7 megabytes, and
the extracted directory is 40.8 megabytes. To run the
application, the project needs to be downloaded and extracted
first. One can then go into the project directory and type "./run
start" to start the application; executing "./run stop" will stop
it. Following the descriptions given in the paper one can not
only download and execute the code, but add sensors and
custom metrics as well.

IV. IMPLEMENTATION

A. Front-End

The entire front-end of the project has been written from
scratch, without using any frameworks such as Twitter
Bootstrap or ZurbFoundation. An entirely new implementation
was chosen over using a framework due to the greater
flexibility afforded by a fully custom design. The front-end is
largely empty static content that is populated by data from the
database. To obtain data from the database, the front-end
JavaScript sends AJAX requests to the Flask server, which
processes the requests, pulls the requested data from the
database, formats the data, and returns it to the calling script.
Once the data is obtained, the JavaScript formats the data
further into HTML and inserts it into appropriate pages on the
front-end.

There are several different formats to display the data. For
the percent format, a progress bar is displayed by setting a
width of a child <div>1 element relative to a parent <div>
element, and a percentage is displayed to the right. For the raw
format, the data is simply dumped into a text box, and if the
text is formatted with HTML markup, the formatting will be
visible. For the picture format, images are displayed in a
lightbox that expands when clicked. The lightbox plugin
selected is FancyBox due to its ease of use and compatibility
with many different browsers. For the graph format, the data
is displayed as a line graph; the graph library chosen for this is
Chart.js due to its ease of use and responsive2 nature.

B. Back-End

Flask is a framework for a full-fledged Python web server,
but in the current project, it is only used for processing the
back-end requests from the front-end JavaScript. The script for
the Flask server itself is only partially custom-implemented
for the project; the cross-domain request code was obtained
from a public Flask snippet [28]. The Flask server script
contains only request-processing functionality. The script
includes several other custom-written modules for additional
functionality.

Fig. 4 Back-end component connectivity

The back-end component connectivity is illustrated in Fig.

4. The sensor_data.py3module contains the methods for
logging all of the data, as well as the class to run the process
that automatically logs the data. The standard.py and
custom.py modules are included in the sensors module and
they contain the sensor classes to log data for both the
standard and the custom metrics. The users.py module
contains the two classes that are used to add and delete users.

As mentioned earlier, there are two types of metrics:
standard and custom. Every standard metric is automatically
read and processed into the database from a file, but the
custom metrics require a specific class per metric and a new
clause in the control flow statement in sensor_data.py. There
is no actual database handling in the sensor classes because it

1 A <div> is an HTML container element used to display floating blocks

that may or may not contain text.
2The library generates graphs that fit many different screen resolutions.
3The .py file extension denotes a Python script.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

708

makes more sense to offload all database operations to an
external class to ensure a uniform document format for both
standard and custom metrics. All of the sensor classes return
sensor data using a common function, getMetricData, and a
method called from sensor_data.py then inserts that data into
the database, keyed by date, metric, and username. The Python
scripts use the PyMongo driver to interface with the database.
The automatic logging runs on a thread independently of the
Flask server thread. The Python back-end is multithreaded in
order to ensure that any problems with the automatic data
logging will not halt the process to deliver data from the
database.

The database software used for the project is MongoDB. It
is a NoSQL-type database that stores documents in JSON
format. The structure of the database is relatively flat. At the
highest level, there is the “data” database, which has several
collections for the various different pieces of data (e.g., users,
motion, pictures, sleep, etc.). Each collection contains a series
of documents4 in JSON format, keyed by username, date, and
metric. MongoDB supports key-value pairs for queries, which
makes it easy to search for and find data keyed by date,
metric, and username (or, any combination of the three). Each
user in the database has his/her metadata (name, username,
metrics) stored in a user object which is keyed by the
username. Every username is dynamically generated by
appending the epoch time to a whitespace-stripped version of
the user’s full name. This method ensures that every username
is unique and prevents a name collision. All metrics are stored
as JSON keyed by metric name in a larger JSON object that
contains all the metrics. The JSON format is very easy to
parse in both Python and JavaScript. A sample user object is
shown in Fig. 5.

The standard metrics in the user object contain a path that
defines the directory for files that correspond to the data for
that metric. The custom metrics have no such path, and data
can be obtained from any programmatically accessible source.
For the two custom metrics currently implemented, motion
and sleep, the data is retrieved from a third party source.

For the motion metric, the Jawbone UP band [29] is used to
obtain motion data that Jawbone stores in the cloud.
Jawbone’s proprietary API provides the hourly number of
steps a user has walked with the device on. The protocol used
to authenticate with the Jawbone API is known as OAuth. The
OAuth process requires an HTTPS server callback. In
practice, an HTTPS certificate is very expensive, so a
temporary setup is created —a one-time process —to generate
an authentication code for the API used to pull the data from
the cloud. The data is returned in JSON format. The steps are
retrieved from the “steps” field of the JSON object and
inserted into the database keyed by username, date, and metric
(motion). The code corresponding to a single day’s worth of
data is shown in Fig. 6.

4 A document in MongoDB is a specific piece of data.

Fig. 5 User object code example

{
 "name":"Ritwik Dutta",
 "username":"ritwikdutta1406421674",
 "metrics":{
 "sleep":{
 "source":"file", … where the data will be pulled from
 "format":[
 "percentage", … format that data will be displayed in
 8, … target goal for percentage-type data
 "hours" … unit of measurement for data
],
 "path":[
… specific folder where data is to be retrieved from
 "mongo/data/db/",
 "sleep"
]
 },
 "weather":{
 "source":"custom",
 "format":[
 "graph",
 "° C"
],
 "type":"weather",
 "location":"ksfo"
 },
 "pictures":{
 "source":"file",
 "format":[
 "picture"
],
 "path":[
 "mongo/data/db/",
 "pictures"
]
 },
 "motion":{
 "source":"custom",
 "format":[
 "percentage",
 400,
 "steps"
],
 "type":"jawbone",
 "auth":"b6_3pfGGwEjReOXSnWIyQO0-
Al13wvvmyZNaiuNHtPrR6_kAcLtg_W1PaWiav9FR8EvaJSu
mcI0GoYT-
V9UbpVECdgRlo_GULMgGZS0EumxrKbZFiOmnmAPChBP
DZ5JP"
 }
 }
}

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

709

Fig. 6 Jawbone object code example

For the weather metric, the weather data is retrieved using a

government-provided API that returns the past 24 hours of

weather data for a given airport code. The data in this case is
returned in METAR format, which is commonly used to store
weather information. A sample METAR string is shown in
Fig. 7.

Fig. 7 Sample METAR string

The relevant data is the temperature (27) in degrees Celsius

(°C). The METAR string is processed, whereby the
temperature is extracted and appended to an array. After
parsing every METAR string, the array contains the past 24
hours’ worth of temperature data. This data is inserted into the
database keyed by username, date, and metric (weather).

C. Adding New Metrics

This section talks about how a new metric can be added
beyond what exists in the project today. A metric needs to be
added as a key and a value in the metrics object in the user
object. As mentioned earlier, the metric can have two possible
sources on the back-end, which define how the data is
collected. The metric can either have a custom data source,
where everything has to be custom-implemented, or a file data
source, where everything is automatically pulled from a
directory. The path to the directory for a metric is currently
defined as /mongo/data/db/user/<username>/<metric>.

The metric can have four possible formats on the front-end,
which define how the data is displayed. They are:
 Percentage: where the metric is displayed as a progress

bar towards a target,
 Picture: where the metric is displayed as a series of

photos,
 Graph: where the metric is displayed as a graph, and
 Raw: where the data is displayed as pure raw numbers or

text.

Adding a File Metric

To add a new file metric, a new metric entry needs to be
created in the user object with the selected options for display
format and path. The directories for the user and associated
metrics are automatically created, after which the folders need
to be populated with data.

Adding a Custom Metric

To add a new custom metric, a new metric entry needs to be
created in the user object with the source set to custom and the
selected options for display format as well as any other fields
deemed necessary (e.g., a location for weather, or an API key
for the Jawbone UP). A custom Python class needs to be
implemented to pull and process the data, and inserted into the
file gt-dashboard/server/sensors/custom.py. The custom class
for the Jawbone UP is shown in Fig. 8.

Next,gt-dashboard/server/sensor_data.py is to be edited to
insert the custom call to the class into the control flow
statements shown in Fig. 9.

KFSO 011955Z AUTO 19003KT 10SM CLR 27/17
A3012 RMK AO2 T02740167

{
 "time_completed": 1406874960,
 "xid": "PUDl9aE5chyt0sTPkkpIcA",
 "title": "2,781 steps", … total steps walked in a day
 "type": "move",
 "time_created": 1406851800,
 "time_updated": 1406924420,
 "details": {
 "active_time": 1487,
 "tzs": [
 [
 1406851800,
 "America/Los_Angeles"
]
],
 "wo_count": 0,
 "wo_longest": 0,
 "bmr": 1703.7847,
 "steps": 2781,
 "bg_calories": 100.284996,
 "hourly_totals": {
 "2014073117": {
 "distance": 1176,
 "active_time": 800,
 "calories": 58.641,
 "inactive_time": 1200,
 "longest_idle_time": 660,
 "steps": 1548,
 "longest_active_time": 756
 },
 "2014073118": {
 "distance": 716,
 "active_time": 576,
 "calories": 33.747,
 "inactive_time": 1920,
 "longest_idle_time": 660,
 "steps": 1016,
 "longest_active_time": 287
 },
 },
 "bmr_day": 1703.7847,
 "wo_active_time": 0,
 "sunrise": 0,
 "distance": 2055,
 "tz": "America/Los_Angeles",
 "longest_active": 756,
 "longest_idle": 9240,
 "calories": 130.12175,
 "km": 2.055,
 "inactive_time": 25920,
 "wo_calories": 0,
 "wo_time": 0,
 "sunset": 0
 },
 "date": 20140731,
 "snapshot_image":
"/nudge/image/e/1406874969/PUDl9aE5chyt0sTPkkpIcA/U

DqByBVlzAY.png"

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

710

Fig. 8 Jawbone UP custom class

Fig. 9 Custom metric control flow

The only thing that the custom metric class needs to return

is raw data. It will be automatically tagged by date, username,
and metric so that it can later be found in the database.

D. Creating Custom Displays

It is also possible to create custom display formats on the
front-end. However, this process requires knowledge of
HTML, CSS, and JavaScript for the front-end in addition to
Python for the back-end.

A function needs to be written in this case to generate the
markup for the desired format, append it to the table of
metrics, and set it to the correct value. It also need to be
consistent with the current theme. The functions for displaying
metrics are in gt-dashboard/web/js/metrics.js. The code
snippet for displaying a percentage is implemented as shown
in Fig. 10.

The control flow statement in gt-dashboard/web/js/dash.js
is also to be edited in order to add in the custom display
format. The code snippet where this is done is illustrated in
Fig. 11.

Fig. 10 Display code example

V. CONCLUSION

We set out to create a free and open source system for
patient monitoring. Combining cutting-edge front-end and
back-end technologies, we have created a piece of software
from scratch that has met our goals and performed really well.
Available on the GitHub repository system, the project is free
to use for academic purposes of learning and experimenting,
or practical purposes by building on it. The distinguishing
features of our software are:
• MIT licensed and freely redistributable
• Absence of any commercial or proprietary code
• Easy expandability for additional metrics and sensors
• Simple download-and-run deployment

functionaddPercentMetric(metricName, metricDescription,
metricPercent) {

functiongenPercentMarkup(metricName, metricDescription) {
varmetricMarkupTemplate = ['<tr class="metrics element

container" data-metric="',
 '"><td class="metrics element info"><div class="metrics

element title">',
 '</div><div class="metrics element description">',
 '</div></td><td class="metrics element progress"><div

class="metrics element base"><div class="metrics element fill ',
' "></div></div></td><td class="metrics element number ',
 '"><div class="metrics element percent ',
 '"></div></td></tr>'
];
varmetString = metricMarkupTemplate[0] +
metricName + metricMarkupTemplate[1] +
metricName + metricMarkupTemplate[2] +
metricDescription + metricMarkupTemplate[3] +
metricName + metricMarkupTemplate[4] +
metricName + metricMarkupTemplate[5] +
metricName + metricMarkupTemplate[6];
returnmetString;
 };
functionsetPercent(metricName, metricPercent) {
 $(".metrics.element.percent."+

metricName).text(metricPercent.toString() + "%");
metricPercent = (metricPercent> 100) ? 100 :metricPercent;
 $(".metrics.element.fill." + metricName).animate({
 "width": metricPercent.toString() + "%"
 }, 250);
 }
vargeneratedMetric = genPercentMarkup(metricName,

metricDescription);
 $(".metrics.table").append(generatedMetric);
setPercent(metricName, metricPercent);
 }

elifuserMetricsList[metric]['source'] == 'custom':
customData = ""
ifuserMetricsList[metric]['type'] == 'jawbone':
customDataObject =

custom.jawboneLib(userMetricsList[metric]['auth'])
customData = customDataObject.getMetricData()
elifuserMetricsList[metric]['type'] == 'weather':
customDataObject =

custom.weatherLib(userMetricsList[metric]['location'])
customData = customDataObject.getMetricData()

classjawboneLib:
def __init__(self, userAuthorizationToken):
self.userAuthorizationToken = userAuthorizationToken
defgetMetricData(self):
apiAuthorizationHeaders = {'Authorization' : 'Bearer ' +

self.userAuthorizationToken.encode('ascii', 'ignore') }
userJawboneData =

requests.get('https://jawbone.com/nudge/api/v.1.1/users/@me/mov
es', headers = apiAuthorizationHeaders)

userJawboneDay =
json.loads(userJawboneData.text)['data']['items'][0]

userJawboneDaySteps = 0
currentDate = getFormattedTime("%Y%m%d")
if (str(userJawboneDay['date']) == currentDate):
userJawboneDay = userJawboneDay['details']['hourly_totals']
foruserJawboneHour in userJawboneDay.keys():
userJawboneDaySteps +=

userJawboneDay[userJawboneHour]['steps']
returnuserJawboneDaySteps

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

711

Fig. 11 Metric display control flow

ACKNOWLEDGMENT

The authors would like to thank the Department of
Electrical and Computer Engineering at Georgia Tech for
providing an opportunity to discuss the project requirements
and get on with some implementation prototypes.

REFERENCES
[1] Age In Place (Online) http://ageinplace.com/at-home/home-aumation-

for-aging-in-place/what-is-home-automation/.
[2] Prafulla N. Dawadi, Diane J. Cook, and Maureen Schmitter-Edgecombe.

Automated assessment of cognitive health using smart home
technologies. (Online)http://www.eecs.wsu.edu/~cook/pubs/thms12.pdf.

[3] Health-status monitoring through analysis of behavioral patterns. Barger
TS, Brown DE, and Alwan M. 35(1), s.l. : IEEE Trans Syst Man
Cybern, 2005, Vol. Part A .

[4] Unobtrusive sensing of activities of daily living: a preliminary report. M,
Carter J and Rosen. s.l. :Proc First Joint BMES/EMBS Conf, October
13-16, 1999.

[5] Cook DJ and Das SK. Smart environments: technologies, protocols and
applications. . 2004 : Hoboken: John Wiley and Sons.

[6] Helal A, Mokhtari M, Abdulrazak, and B. Hoboken. The engineering
handbook on smart technology for aging, disability and independence.
s.l. : John Wiley and Sons, 2007.

[7] Long-term remote behavioral monitoring of elderly by using sensors
installed in ordering houses. Ogawa M, Suzuki R, Otake S, Izutsu T,
Iwaya T, and Togawa T. s.l. : ProcInt IEEE-EMBS Special Topic
ConfMicrotechnologies in Medicine and Biology, May 2–4, 2002.

[8] AbdelsalamHelal, Mark Schmalz, Diane J. Cook. Smart Home-Based
Health Platform for Behavioral Monitoring and Alteration of Diabetes
Patients. Journal of Diabetes Science and Technology. (Online)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2769843/#b10.

[9] Mediware - Alternate Care Solutions (Online)http://www.healthcare-
automation.com/.

[10] LifeFone - Medical Alert System. (Online) http://www.lifefone.com/
?mm_campaign=3648d65c0712f5bcad17506602a41fb3&keyword=medi
cal%20monitor&utm_source=Google&utm_medium=CPC&utme_camp
aign=Medical-Monitor&gclid=CjwKEAjw2MOhBRCq-Nr87_j-
lDASJAAl4FNh075PZdiKO2uOByN-
7lvNBcv3gE1tNDFNfRcZuyw_uhoCfMvw_wcB.

[11] Apple Unveils Health, Smart Home Software - US News. (Online)
http://www.usnews.com/news/articles/2014/06/02/apple-unveils-health-
smart-home-software.

[12] The Telegraph. WWDC 2014: Apple aims to be the platform of the
future with health apps and home automation. (Online)
http://www.telegraph.co.uk/technology/apple/10871053/WWDC-2014-
Apple-aims-to-be-the-platform-of-the-future-with-health-apps-and-
home-automation.html.

[13] Medical Alert Monitoring. ADT. (Online)http://www.adt.com/medical-
alarm.

[14] Multichannel. (Online) http://www.multichannel.com/blog/i-was-
saying/comcast-talks-telehealth-mobile-medical-ventures-accelerate-
deployment/325409.

[15] Comcast Ventures: Jawbone acquires Bodymedia - Comcast Voices
(Online) http://corporate.comcast.com/comcast-voices/comcast-
ventures-jawbone-acquires-bodymedia.

[16] ClearCare - Empowering Private Duty Home Care. (Online)
http://clearcareonline.com/.

[17] Boston Software Systems. Healthcare Automation – Revolutionizing
How You Work. (Online)http://www.bostonsoftwaresystems.com/.

[18] Healthcare Software Solutions. (Online)
http://www.pega.com/healthcare-software-solutions.

[19] Omnicell. (Online) http://www.omnicell.com/.
[20] Top Healthcare Management Software Products:Capterra - The Smart

Way to Find Business Software. (Online)
http://www.capterra.com/healthcare-management-software.

[21] Citius Tech. Healthcare Software Engineering - Overview. (Online)
http://www.citiustech.com/service-offerings/healthcare-software-
engineering.aspx.

[22] Boston University Metropolitan College - Software Engineering in
Health Care Systems Graduate Certificate. (Online)
http://www.bu.edu/met/programs/graduate/software-engineering-in-
healthcare-systems-certificate/.

[23] Wireless Human Health Online Monitor: Cornell University - School of
Electrical and Computer Engineering. (Online)
http://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2011/x
y222_yw437_ha245/xy222_yw437_ha245/.

[24] mongoDB - Agile and Scalable (Online)http://www.mongodb.org/.
[25] Flask web development, one drop at a time. (Online)

http://flask.pocoo.org/.
[26] 20.19. SimpleHTTPServer— Simple HTTP request handler (Online)

https://docs.python.org/2/library/simplehttpserver.html.
[27] Dutta, Ritwik. Welcome to the project page for the Georgia Tech Health

Dashboard! (Online) http://gtd.ritwikd.com/
[28] Ronacher, Armin. Decorator for the HTTP Access Control. Flask

Snippets. (Online) http://flask.pocoo.org/snippets/56/.
[29] JAWBONE. (Online) https://jawbone.com/up.

switch (requestedMetricFormat[0]) {
 //Show percentage
case "percentage":
tempDescription= loggedInUserData[requestedMetric].toString() +
' out of ' + requestedMetricFormat[1] + ' ' +
requestedMetricFormat[2] + '.';
requestedMetricPercent=Math.round(100*

loggedInUserData[requestedMetric] /
requestedMetricFormat[1]);
 //Add to array to determine final percentage
percents.push(requestedMetricPercent);
addPercentMetric(requestedMetric,
tempDescription,
requestedMetricPercent);
break;
 //Show pictures
case "picture":
addPhotoMetric(requestedMetric,"",

loggedInUserData[requestedMetric]);
break;
 //Show raw data
case "raw":
addRawMetric(requestedMetric,"",

loggedInUserData[requestedMetric]);
break;
case "graph":
addGraphMetric(requestedMetric,
 (requestedMetric == "weather") ? "Hourly
Temperatures (°C)." : "",
loggedInUserData[requestedMetric]);
break;

}

