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Abstract—This paper presents small signal stability study carried 

over the 140-Bus, 31-Machine, 5-Area MEPE system and validated 

on free and open source software: PSAT. Well-established linear-

algebra analysis, eigenvalue analysis, is employed to determine the 

small signal dynamic behavior of test system. The aspects of local 

and interarea oscillations which may affect the operation and 

behavior of power system are analyzed. Eigenvalue analysis is carried 

out to investigate the small signal behavior of test system and the 

participation factors have been determined to identify the 

participation of the states in the variation of different mode shapes. 

Also, the variations in oscillatory modes are presented to observe the 

damping performance of the test system. 

 

Keywords—Eigenvalue analysis, Mode shapes, MEPE test 

system, Participation factors, Power System oscillations. 

I. INTRODUCTION 

WO of the most important design criteria for multi-

machine power systems are transient stability and damping 

of electromechanical modes of sustained oscillation [1]-[6]. 

Stability of power systems is one of the most important aspects 

in power electrical operation. This is because power system 

must maintain frequency and voltage levels in the desired 

level, under any disturbance [7]. With the increase of the scale 

and complexity of the interconnected power networks, the 

problems on the various potential power oscillations, which 

have the significance impact on the system stability and 

security operation, have been drawn more and more attention 

[8]-[10]. 

The small signal dynamic behavior of power systems can be 

determined by eigenvalue analysis, which is a well-established 

linear-algebra analysis method [11], if a dynamic power 

system model is available. In an analysis of the system 

stability, eigenvalues of a power system model have been 

derived and evaluated. Through analyzing eigenvalues, 

characteristics of system dynamic states are understood 

without a time domain simulation. Hence, the eigenvalue 

analysis is efficient in appraising the system stability for a 

multi-machine power system model. The system eigenvalues 

have been evaluated with respect to the components of the 

power grid; that is to say, the eigenvalues with regard to 

electrical distances between generators. 
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In the large power systems, small signal stability problems 

may be either local or global (interarea) in nature. Local 

problems involve a small part of the system. They may be 

associated with rotor angle oscillations of single generator or a 

single plant against the rest of the power system. Such 

oscillations are called local plant mode oscillations [12]. Local 

problems may also be associated with oscillations between the 

rotors of a few generators close to each other. Such 

oscillations are called inter-machine or interplant mode 

oscillations [12]. Global small signal stability problems are 

caused by interactions among large groups of generators and 

have widespread effects. They involve oscillations of a group 

of generators in one area swinging against a group of 

generators in another area. Such oscillations are called 

interarea mode oscillations [9].  

In this paper, real case off-line system namely Myanmar 

national grid test system (MEPE test system) is applied and 

tested. The MEPE electricity network is largely supplied by 

hydro power while supplying large consumption in the Yangon 

area and central region through weak transmission lines [13]. 

Hydro power in Myanmar accounts for more than three-quarter 

(about 76 percents) of net production of electrical generation. 

In hydro power production systems, the functions of hydro 

turbine and governors cannot be neglected because they 

participate in primary frequency control of power systems 

[14]. Features of hydro generators are substantially different 

from those of thermal generators, and their respective 

modeling needs to be done appropriately [15]. 

Power System Analysis Toolbox (PSAT
©
) [16], an 

educational free and open source (FOSS) for power system 

analysis studies [17] is employed as a simulation tool in this 

study. The toolbox covers fundamental and necessary routines 

for power system studies such as power flow, small signal 

stability analysis and time domain simulation. PSAT is a 

suitable candidate as power system analysis software which is 

capable of performing core stability analyses. 

The aim of this paper is to propose an improved model of 

the modified MEPE power system in FOSS for power system 

stability analyses and studies. The study model includes a 

newly developed hydro turbine and hydro governor model [15] 

which is capable of representing the actual dynamic behavior 

of hydro units. The paper is organized in five sections. The 

small signal stability and eigenvalue analysis has been 

discussed in Section II. Section III details the test system 

characteristics and dynamic modeling. Simulation and results 

with two different scenarios are presented and discussed in 

Section IV followed by the conclusion in Section V.  
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II. SMALL SIGNAL STABILITY 

The small signal stability, and more broadly the dynamic 

performance, of the power system are related to the damping 

of the electromechanical modes of oscillation. This oscillatory 

behavior is associated fundamentally with (i) the variation in 

the electrical torque developed by synchronous machines as 

their rotor angles change; and (ii) the inertia of their rotors. 

The frequencies associated with these modes of oscillation are 

typically in the range from 0.5 to 4 Hz. 

A.  Modes of Oscillation 

The analysis of small signal stability is particularly of 

interest of electromechanical modes of oscillations. It involves 

the rotors of individual generators or groups of generators 

oscillating or swinging against each other. Electromechanical 

modes of oscillation can be broadly subdivided into (i) local 

area modes having frequency range of 0.7–2 Hz and (ii) inter-

area modes having frequency range of 0.16–0.7 Hz [8, 18]. 

Small signal stability requires that these modes should be 

adequately damped. The presence of AVR and PSS greatly 

influences the damping of these modes and can be assessed by 

means of eigenvalue analysis.  

The eigenvalue analysis can be carried out by linearizing the 

system about an operating point and representing it in state 

space form. For stability, all of the eigenvalues must lie in the 

left half complex plane. Any eigenvalue in the right half plane 

denotes an unstable dynamic mode and system instability. The 

damping contribution provided by any means shifts the 

location of the eigenvalues associated with the dominant 

oscillatory modes to the left half of the plane.  

B. Eigenvalue Computation 

The behavior of a dynamic system, such a power system, 

can be described by the complete set of n-first order non-linear 

ordinary differential and algebraic equations (DAE) of the 

following form [8], [19]. 
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where, x takes the values of 1 to n; n is the order of the system. 

At the equilibrium, all time derivatives of the states are zero 

and are obtained from a load flow analysis. 
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The complete set of differential equations with network 

equations are arranged in state-space form and linearized about 

an operating point as; 
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In the small signal perturbed model: 
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 By taking the Laplace transform of above equations 
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Similarly, 
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The poles of the system are the roots of the characteristic 

equations given by 
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Above equation can be written as characteristic equation 

 

0)det( =− IA λ  (8) 

 

The values of λ (λ= λ1, λ2, λ3… λn) which satisfy the 

characteristic equation, are known as the eigenvalues of matrix 

A. The numbers of eigenvalues are equal to the number of 

first-order differential equations considered in the model to 

represent the system. Eigenvalues may be real or complex, if 

the matrix is real.  

The complex eigenvalues always occur in conjugate pairs, 

as shown; 
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For a given eigenvalue, damping ratio, frequency 

oscillation, and time constant can be calculated using the 

following expressions; 
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In this work, eigenvalues have been calculated along with 

damping ratio and frequency of oscillation for different cases 

and the participation factor of mode i, can be computed as 

follows; 
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where, m is the number of state variables, pki is the 

participation factor of the k
th

 state variable into mode i, Φki is 

the i
th

 element of the k
th
 right eigenvector of A, Ψki is the m

th
 

element of the i
th

 left eigenvector of A. 
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III. MEPE TEST SYSTEM 

A. Background 

Myanmar has an installed capacity of approximately 3,460 

MW of energy generation, which is composed primarily of 

2,660 MW (about 76%) of hydro capacity, 550 MW ( about 

16%) of gas-fired capacity, 165 MW (about 5%) steam 

capacity and 120 MW (3.5%) of coal-fired capacity [20, 21]. 

Currently, the total installed capacity of the hydropower 

plants is 2,660 MW with a firm capacity of 1,504 MW, out of 

which 860 MW is in reservoir-based plants and the rest in run-

of-river plants. Hydropower accounts for about 76 percent of 

installed capacity and 65 percent of electricity production. The 

system analyzed in this study is a conceptualization of MEPE 

grid circa 2014. It is based on a system data proposed by 

KEPCO (consultant of MEPE) and the staffs of power system 

department of MEPE. 

B. System Characteristics 

The MEPE system is depicted in Fig. 1. The voltage levels 

of the test system are 230 kV, 132kV, 66kV and 33kV 

respectively. The grid study is valid for the transmission 

system only and do not include the distribution network. The 

grid has no direct connections to other grids of neighboring 

countries.  

The five areas of MEPE test system are: 

• “West” with two hydro generating stations and four 

thermal generations and some loads, 

• “North” with only four hydro generations and some loads, 

• “East” with only one coal-fired station and five hydro 

stations and some loads, 

• “Central” with much loads and eight hydro generating 

stations, and 

• “YESB” with heavy loads and seven thermal generating 

stations. 

C. Dynamic Modeling 

Dynamic models of synchronous generators, exciters, 

turbines, and governors for MEPE power system are 

implemented in PSAT. All models used are documented in the 

PSAT manual.  

1) Generator Models 

Two synchronous machine models are used in the system: 

three-rotor windings for the salient-pole machines of hydro 

power plants and four-rotor windings for the round-rotor 

machines of thermal plants. These two types of generators are 

described by five and six state variables, respectively: δ, ω, 

'
qe , "

qe  and "
de  and with an additional state '

de  for the six state 

variable machines. All generators have no mechanical 

damping and saturation effects are neglected.  In the test 

system (Fig.1), the generating stations namely: G1, G2, G3, 

G4, G5, G6, G7, G8, G9, G10, G12, G13 and G21 are the 

thermal generating stations and the rest are the hydro 

generating units. 

 

 

Fig. 1 MEPE test system 

2) Automatic Voltage Regulator Models: 

The same model of AVR, as shown in Fig. 2, is used for all 

generators but with different parameters. The field voltage vf is 

subject to an anti-windup limiter. 
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Fig. 2 Exciter model 

3) Turbine and Governor Models 

In PSAT, there are three models of turbine and governors: 

namely Model 1, Model 2 and Model 3. The first one is a 

thermal generator model while the second is a simplified 

model. As such, the system’s hydro generator is temporarily 

represented by Model 2 while that of thermal is represented by 

Model 1. Block diagrams of these two models are depicted in 

Figs. 3 and 4, respectively.  
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Fig. 3 Turbine governor model used for thermal generator: Model 1 
 

W. Li et al. recently developed hydro turbine and governor 

models in PSAT [14]. The block diagram of Model 3 is shown 

in Fig. 5. 
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Fig. 4 Turbine governor model used for simple hydro generator: 

Model 2 

 

Hydro turbine and governor are normally combined together 

for representation. The block consists of a typical hydro 

turbine governor and a linearized hydro turbine model where 

the corresponding elements are depicted in the figure. The 

linearized turbine is the classical hydro turbine model in power 

system stability analysis, corresponding to ideal turbine and 

inelastic penstock with water inertial effect considered. 
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Fig. 5 Turbine and governor model used for typical hydro generator: 

Model 3 

IV. RESULTS AND DISCUSSION 

Small signal stability analysis reveals important 

relationships among state variables of a system and gives an 

insight into the electromechanical dynamics of the network. 

Applying the well-established linear-algebra analysis 

technique to the linearized model of the MEPE test system, 

small signal stability is studied by analyzing four properties: 

eigenvalues, frequencies of oscillation, damping rations and 

eigenvectors (or mode shapes). Fig. 6 depicts the user interface 

for small signal stability analysis.  

Before fulfilling eigenvalue analysis, it is necessary to 

calculate power flow. After solving the power flow problem, it 

is possible to compute and visualize the eigenvalues and the 

participation factors of the system. For this reason, power flow 

calculation has been carried out. In PSAT, there are seven 

power flow solvers already implemented. In this analysis, 4
th

 

order Rungu-Kutta solver is applied for its high accuracy rate 

of state variable initialization. To conduct a load flow study, 

bus number 119 (Yeywa Hydro Power Station Bus) is selected 

as the slack bus and other generating buses have been used as 

voltage controlled bus. The results of power flow are not 

shown here because it is just only the state variable 

initializations for small signal stability analysis.  

 

 

Fig. 6 GUI for small signal stability analysis 

 

Several options are available for adjusting the performance 

and the changing the output of the routine. It is possible to set 

the output map, the Jacobian matrix and the number and kind 

of eigenvalues to be computed. 

A. Eigenvalue Analysis of Test System 

For linear analysis of test system, the benchmark system is 

implemented with Model 1 and Model 2 as well as Model 1 

and Model 3. The system has 315 states with Model 2 while 

372 states with Model 3; the number corresponds to the same 

number of eigenvalues. Plot of eigenvalues of test system 

implementing Model 2 and Model 3 are illustrated in Figs. 7 

and 8, showing their respective local enlargement. 

The small signal stability analysis has been carried out for 

the benchmark system and all eigenvalues for the MEPE 

benchmark system, either with Model 2 or Model 3, are 

located in the left half plane, which indicates systems are 

stable. From the figures above, all eigenvalues have negative 

real part so that the system is said to be inherently dynamically 

stable. Comparing the figures, it can be observed that there are 

more eigenvalues having lower damping rations in the system 

with Model 3 than that with Model 2. For the system with 

Model 2, there are six paired complex eigenvalues located 

outside the 10% damping line. For the system with Model 3, 

there are twelve paired complex eigenvalues located outside 

the 10 % damping line because of Model 2 doesn’t compose of 

nonlinear dynamic and only represents simple and classical 

model. 
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(a) Model 2 
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(b) Model 2 (Local enlargement) 

Fig. 7 Eigenvalues of the MEPE test system with Model 2 

 

Table I provides the two lowest damping modes, their 

corresponding frequencies and damping ratios and the most 

associated state variables for both scenarios considering the 

case with Model 2 and the case with Model 3. As shown in the 

following table, the damping ratios obtained from the two 

models bear a significance difference. This discrepancy is due 

to the incorrect modeling of the hydro turbine and governor 

using Model 2, from which damping rations are larger than 

when using Model 3 for hydro turbine and governor 

representation. 

This model error might influence the design of damping 

controllers to be less effective; this precisely illustrate why 

hydro turbine and governor modeling is important. 
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(a) Model 3 
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(b) Model 3 (Local enlargement) 

Fig. 8 Eigenvalues of the MEPE test system with Model 3 

 

TABLE I 

LINEAR ANALYSIS RESULTS OF THE TWO LOWEST DAMPING MODES 

Model Eigenvalues 
Frequency 

(Hz) 

Damping 

Ratio 

Most 

Associated 

States 

Model 

2 

-0.01752±j1.6582 0.26391 0.01057 δ14 , ω14  

-0.05496±j4.1796 0.665204 0.01315 ω8, δ8 

Model 

3 

-0.003686±j2.4261 0.38613 0.001519 ω14, δ14 

-0.005229±j3.6698 0.58407 0.001425 ω2, δ2 

B. Electromechanical and Interarea Modes of Test System 

Local modes or machine-system modes relate to the 

swinging of generators with respect to the rest of the power 

system. Interarea modes relate to the groups of machines from 

different parts that swing against each other. This problem 
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occurs because of weak tie-line interconnection. It was 

observed that all the poorly damped (i.e. damping ratio less 

than 10%) or unstable modes had high participation form rotor 

angles and rotor speed of various machines.  

In this research, the participation factor has been utilized to 

determine the dominant generator because the load angle of a 

generator that has the highest participation factor on the main 

dominant interarea modes, affects the power system stability. 

Participation factors for both cases of the MEPE test system 

are shown in Figs. 9 and 10, respectively. 

 

 

Fig. 9 System Participation Factors in Test System for all 

Eigenvalues and State Variables (Model 1 & Model 2) 

 

As discussed in previous section, the system has 315 

eigenvalues with Model 2 and 372 eigenvalues with Model 3. 

The presence of Model 3 changes the system states from 315 

to 372. There are 39 complex pairs among those eigenvalues 

for the test system with Model 2 and 40 complex pairs for 

Model 3. 

 

Fig. 10 System Participation Factors in Test System for all 

Eigenvalues and State Variables (Model 1 & Model 3) 

 

These complex pairs were observed as critical mode. 

However, for the scope of the study, only two criteria: 

0.4~0.7Hz and 0.7~2Hz are observed. The particular network 

oscillatory response characteristics giving the frequency of 

oscillations, damping ratio and three most influencing states 

with their participation of two cases are denoted in Tables II 

and III, respectively. 

In these two tables, the participation factors most associated 

with the eigenvalues are listed and the relation between the 

modes, state variables (especially generator angles and speeds) 

and machines are also shown. For the test system with Model 

2, the strong related generators are G14, G9, G8, G18, G7, 

G31, G20, G1, G27, G22, G23 and G2 while for the system 

with Model 3, G14, G29, G2, G18, G30, G20, G16, G1, G8, 

G31, G23, G27 and G13 are notified as the strong related 

generators. As discussed in previous section, G14 is the lowest 

damping mode in both cases.  

According to the results of these two tables, the strong 

relative generators with high participation should be 

considered to determine the optimal location for installing 

power oscillations dampers (PODs) such as power system 

stabilizers (PSSs). It is expected that by installing a PSS at the 

generator having the largest magnitude at the mode of interest, 

a more significant damping than installing at the other 

generators. 

The system response characteristics are comprised of an 

amalgam of the dynamic modes identified by system 

eigenvalues. Hence, it is not possible to directly link specific 

responses with individual eigenvalues. However, the dominant 

oscillatory modes of the test system are shown in the tables.  

 For the case study with Model 2, the particular network 

oscillatory response characteristics are classified as follows: 

• Mode 1 having a frequency of 0.26391 Hz corresponds to 

the interarea mode between North and West, 

• Mode 2 having a frequency of 0.47639 Hz corresponds to 

the interarea mode between West and YESB, 

• Mode 3 having a frequency of 0.665204 Hz corresponds 

to the interarea mode between West and Central, 

• Mode 4 having a frequency of 0.68383 Hz corresponds to 

the interarea mode between East and Central, 

• Mode 5 having a frequency of 0.6997 Hz corresponds to 

the interarea mode between YESB and Central, 

• Mode 6 having a frequency of 0.75892 Hz, mode 10 

having a frequency of 1.4018 Hz, and mode 11 having a 

frequency of 1.4892 Hz correspond to the local modes in 

Central, 

• Mode 7 having a frequency of 0.87292 Hz corresponds to 

the local mode in North, 

• Mode 8 having a frequency of 0.95786 Hz, mode 12 

having a frequency of 1.5059 Hz and mode 13 having a 

frequency of 1.8897 correspond to the local modes in 

East,  

• Mode 9 having a frequency of 1.0714 Hz and Mode 14 

having a frequency of 1.9092 Hz corresponds to the local 

mode in YESB. 

For the case study with Model 3, the particular network 

oscillatory response characteristics are classified as follows: 

• Mode 1 having a frequency of 0.38613 Hz corresponds to 

the interarea mode between North and Central, 

• Mode 2 having a frequency of 0.3924 Hz corresponds to 

the interarea mode between Central and YESB, 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:8, No:11, 2014

1829

 

 

• Mode 3 having a frequency of 0.58407 Hz corresponds to 

the interarea mode between YESB and West, 

• Mode 4 having a frequency of 0.62698 Hz corresponds to 

the interarea mode between East and Central, 

• Mode 5 having a frequency of 0.6325 Hz corresponds to 

the interarea mode between Central and West, 

• Mode 6 having a frequency of 0.80853 Hz, mode 11 

having a frequency of 1.2207 Hz, mode 13 having a 

frequency of 1.3056 Hz and mode 15 having a frequency 

of 1.6232 Hz correspond to the local mode in East, 

• Mode 7 having a frequency of 0.85564 Hz corresponds to 

the local mode in North, 

• Mode 8 having a frequency of 0.91724 Hz corresponds to 

the local mode in YESB, 

• Mode 9 having a frequency of 0.93217 Hz and mode 14 

having a frequency of 1.4242 Hz correspond to the local 

modes in West, and 

• Mode 10 having a frequency of 0.94624 Hz and mode 12 

having a frequency of 1.2032 Hz correspond to the local 

modes in Central. 
 

TABLE II 

DOMINANT OSCILLATORY MODES OF TEST SYSTEM WITH MODEL 2 

Mode No. Eigenvalues Frequency (Hz) Damping Ratio 
Most Influence State in the Control of the Mode 

with their % Participation 

(1)    λ125, λ126 -0.01752±j1.6582 0.26391 0.01057 42.8%δ14 =  42.8%ω14 =  2.8%δ13 =  

(2)   λ156, λ157 -6.6165±j2.9929 0.47639 0.9111 13.8%e'
d9 =  11.8%ω9 =  2.1%ω2 =  

(3)    λ152, λ154 -0.05496±j4.1796 0.665204 0.01315 35.2%ω8 =  22.3%δ8 =  17.1%ω27 =  

(4)    λ148, λ149 -5.2158±j4.2966 0.68383 0.7718 19%e'
d18 =  18.8%ω13 =  11%ω6 =  

(5)    λ150, λ151 -5.4965±j4.3963 0.6997 0.7809 16.8%e '
d7 =  12.2%δ7 =  8.6%ω27 =  

(6)     λ122, λ123 -18.1788±j4.7741 0.75892 0.9672 42.8%ω31 =  42.8%δ31 =  2.8%e"
d31 =  

(7)     λ146, λ147  -4.3436±j5.4847 0.87292 0.6208 11.6%e"
d8 =  42.8%δ14 =  2.8%e"

d14 =  

(8)     λ143, λ144  -4.2221±j6.0184 0.95786 0.5741 14.6%δ20 =  14.7%ω20 =  7.18%e'
d20 =  

(9)    λ135, λ136  -2.624±j6.7318 1.0714 0.3632 24.9%ω1 =  24.5%δ1 =  9.1%ω7 =  

(10)  λ132, λ133  -2.7469±j8.8079 1.4018 0.2977 23.4%ω30 =  23.4%δ30 =  2.8%e"
d30 =  

(11)     λ130, λ131 -7.8929±j9.3567 1.4892 0.6448 19.9%δ27 =  19%ω27 =  11.8%e
"
q27 =  

 (12)   λ101, λ102 -9.584±9.4617 1.5059 0.7116 30.4%ω22 =  17.9%δ22 =  7.5%e"
d22 =  

 (13)   λ118, λ119 -6.9917±j11.8734 1.8897 0.5074 18.1%ω23 =  13.7%δ23 =  2.11%ω10 =  

 (14)   λ114, λ115 -2.5869±j11.9957 1.9092 0.2108 18.3%ω2 =  17%δ2 =  5.6%e'
d2 =  

 

TABLE III 

DOMINANT OSCILLATORY MODES OF TEST SYSTEM WITH MODEL 2 

Mode No. Eigenvalues Frequency (Hz) Damping Ratio 
Most Influence State in the Control of the Mode 

with their % Participation 

(1)   λ87, λ88 -0.00369±j2.4261 0.38613 0.00152 49.1%ω14 =  22.8%δ14 =  7.1%δ27 =  

   (2)  λ101,λ102 -18.8501±j3.4654 0.3924 0.9916 23.4%e"
d29 =  23.2%δ29 =  17%δ2 =  

(3)     λ295, λ296 -0.00523±j3.6698 0.58407 0.001425 21.1%ω2 =  42.8%δ14 =  12%ω11 =  

(4)     λ176, λ177 -4.1909±j3.9394 0.62698 0.7286 30.4%e'
d18 =  21%ω18 =  10.1%δ26 =  

(5)     λ99, λ100 -22.2064±j3.9739 0.6325 0.9844 48%e"
d30 =  42.8%δ30 =  21%ω30 =  

(6)     λ176, λ177 -3.621±j5.0802 0.80853 0.5804 19.2%ω20 =  18.9%δ20 =  4.13%e'
d20 =  

(7)     λ171, λ172 -2.3587±j5.3762 0.85564 0.4018 17.5%ω16 =  17.5%δ16 =  9.9%e
'
q16 =  

(8)     λ166, λ167 -1.9203±j5.7635 0.91729 0.3161 19.2%ω1 =  18.9%δ1 =  4.13%e'
d1 =  

(9)     λ161, λ162 -0.25471±j5.857 0.93217 0.0434 16.5%e'
d8 =  14%e'

q8 =  1.13%ω8 =  

(10)   λ164, λ165 -1.6388±j5.9454 0.94624 0.2657 22.3%ω31 =  18.9%δ31 =  6%e"
d31 =  

(11)   λ149, λ150 -0.52291±j7.6698 1.2207 0.0680 29.1%ω23 =  29.1%δ23 =  5.11%e'
d23 =  

(12)   λ147, λ148 -0.65283±j7.7293 1.2302 0.0841 19.2%ω27 =  18.9%δ27 =  4.13%e'
d27 =  

(13)   λ145, λ146 -0.78718±j8.2034 1.3056 0.0955 25.9%e"
d20 =  23.1%e"

q20 =  2.1%e'
q20 =  

(14)   λ143, λ144 -0.8635±j8.9488 1.4242 0.0961 25.5%ω13 =  25.5%δ13 =  7.18%e'
q13 =  

(15)   λ141, λ142 -0.9024±j10.1986 1.6232 0.0881 29.6%e"
d13 =  24.8%e"

q13 =  9.7%e
"
q13 =  
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Since the test system consists of five areas, there are many 

problems related to interarea modes. The problem is because 

of weak tie-line connection between them. To highlight the 

mode shades of the test system, the lowest damping modes of 

the test system with Model 2 as well as Model 2 are discussed 

the following section. 

C. Mode Shades of Test System 

The interarea modes are named so because in these modes, 

the participating machines divide into two groups, and the two 

groups oscillate against each other. If the interarea modes are 

poorly damped, or unstable, then the two groups may lose 

synchronism completely and this leads to system breakdown. 

The phenomenon of all the machines dividing into two groups 

may be better understood by the help of mode shapes. Mode 

shapes are the polar plots of the eigenvectors of a mode 

corresponding to the desired states.   

Modes shapes, or the right eigenvectors, give an insight into 

the relative activity of state variables in each mode. They are 

obtained from the right eigenvectors, vi, in the following 

equation. 

 
r
ii

r
i vAv λ=  (13) 

 

The larger the magnitude of the element in r
iv , the more 

observable of that state variable is. In this research, the state 

variable, generator speed (ωi), is used for analysis. Mode 

shape plots of generator speed of the corresponding case 

studies in Table I are illustrated in Figs. 11 and 12, 

respectively. In all the cases, the two groups of machines 

oscillating against each other can easily be observed. The 

division of machines into opposing groups is evident in both 

the cases. In all figures above, the two largest magnitudes of 

the mode shape elements represents the generator speed: ω14 

and ω2. 
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(a) Mode 1: 0.23691 Hz (b) Mode 3: 0.665204 Hz 

Fig. 11 Mode shapes of test system implementing Model 2 

 

These two larger magnitudes are pointing out the most 

observable state variables. In can be observed that ω14 is the 

most observable in Mode 1 of both models whereas ω8 is the 

most observable in Mode 3 of first case and ω2 for the later. 

These observations will later be useful in input signal selection 

for damping control design.  
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(a) Mode 1: 0.38613 Hz (b) Mode 3: 0.58407 Hz 

Fig. 12 Mode shapes of test system implementing Model 3 

V. CONCLUSION AND FUTURE WORK 

This paper presents the Myanmar national grid model for 

small signal stability analysis being its implementation in a 

free and open source software; namely, Power System 

Analysis Toolbox (PSAT). The model takes into account 

detailed modeling in the assessment of the system’s behavior. 

Dynamic modeling of test system, MEPE power system, in 

PSAT has been described using detailed dynamic models and 

newly developed models (especially typical hydro turbine and 

governor model, Model 3) because more than three quarters of 

the MEPE grid electric generating stations are hydro power 

plants. Well-established linear-algebra analysis method, 

eigenvalue analysis, has been employed to determine the small 

signal dynamic behavior of test system. Linearized model of 

test system has been studies by analyzing four properties: 

eigenvalues, frequencies of oscillation, damping rations and 

mode shapes.  

The values of parameters in hydro turbine and governor 

models can impact system oscillations. According to results, 

the system oscillations cannot be totally fixed by hydro turbine 

and governor control, but can be improved in some degree 

through parameter tuning. This study didn’t include the PSSs 

installed at the generating stations. According to results, the 

MEPE test system is a poor damping system and needs to be 

stabilized. In order to damp out of low frequency oscillations 

and to improve power system stability, installing an 

appropriate number of control devices at appropriate locations 

within the power system is required. Therefore, to evaluate and 

observe the optimal location for installing power system 

oscillation dampers such as PSSs will be the consecutive 

research. 
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