
International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:9, No:2, 2015

162

 

 
Abstract—Geometric and mechanical properties all influence the 

resistance of RC structures and may, in certain combination of 
property values, increase the risk of a brittle failure of the whole 
system. 

This paper presents a statistical and probabilistic investigation on 
the resistance of RC beams designed according to Eurocodes 2 and 8, 
and subjected to multiple failure modes, under both the natural 
variation of material properties and the uncertainty associated with 
cross-section and transverse reinforcement geometry. A full 
probabilistic model based on JCSS Probabilistic Model Code is 
derived. Different beams are studied through material nonlinear 
analysis via Monte Carlo simulations. The resistance model is 
consistent with Eurocode 2. Both a multivariate statistical evaluation 
and the data clustering analysis of outcomes are then performed. 

Results show that the ultimate load behaviour of RC beams 
subjected to flexural and shear failure modes seems to be mainly 
influenced by the combination of the mechanical properties of both 
longitudinal reinforcement and stirrups, and the tensile strength of 
concrete, of which the latter appears to affect the overall response of 
the system in a nonlinear way. The model uncertainty of the 
resistance model used in the analysis plays undoubtedly an important 
role in interpreting results. 

 
Keywords—Modelling, Monte Carlo Simulations, Probabilistic 

Models, Data Clustering, Reinforced Concrete Members, Structural 
Design. 

I. INTRODUCTION 

ONCRETE is the most widely used construction material 
in the world, and reinforced concrete (RC) structural 

systems are the most commonly used system in buildings and 
other built infrastructure. The causes that make concrete so 
popular between engineers and builders are due to a number of 
advantages that it provides over other materials such as its low 
cost, the workability, the durability, the incombustibility, and 
a comparatively high compressive strength. On the other hand, 
reinforced concrete is a composite, nonhomogeneous, and 
nonisotropic material that cracks significantly under relatively 
low loads, and in turns this makes it difficult to determine the 
strength of cracked RC members because their internal force 
system is not known with certainty [1], [2]; the question 
becomes even more complicated in the presence of shrinkage 
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and creep, and if we consider the redistribution of shear 
stresses between flexural cracks. 

RC structures are brittle compared to steel structures. 
According to [3], flexure and shear combine to create a biaxial 
stress. In a region of large bending moments, these stresses are 
greatest at the extreme tensile fibre of the member and are 
responsible for the initiation of flexural cracks perpendicular 
to the axis of the member. In the region of high shear force, 
significant principal tensile stresses, also referred to as 
diagonal tension, may be generated on inclined planes oriented 
at approximately 45° to the axis of the member. Inclined 
cracks form when these principal tensile stresses exceed the 
tensile strength of concrete and, with few exceptions, they are 
extension of flexural cracks. Sometimes, the formation of a 
significant continuous diagonal crack may result in the 
yielding of a set of stirrups; unrestricted widening of that 
crack then commences, and one of the important components 
of shear resistance, aggregate interlock action, becomes 
ineffective. The shear resistance so lost cannot be transferred 
to the dowel and the truss mechanisms, because they are 
already exhausted, hence failure follows with little further 
deformations. 

Shear failures are sudden and catastrophic in nature and 
should be avoided in the design process. As stated and 
confirmed by different researchers for a long time (e.g., [3]-
[5]), since it is common practice to rely on ductile inelastic 
flexural response of plastic hinges to reduce the strength 
requirements for structures, it is important (indeed, in seismic 
design it is necessary) to prevent such non-ductile failure by 
ensuring that the shear strength exceeds the shear 
corresponding to maximum feasible flexural strength. This is 
the so-called capacity design philosophy. In this regard, our 
recent studies [6] and [7] have shown that the ultimate load 
behaviour of a RC structure designed according to Eurocodes 
2 [8] and 8 [9] is not unique, but may vary from structure to 
structure depending upon a variety of factors (structural 
system, load configuration, and ductility class). The 
combination of those factors may lead to a preferential 
performance of the structure; however this seems not to affect 
the main failure mechanism that was demonstrated to be a 
ductile one. Those findings highlight that the European design 
specification is successful in preventing the formation of non-
ductile failure mechanisms. However, nothing can be said for 
RC structures designed with other standards or for existing RC 
structures. Therefore, more investigations are needed to 
understand both their ultimate load behaviour and resistance. 

Previous studies [10]–[13] indicated that structural 
resistance can be predicted by appropriate modelling of 
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material properties, geometry variables and uncertainties 
associated with the applied model. The effect of variability of 
materials and geometry is relatively well understood and has 
been extensively investigated. However, at present, there is 
limited information on their influence on the ultimate load 
behaviour of RC structures subjected to multiple failure modes 
(especially for the influence of uncertainties associated with 
both geometry and mechanical properties of stirrups). 
Therefore, the objective of this paper is to conduct a first in-
depth study of the natural causes that may affect the ultimate 
load behaviour of RC beams subjected to the combination of 
flexural and shear failure modes, considering different 
structural systems, geometrical configurations, ductility 
classes, and diverse combinations of load actions. 

The outcome of the study will be of importance for both 
design of new structures and assessment of existing structures 
where the combination of flexural and shear failure modes is 
the limiting aspect. A better understanding of the factors that 
may affect the ultimate load behaviour of RC structures will 
reduce safety margins without jeopardizing security. This will 
in turn lead to savings of natural resources. 

II. THE METHODOLOGY 

The method basically consists of the following five steps: 
(A) design procedure; (B) full probabilistic model; (C) NL-
FEM analysis; (D) assessment of the model uncertainty; and 
(E) multivariate statistical and data clustering analysis. 

A. Design Procedure 

Four sets of RC beams were properly designed on the basis 
of linear elastic analysis for serviceability and ultimate limit 
states according to Eurocodes 2 and 8 for various ductility 
classes (Low: DCL; Medium: DCM; and High: DCH).  

Samples range from a simply supported beam to 
unsymmetrical continuous beams. The length of the beams 
varies between 5 m and 15 m. Details are given in Fig. 1. For 
each set of RC beams, the following data are given: (i) the 
design load values; (ii) the structural system description; (iii) 
the load configuration; (iv) the ductility class; and (v) the 
design notation (e.g., R-30x60-2S-750-500 means a 
rectangular cross-section with width b=300 mm and depth 
h=600 mm, and two spans of 7.5 m and 5 m in length). 
Concrete C25/30, steel S500, and exposure class X0 were 
assumed. Beams were supposed to carry a typical domestic 
floor of 4 m width totally.  

A. Full Probabilistic Model 

A full probabilistic model based on JCSS Probabilistic 
Model Code [14], able to describe the mechanical properties 
of concrete and reinforcement steel, the reinforcement area, 
the geometrical properties of the cross-section, and the model 
uncertainty, was defined. Here, reinforcement is referred to as 
both longitudinal and transverse. Details are given in Table I. 
Shown in the table are (a) all the basic random variables, (b) 
their symbols, (c) distribution types, (d) units, (e) mean values 
μ, (f) standard deviations σ, (g) coefficients of variation 
C.o.V., and (h) coefficients of correlation ρij. The reference to 

JCSS Probabilistic Model Code [14], as reported in [15], is 
made because it gives guidance on the modelling of random 
variables in structural engineering. 

 

 

Fig. 1 Design samples 
 
For each simulation setting (designed beam), 10,000 

samples were generated via the Monte Carlo method covering 
a wide range of mechanical and geometrical properties. The 
estimates were then projected at 50 years from design. 

B. NL-FEM Analysis 

A numerical model based on the FEM incremental-iterative 
nonlinear analysis of RC beams was implemented by the first 
author in MATLAB environment for the purpose of the 
present paper. The resistance model considers the combination 
of both flexural and shear failure mode, and is based on 
Eurocode 2 assumptions for RC members. Such model is 
certainly more complicated than the standard approach, but 
also more realistic. 

The NL-FEM model contemplates only the material 
nonlinearities and is based on both the moment-curvature 
relation and the modified secant stiffness method [16]-[20]. 
The moment-curvature relationship is numerically derived 
using the mathematical model of the full stress-strain curves of  
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concrete and reinforcing steel, strain compatibility, and 
equilibrium equations for all the basic structural elements 

composing the beam. The safety check is performed in the 
domain of the internal actions.  

 
TABLE I 

PROBABILISTIC MODEL 

Basic Variable Symbol Distr. Unit μ  σ C.o.V. Corr. Coeff. ρij 

In situ concrete compressive strength (50 years) fc25 LGN MPa 47.82 8.20 0.17 - - - 

Concrete tensile strength fct LGN MPa 3.94 1.30 0.33 - - - 

Bar area As, As', Asw N mm2 nom. area - 0.02 1.00 0.50 0.35

Steel yield stress fy, fyw N MPa 560 30 - 0.50 1.00 0.85

Steel ultimate strength fu N MPa 1.15· fy,nom 40 - 0.35 0.85 1.00

Dimensions of cross-section h, b N mm 0.003·Xnom 4+0.006·Xnom - - - - 

Concrete cover to top steel cs LGN mm cs,nom+10  10 - - - - 

Effective depth of cross-section d N mm dnom+10  10 - - - - 

Uncertainty of resistance for bending moment (under-reinforced beams) θR,F LGN - 1.00 - 0.07 - - - 

Uncertainty of resistance for shear θR,S LGN - 1.60 - 0.15 - - - 

Note. N = normal distribution; LGN = lognormal distribution 
 

 

Fig. 2 Modelling of material properties 
 
Assumptions for the analysis were as follows: (i) Bernoulli-

Navier beam theory; (ii) transverse shear deformations 
neglected; (iii) load applied at the centroid of the cross section. 
Spurious sensitivity of results due to both load step and 
convergence criteria was reduced as follow: (a) loading was 
applied in a stepwise fashion with 1% increments; (b) 
convergence criteria were based on force and displacement, 
and the convergence tolerance limit was established for both 
calculations at 0.1%. Bond slip between steel and concrete 
was neglected.  

The mathematical model for the stress-strain curve of 
concrete is shown in Fig. 2 (a). The ascending part of the 
curve is a parabola as proposed by Sargin [21], which is also 
mentioned in Eurocode 2, and represents concrete in 
compression, whereas concrete in tension is assumed to have a 
linear elastic behaviour up to the maximum tensile stress fct. 
After that point, tension stiffening effects are also considered 
according to [22]. Consistent with Eurocode 2, a bilinear 
stress-strain curve is utilized for reinforcing steel as shown in 
Fig. 2 (b). The meaning of symbols is as in the mentioned 
references. 

C. Assessment of the Model Uncertainty 

Models, descriptive or predictive, are the basic vehicles by 
which we reflect and express our understanding of some 

aspect of reality, a particular unknown of interest. As it is 
virtually impossible to grasp any situation in its entire 
complexity, models are always partial representations of 
reality. In other words, what we know about the true nature of 
the unknown of interest is generally incomplete, resulting in a 
state of uncertainty. Accordingly, the uncertainties in model 
predictions arise from uncertainties in the values assumed by 
the model parameters, parameter uncertainty, and the 
uncertainties and errors associated with the structure of the 
model, model uncertainty, stemming from abstractions, 
assumptions, and approximations [23]. 

The assessment procedure for the two model uncertainties 
(R,F for bending moment resistance of under-reinforced 
beams, and R,S for shear resistance) went through a process of 
comparison with experimental results. Engineering judgment 
was also used. Regarding to this process, more details are 
given in our other work [7]. 

D. Multivariate Statistical and Data Clustering Analysis 

The different designed beams were then analyzed up to 
complete loading and mechanical behaviour with the 
previously defined NL-FEM model. The statistical population 
included a total of 250,000 numerical experiments.  

In safety-related checks, in the authors’ opinion, it is 
important to explicitly define the instant of collapse (or loose 
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of resistance). According to Eurocode 2, in this paper collapse 
is referred to a limiting allowable strain in one of the basic 
members composing the analyzed beams corresponding to a 
particular limit state such as (a) crushing of concrete (assumed 
to occur when the strain reaches the nominal ultimate 
compressive strain cu1), (b) breaking of tension 
reinforcements (when the strain of longitudinal rebars steel 
reaches the strain at maximum load u), and (c) shear failure 
(when the strain of transverse reinforcement steel reaches the 
strain at yielding y=fy/Es; where fy is the yield strength of the 
reinforcement and Es is its modulus of elasticity). It should be 
noted that the choice to assume the shear capacity exhausted 
when yielding of stirrups is reached is very conservative since 
the truss model proposed in Eurocode 2 considers the variation 
in the angle of the compression field  developing in the web 
as a result of this yielding. For a matter of convenience, the 
shear checking is conducted at the force level. 

Consistent with [7], for the aim of the present study, we 
define the sub-resistance (RX, RY, RZ) of a beam subjected to 
multiple failure modes (X, Y, Z) as the fraction of the total 
resistance (R) of the beam to the specific failure mechanism 
(e.g., flexural, shear, etc.). 

The structural resistance factor λ, expressed as λ=R/Ld, 
where R is the resistance of the beam and Ld is the design load, 
was evaluated for each of the twenty-five different analyzed 
beams. Similarly, the structural sub-resistance factors λF and λS 
of the two main failure modes (flexural and shear, 
respectively), expressed as λX=RX/Ld, where RX is the sub-
resistance of the beam related to failure mode X, were also 
computed. 

With the intention of evaluating the influence of natural 
variation of both material properties and uncertainties 
associated with cross-section and stirrups geometry on the 
ultimate load behaviour of the designed beams, a multivariate 
statistical analysis combined with the visual exploration of the 
outcomes was then performed. 

Additionally, data were processed by clustering using the k-
means algorithm [24]-[27]. Cluster analysis divides data 
objects into groups (clusters) basing only on information 
found in the data that describe the objects and their 
relationship. The goal of this kind of analysis is that the 
objects within a group be similar (or related) to one another 
and different from (or unrelated to) the objects in other groups. 
The greater is the similarity (or homogeneity) within a group 
and the greater is the difference between groups, the better or 
more distinct is the clustering. K-means is a prototype-based 
(a cluster is defined as a set of objects in which each object is 
closer to the prototype that defines the cluster than to the 
prototype of any other cluster; the prototype of a cluster is 
often the centroid, i.e., the mean value of all the points in the 
cluster), partitional (simply division of the set of data objects 
into non-overlapping clusters) clustering technique that 
attempts to find a user-specified number of clusters k [28].  

Clustering was performed considering parameters derived 
from the nonlinear analysis as the maximum bending moment 
(at the crucial sections) and the corresponding curvature. 

Because of its simplicity, in the k-means algorithm, the use of 
Euclidian distance metric was preferred. The number of 
clusters k was chosen iteratively and heuristically. The number 
of repetitions of the clustering process, each with a new set of 
initial cluster centroid positions, was set at 250; just the 
solution with the lowest value for the within-cluster sums of 
point-to-centroid distances was considered. In order to assess 
the quality of the individuated clusters, the within-cluster 
similarities and the cluster silhouettes [29] were calculated and 
plotted. Conclusively, the treatment of each cluster was left to 
the final judgment of the authors. All the calculations were 
performed using the MATLAB Statistics Toolbox. 

III. COMPUTATIONAL RESULTS 

The cluster analysis results showed that, with respect to the 
flexural failure mode, the data can be further divided in (1) 
flexural failure with only crushing of concrete in compression 
zone (on average, about 10% of the total flexural failures), and 
(2) flexural failure with crushing of concrete and yielding of 
tension reinforcements (the remaining 90%). Details are 
omitted here. 

The correlation coefficients ρij (that in this paper will be 
simply denoted as r) between both the structural sub-
resistance factors λF and λS of the analyzed beams and all 
parameters of the predictive model (width b and height h of 
beam, concrete cover cs, effective depth d, compressive fc and 
tensile fct strength of concrete, area of longitudinal 
reinforcement As, steel yield stress fy and ultimate strength fu 
for longitudinal bars, area of stirrups Asw, steel yield stress fyw 
for stirrups, and model uncertainties R,F and R,S) are 
presented in Table II. The correlation coefficients give 
information on the quality of a linear relationship (linear least 
squares fitting) between the parameters of the problem and, 
therefore, on the variables that mostly influence the two sub-
resistances RF and RS. The correlation coefficients r are also 
known as the product-moment coefficients of correlation or 
Pearson's correlations [30]. Correlations are interpreted by 
squaring the value of the correlation coefficients. The squared 
values represent the proportion of variance of one variable that 
can be predicted from the other variable. A rule of thumb for 
interpreting correlation coefficients has been established from 
experimental studies [31]: (i) 0.0 ≤ r < 0.2, very weak; (ii) 0.2 
≤ r < 0.4, weak; (iii) 0.4 ≤ r < 0.7, moderate; (iv) 0.7 ≤ r < 0.9, 
strong; and (v) 0.9 ≤ r ≤ 1.0, very strong. In the table values in 
boldface show the most significant correlations; moreover, in 
order to extract valid statistical information, samples 
containing less than 450 records (highlighted in italics) were 
omitted from the statistical analysis. 

Considering only the flexural failure of the beam, Fig. 3 
shows the scatter plots, with both the fitting of a least squares 
line and the correlation coefficients r, of the flexural sub-
resistance factor λF evaluated for beam R-30x60-2S-750-500 
(experimental set C, load case L1, and DCH) versus both (a) 
the steel yield stress fy and (b) the ultimate strength fu of 
longitudinal bars, and (c) the model uncertainty R,F. 
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TABLE II – PART A 
CORRELATION COEFFICIENTS BETWEEN THE STRUCTURAL SUB-RESISTANCE FACTORS OF THE BEAMS AND ALL PARAMETERS OF THE PREDICTIVE MODEL 

Exp. Set 
F

b h cs d fc fct As fy fu R,F 
A L1) -DCL 0.02 0.02 -0.02 0.24 0.11 0.11 0.45 0.60 0.54 0.72 

B 

L1) 
-DCL -0.07 -0.07 0.17 0.14 -0.26 -0.44 0.08 0.17 0.17 0.54 
-DCM -0.04 -0.04 0.13 0.12 -0.21 -0.46 0.13 0.21 0.21 0.57 
-DCH 0.03 0.03 0.05 0.10 -0.15 -0.34 0.28 0.44 0.42 0.57 

L2) 
-DCL -0.03 -0.03 0.05 0.25 -0.14 -0.23 0.27 0.46 0.42 0.73 
-DCM 0.00 0.00 0.06 0.20 -0.07 -0.18 0.32 0.46 0.42 0.71 
-DCH 0.04 0.04 0.00 0.19 -0.05 -0.17 0.36 0.56 0.51 0.70 

C 

L1) 
-DCL 0.02 -0.05 0.04 0.17 -0.13 -0.20 0.31 0.51 0.50 0.69 
-DCM 0.04 -0.09 0.10 0.24 -0.13 -0.24 0.23 0.32 0.32 0.58 
-DCH -0.02 -0.02 -0.03 0.20 -0.07 -0.22 0.30 0.48 0.46 0.70 

L2) 
-DCL 0.04 0.03 -0.03 0.19 0.03 -0.04 0.44 0.53 0.48 0.77 
-DCM -0.01 0.01 -0.04 0.18 0.00 -0.03 0.37 0.48 0.45 0.72 
-DCH 0.00 0.05 -0.07 0.15 0.00 -0.09 0.34 0.54 0.50 0.74 

L3) 
-DCL 0.06 0.00 0.01 0.23 -0.10 -0.24 0.32 0.44 0.38 0.65 
-DCM 0.15 -0.03 -0.14 0.35 0.08 -0.11 0.40 0.29 0.26 0.62 
-DCH 0.05 -0.12 0.08 0.18 -0.18 -0.45 0.05 0.24 0.23 0.65 

D 

L1) 

-DCL -0.03 0.03 -0.01 0.10 -0.13 -0.18 0.34 0.52 0.48 0.70 

-DCM 0.01 -0.04 -0.02 0.19 -0.07 -0.12 0.29 0.42 0.40 0.73 

-DCH -0.01 -0.05 0.02 0.11 0.00 -0.14 0.36 0.54 0.49 0.75 

L2) 

-DCL -0.01 0.02 -0.05 0.10 -0.07 -0.03 0.35 0.49 0.44 0.74 

-DCM 0.03 0.00 0.00 0.21 0.00 -0.10 0.36 0.50 0.46 0.78 

-DCH 0.00 0.01 -0.06 0.11 0.03 -0.06 0.34 0.52 0.47 0.75 

L3) 

-DCL 0.06 -0.04 0.03 0.07 -0.28 -0.25 0.21 0.35 0.29 0.55 

-DCM 0.04 -0.15 0.10 0.22 -0.04 -0.15 0.26 0.28 0.24 0.66 

-DCH 0.03 -0.05 0.03 0.19 -0.03 -0.26 0.27 0.42 0.42 0.71 

 
TABLE II – PART B 

CORRELATION COEFFICIENTS BETWEEN THE STRUCTURAL SUB-RESISTANCE FACTORS OF THE BEAMS AND ALL PARAMETERS OF THE PREDICTIVE MODEL 

Exp. Set 
S

b h cs d fc fct Asw fyw R,S 
A L1) -DCL 0.00 0.01 0.14 0.17 0.15 0.23 -0.08 -0.15 0.88 
  

L1) 
-DCL -0.02 -0.02 0.01 0.16 -0.03 -0.01 0.26 0.38 0.90 

  -DCM 0.01 0.01 -0.01 0.14 -0.01 -0.02 0.24 0.33 0.89 

B 

-DCH 0.03 0.03 0.01 0.08 -0.01 0.07 0.17 0.23 0.89 

L2) 
-DCL -0.02 -0.02 0.02 0.16 -0.01 -0.03 0.26 0.35 9.00 
-DCM 0.00 0.00 0.01 0.15 -0.02 -0.02 0.24 0.34 0.91 
-DCH 0.03 0.03 0.02 0.11 0.01 0.02 0.17 0.26 0.92 

  
L1) 

-DCL -0.01 -0.02 0.04 0.13 -0.01 -0.01 0.24 0.36 0.91 
  -DCM 0.00 -0.03 0.05 0.17 -0.02 -0.02 0.27 0.36 0.90 

C 

-DCH -0.01 -0.04 0.02 0.14 0.00 0.01 0.24 0.35 0.91 

L2) 
-DCL -0.01 0.00 0.03 0.12 0.00 -0.01 0.26 0.35 0.92 
-DCM -0.01 -0.01 0.01 0.13 0.01 0.00 0.26 0.35 0.91 
-DCH 0.01 -0.01 0.01 0.12 0.02 0.01 0.21 0.31 0.93 

L3) 
-DCL -0.01 0.00 0.03 0.10 -0.02 0.02 0.27 0.38 0.90 
-DCM -0.01 -0.04 0.05 0.17 -0.01 -0.02 0.28 0.38 0.89 
-DCH -0.02 -0.04 0.05 0.18 -0.01 -0.01 0.29 0.38 0.89 

  
L1) 

-DCL 0.00 -0.01 -0.01 0.10 0.05 0.03 0.15 0.25 0.91 
  -DCM 0.00 -0.01 0.00 0.12 0.03 0.01 0.27 0.35 0.92 

D 

-DCH 0.01 -0.02 0.01 0.12 0.01 0.01 0.23 0.33 0.92 

L2) 

-DCL 0.02 0.00 0.00 0.10 0.04 0.03 0.18 0.25 0.92 

-DCM 0.00 -0.02 0.01 0.12 0.03 0.01 0.26 0.35 0.92 

-DCH 0.00 -0.02 -0.02 0.10 0.02 0.02 0.23 0.32 0.93 

L3) 

-DCL 0.00 -0.02 0.03 0.10 0.00 -0.01 0.26 0.36 0.91 

-DCM 0.00 -0.07 0.00 0.15 0.03 0.02 0.26 0.36 0.90 

-DCH 0.00 -0.02 0.02 0.11 0.00 0.01 0.24 0.33 0.92 
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Fig. 3 Scatter plots, with both fitting of a least squares line and correlation coefficients r, of the flexural sub-resistance factor λF for beam R-
30x60-2S-750-500 (experimental set C, load case L1, and DCH) plotted versus both (a) the steel yield stress fy and (b) the ultimate strength fu 

of longitudinal bars, and (c) the model uncertainty R,F 
 

 

Fig. 4 Scatter plots, with both fitting of a least squares line and correlation coefficients r, of the shear sub-resistance factor λS for beam R-
30x75-2S-1000-500 (experimental set D, load case L1, and DCH) plotted versus (a) the area of stirrups Asw, (b) the steel yield stress fyw of the 

stirrups, and (c) the model uncertainty R,S 

 

 

Fig. 5 Scatter plots of the structural resistance factor λ evaluated for beam R-30x60-2S-750-500 (experimental set C, load case L1, and DCH) 
plotted versus the steel yield stress of both (a) the longitudinal bars fy and (b) the stirrups fyw, and grouped by failure mode (flexural and shear) 

 
Again, considering only the shear failure of the beam, Fig. 4 

shows the scatter plots, with both the fitting of a least squares 
line and the correlation coefficients r, of the shear sub-
resistance factor λS evaluated for beam R-30x75-2S-1000-500 
(experimental set D, load case L1, and DCH) versus (a) the 
area of stirrups Asw, (b) the steel yield stress fyw of the stirrups, 
and (c) the model uncertainty R,S.  

Fig. 5 shows the scatter plots of the structural resistance 
factor λ evaluated for again beam R-30x60-2S-750-500 versus 
the steel yield stress of both (a) the longitudinal bars fy and (b) 
the stirrups fyw, and grouped by failure mode (flexural and 

shear). 
Similarly, the scatter plots of the structural resistance factor 

λ evaluated for beam R-30x45-2S-500-500 (experimental set 
B, load case L1, and DCM) as function of both (a) the 
compressive fc and (b) the tensile fct strength of concrete is 
displayed in Fig. 6. Here, data are again grouped by failure 
modes. In addition, taking the estimates given by the 
clustering analysis, in Fig. 6b the data related to the flexural 
failure mode are further divided in (1) crushing of concrete, 
and (2) crushing of concrete with yielding of tension 
reinforcements. 
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Fig. 6 Scatter plots of the structural resistance factor λ evaluated for beam R-30x45-2S-500-500 (experimental set B, load case L1, and DCM) 
plotted versus both (a) the compressive fc and (b) the tensile fct strength of concrete 

 
Furthermore, regarding again beam R-30x45-2S-500-500, 

Fig. 7 shows the moment-curvature relationships (in absolute 
values) for the cross-section over the internal support 
depending on the values of the tensile strength of concrete fct. 
The cross section has width b = 300 mm, height h = 450 mm, 
concrete cover cs = 40 mm, and effective depth d = 410 mm. 
Mechanical properties of concrete and reinforcing steel are as 
follows: (i) compressive strength of concrete fc = 60 N/mm2; 
(ii) tensile strength of concrete fct in the range 3-12 N/mm2; 
(iii) steel yield stress fy = 560 N/mm2; and (iv) steel ultimate 
stress fu = 1.15 fy. 

IV. DISCUSSION 

In the authors’ opinion, it is noteworthy to highlight the 
importance of using supplementary information like scatter 
plots before interpreting correlation coefficients. The 
correlation coefficient is, in fact, a numerical summary and, as 
such, it can be reported as a measure of association for any 
batch of numbers, no matter the data structure [32].  

Therefore, an examination of Table II (both parts A and B) 
in conjunction with both Figs. 3 and 4 reveals, within the 
limits of our study, the following main features.  
(i) The model uncertainties (R,F and R,S) undoubtedly affect 

the predictions of the NL-FEM model. There is a strong 
positive correlation shown by a Pearson coefficient of 
about 0.70 and 0.91 (average values over the all 
experimental sets), respectively, that cover almost the 49 
and 83 percent of the total variation of the two structural 
sub-resistance factors, λF (for flexural failure) and λS (for 
shear failure). 

(ii) The steel yield stress fy and the ultimate strength fu of the 
longitudinal bars seem to be moderately correlated with 
the flexural sub-resistance factor λF. The coefficients of 
correlation are approximately 0.46 and 0.43, respectively, 

and cover, in this case, the 21% and 18% of the total 
variation of the sub-resistance factor. 

(iii) A weak positive correlation is visible between λS and both 
the area Asw and the steel yield stress fyw of stirrups, with 
coefficients of correlation of around 0.23 and 0.33, 
respectively, that cover only the 5 and 11 percent of the 
total variation of the examined sub-resistance factor. 
However, due to the strong influence of R,S, this 
relationship appears to be of little relevance to the 
engineering aspects. 

An analysis of both Figs. 5 and 6 shows at first sight that 
shear failure occurs at higher λ than flexural failure. That 
means that, in average, flexural failure occurs before shear 
failure, and an overall ductile behaviour is expected for the 
designed structures. 

 Moreover, as can be seen from Fig. 5 (the arrows represent 
the linear regression trend line), the mechanical properties of 
both longitudinal reinforcement and stirrups affect, somehow, 
the ultimate load behaviour of RC beams subjected to flexural 
and shear failure modes. An increase of the steel yield stress fy 
of the longitudinal bars seems, in fact, to lead preferably to a 
shear failure and, consequently, to a brittle behaviour of the 
structure, whereas an increase of the steel yield stress fyw of 
stirrups seems to conduct to a preferential flexural failure and, 
accordingly, to an improvement of the structural ductility. It 
should be noted that the vice-versa can also be performed 
(reinforcing steel is very ductile both in tension and 
compression) but only provided local instability (local 
buckling) due to buckling of bars is prevented. 
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Fig. 7 Moment-curvature relationships (in absolute values) for the cross-section over the internal support of beam R-30x45-2S-500-500 
(experimental set B, load case L1, and DCM) depending on the tensile strength of concrete fct 

 
Whilst on this topic, an analysis of Fig. 6 (a) reveals, 

additionally, that the compressive strength of concrete fc does 
not, or very weakly, affect neither the structural failure mode 
nor the structural resistance factor λ. On the other hand, from 
Fig. 6 (b) (here again the arrow represents the linear regression 
trend line) it is possible to see a weak nonlinear relationship 
between the tensile strength of concrete fct and the ultimate 
load behaviour of the RC beam (the data have a pronounced 
nonlinear structure). In this case, in fact, an increase of fct 
seems to induce a flexural brittle failure by crushing of the 
compressive concrete before the tension steel yields, which 
does not provide any warning before failure as the failure is 
instantaneous (apparent over-reinforcement of the beam). 

A better understanding of the data in Fig. 6 (b) may be also 
obtained by considering the moment-curvature relationships 
displayed in Fig. 7 where an high value of fct (e.g., between 9 
and 12 N/mm2) is shown to lead to a brittle failure of the 
cross-section with crash of concrete in compression before the 
tension steel yields (given by the peak of the curve). 

Finally, as can be interpreted from Table II (both parts A 
and B), a negligible correlation is seen between both λF and λS 
and the other parameters (r < 0.20 in average value).  

V. CONCLUDING REMARKS 

In summary, the natural causes that affect the ultimate load 
behaviour of RC beams designed according to Eurocodes 2 
and 8 considering different structural systems, geometrical 
configurations and ductility classes, and subjected to the 
combination of flexural and shear failure modes, under diverse 
combinations of load actions, were in-depth studied in a 
statistical-probabilistic way, and with the aid of data clustering 
techniques.  

Due to the complexity of the challenge, an extensive use of 

mathematical models and numerical methods, in combination 
with experimental observations, was made. In this regard, a 
NL-FEM model, based on Eurocode 2 assumptions for 
members subjected to the combination of flexure and shear, 
was proposed by the first author. The JCSS Probabilistic 
Model Code was used as source for the stochastic modelling. 

As a result, within the limits of our study, it has been shown 
that the ultimate load behaviour of RC beams subjected to 
flexural and shear failure modes seems to be mainly 
influenced by the combination of the mechanical properties of 
both longitudinal reinforcement and stirrups. An increase of 
the steel yield stress fy of the longitudinal bars seems, in fact, 
to lead preferably to a shear failure and, consequently, to a 
brittle behaviour of the structure, whereas an increase of the 
steel yield stress fyw of stirrups seems to conduct to a 
preferential flexural failure and, accordingly, to an 
improvement of the structural ductility. It should be noted that 
the vice-versa can also be performed (reinforcing steel is very 
ductile both in tension and compression) but only provided 
local instability (local buckling) due to buckling of bars is 
prevented. 

Tensile strength of concrete, on the other hand, appears to 
slightly affect the overall response of the system in a nonlinear 
way. Indeed, an increase of fct seems to induce a flexural 
brittle failure by crushing of the compressive concrete before 
the tension steel yields (which does not provide any warning 
before failure) and, in turn, may reduce the overall resistance 
of the structure by preventing the redistribution of bending 
moments. The model uncertainty of the resistance model used 
in the analysis plays undoubtedly an important role in 
interpreting results. More studies on more cases and different 
structural systems are needed to confirm these results. 

These findings will be of importance for researchers 
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interested in both design of new structures and assessment of 
existing structures where the combination of flexural and 
shear failure modes is the limiting aspect. A better 
understanding of the factors that affect the ultimate load 
behaviour of RC structures will reduce safety margins without 
jeopardizing security. This will in turn lead to savings of 
natural resources. 

Finally, it is pointed out that the designs of the tested beams 
are provided to interested researchers by contacting the first 
author of the paper. 
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