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Exploring Solutions in Extended Horava-Lifshitz
Gravity

¨

Abstract—In this letter, we explore exact solutions for the
Horava-Lifshitz gravity. We use of an extension of this theory with
first order dynamical lapse function. The equations of motion have
been derived in a fully consistent scenario. We assume that there
are some spherically symmetric families of exact solutions of this
extended theory of gravity. We obtain exact solutions and investigate
the singularity structures of these solutions. Specially, an exact
solution with the regular horizon is found.

Keywords—Quantum gravity, Horava-Lifshitz gravity, black hole,
spherically symmetric space times.

I. INTRODUCTION

IN recent years several approaches to the quantum gravity
(QG) have been introduced by researchers. The aim is to

solve the miracle of the quantum description of gravity in a
self consistent way. By QG we mean two different meanings:
one which is the most simple one is to write down the
gravitational field equation with the energy momentum tensor
of quantum fields. In this approach we replace the classical
energy momentum tensor Tμν by the vacuum expectation
value of the energy momentum tensor of a quantum particle
< T̂μν >. We can interpret gravity, in this approach, as an
effect of the quantum particles on classical background. The
second method is much more difficult than the first one is , how
we can quantize gravity using one of the famous approaches,
canonical or path integral. The main goal of both approaches
is to resolve some problems in gravitational physics, especially
in the high energy regime of energy, ultra-violent regime
(UV). We need to regularize graviton propagator in a self
consistent and reasonable way. We know that if we work in UV
regime the lovely symmetry, Lorentz symmetry is not valid and
we need to construct a mechanism to explain this symmetry
breaking phenomena. A good way is to take space-time with
different footing like xi −→ lxi, t −→ lzt, where l, z, xi and
t are scaling parameter, Lifshitz parameter and space and time
coordinates. It was exactly what the Horava used to propose
his famous theory which we know as . Horava-Lifshitz (HL)
gravity [1]–[4]. UV regime is not the only physical regime
which needs modifications. Also in the low energy regime,
as large scales, infra-red (IR) when general relativity needs
to be modified, we need to modify the quantum scenario. It
is believed that HL theory reduces to the Einstein gravity as
IR limit and dark matter appears as an integration constant in
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this theory. It seems to us that modifications of HL theory are
required. One possible extension is to label dynamics to lapse
function, to add dynamical terms like {∇μN, ..} to the action
[5]. This is the minimal required modification of the original
HL theory. In this paper we use an extension of Horava
gravity which it was proposed by several authors [7]–[10].
This extension based on the following three conditions: (i)
UV completion, (ii) healthy IR behavior and (iii) a stable
vacuum state in quantized version of the theory. This extended
theory is renormalizable by power counting and is free of
strong coupling problem. Similarly to the previously literature
specially in the correspondence to the [11], we derive the full
set of equations of motion of this extended Horava gravity, and
then we investigate some possible classes of static spherically
symmetric solutions with regular horizons.

II. G

We start with the deformed action given by

S =

∫
d3xdt

√
gN(

2

k2
KijG

ijklKkl − (1)

−k2

8
EijGijklE

kl + αEiE i),

Here Kij and Eij are given, respectively, by

Kij =
1

2N
(gij −∇iNj −∇jNi),

√
gEij =

δW

δgij
, (2)

This form of action is a special case of the general form
presented in [7-9], and originally was reported in [10]. We
introduce:

W = μ1

∫
ω3 + μ2

∫
d3x

√
g(R− 2ΛW ), (3)

where

ω3 = Tr(Γ ∧ dΓ +
2

3
Γ ∧ Γ ∧ Γ), (4)

Where μ1(i = 1, 2) are coupling constants with scaling
dimensions [μi]s = i − 1 and [ΛW ]s = 2. The 3-vector Ei
in (2) is given by

Ei = ∂iN

N
(5)

The action (2) can be rewritten as

S = −
∫

d3xdt
√
gN

( 6∑
a=1

αaOa

)
, (6)
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where

α1 ≡ − 2

k2
, α2 ≡ α4ΛW

3λ− 1
, α3 = α, α4 ≡ k2μ2

2

8
, (7)

α5 ≡ −k2μ1μ2

2
, α6 ≡ k2μ2

1

2

and

O1 = KijG
ijklKkl,O2 = R− ΛW ,O3 = EiE i, (8)

O4 = − 1− 4λ

4(1− 3λ)
R2,O5 = 0,O6 = ZijZ

ij ,

where μ, ω and ΛW are constant parameters, and the
symmetric tensor Zij = Cij − μ2

2μ1
Rij is constructed out of

the Cotton tensor Cij which is defined as

Cij ≡ εikl∇k

(
Rj

l − 1

4
Rδjl

)
. (9)

In the following we would like to consider the equations of
motion for the action (6). The equations of motion obtained
by varying N , Ni are respectively, given by

α1O1 −
6∑

a=1

αaOa +
2α√
g
∂i(

√
gE i) = 0 (10)

∇j(K
ij − λKgij) = 0 (11)

The equation of motion following from the variation of δgij

are given by
6∑

a=1

αaH
(a)
ij = 0, (12)

where H
(a)
ij are given by

H
(1)
ij =

N

2
(KklK

kl − λK2)gij − (13)

−N(KikK
k
j − λKKij)−

1√
g
gikgjl[

√
g(KklKkl − λKgkl)]−

∇k[(Kik − λKgik)Nj ]−
∇k[(Kjk − λKgjk)Ni − (Kij − λKgij)Nk],

H
(2)
ij = −N(Rij − 1

2
Kgij +

3

2
λW gij) +

(∇i∇j − gij∇k∇k)N,

H
(3)
ij =

N

2
EkEkgij −NEiEj ,

H
(4)
ij =

1− 4λ

4(1− 3λ)

[
NR(2Rij − 1

2
Rgij)−

2(∇i∇j − gij∇k∇k)(NR)
]
,

H
(5)
ij =

1

2
∇k[∇j(NZk

i) +∇i(NZk
j)]−

1

2
∇k∇k(NZij)− 1

2
∇k∇l(NZkl)gij ,

H
(6)
ij =

1

4
NZklZ

klgij −NZikZj
k +

1

2
∇k[NεmklZmiRjl]− 1

2
∇n[NRn

lε
mklZmigkj ]

+
1

2
∇n[NZm

nεmklZmigkjRjl] +

1

2
∇n∇n∇k[NεmklZmigjl]−

1

2
∇n[∇i∇k(NZm

nεmkl)gjl]−

−1

2
∇l[∇i∇k(NZmjε

mkl)] +

1

2
∇n∇l∇k(NZm

nεmkl)gij + (i ↔ j)

As α3 = 0, these equations of motion reduce to those of the
original ones [6,11].

We examine a static spherically symmetric solution with the
metric ansatz given by the following:

ds2 = −N(r)2dt2 +
dr2

f(r)
+ r2(dθ2 + sin2θdϕ2) (14)

It has been proven that [11], the system of field equations with
α3 = 0 has the (A)dS Schwarzshild black hole. The easiest
way to obtain the solution for the full Lagrangian in the case
α3 �= 0, is to substitute the metric ansatz into the action, and
then perform variation w.r.t the functions N and f [11]. The
resulting reduced Lagrangian, up to an overal scaling constant,
is given by

L =
N√
f
(2− 3ΛW r2 − 2f − 2rf́ +

λ− 1

2ΛW
f́2 − (15)

− 2λ

ΛW r
(f − 1)f́ +

2λ− 1

ΛW r2
(f − 1)2 + α3fr

2(
Ń

N
)2),

A. Exact Solutions: Class 1

The first solution is given by

f = 1, N(x) = c2(
ex

x2
+ 2

√
−3ΛW

α

c1
x2

− 3
c21ΛW

α
ex) (16)

With α ≡ α3, x =
√

−3ΛW

α r. In brief, we examine the
Lagrangian for a possible solution with f = c.t.e and with
an unknown auxiliary lapse function N(r). If we write the
associated field equations for the lapse function, we’ll derive
the form of (16). This solution satisfies (31). Indeed in
[11], the authors showed that when f is fixed, the Newtonian
potential associated with gtt = −N2 can be an arbitrary
function of r. But now we show that we can have both f and
N in this new version. Now we must examine the singularity
tructure of this solution. The far field region is recovered by
the last third term and in this case the metric becomes:

ds2 = −e2
√

−3ΛW

α
rdt2 + dr2 + r2(dθ2 + sin2θdϕ2) (17)

This is a representation of an AdS2 ×S2 spasetime. The new
rescaled time coordinate is just t̄ = c21c2

√
−3ΛW

α t. There is a
Ricci scalar singularity locates at

r =

√
−3ΛW

α
log(c1

√
−3ΛW

α
) (18)

III. FIELD EQUATION

IV. STATIC, SPHERICALLY SYMMETRIC SOLUTIONS
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The solution is asymtotically AdS4. We fix it as the following:

c1

√
−3ΛW

α
= 1 (19)

Thus the singularity is located at r = 0 wich is a coordinate
singularity and not a naked ones. In this case, the metric
bocomes like the following form:

ds2 = −(
ex

x2
+
2

x
−ex)2dt2+c21dr

2+r2(dθ2+sin2θdϕ2) (20)

with a suitable coordinates definition t̄ = c2t. The Newtonian
potential gtt = −N(x)2 has a maxima which is located
at (x = 0, gtt = 1.25341) ,thus it means that we have a
maximum for the redshift, when the signal is emitted from
origin r = 0. It is suitable for us to invesigate the behavoir
of the gravitational redshift. Using the famous formula of the
gravitational redshift in an asymptotically flat spasetime, for
the (20) spase (which is asymptotically Ads) we have

1 + z =

√
gtt(x −→ ∞)

gtt(x)
(21)

The divergency in the value of the redshift can be addresed
as the existence of a horizon. This horizon, as a null and
hypersurface orthogonal surface, is located in the vicinity of
the point x = 1.246.

B. Case with λ = 1

It is remarkable to invesigate the case with λ = 1 solution.
This case corresponds to the IR regime. In this case, the
functions f and N are given by

N2 = f = (
c1
r

− c2)
2 (22)

The solution is assymptotically flat, with a horizon at r = h,
where h is the root of f which is located at

r = h =
c1
c2

(23)

The exact solution in this case can be written as

ds2 = (
c1
r
− c2)

2(−dt2+dr2)+ r2(dθ2+ sin2(θ)dϕ2) (24)

As we observe now, this solution is asymptotically flat. Thus
using the usual formula for the gravitational redshift in an
asymptotically flat spasetime we have:

1 + z =

√
gtt(∞)

gtt(r)
=

∣∣∣ x

c1 − x

∣∣∣ (25)

Where x = c2r. The singularity is located x = c1. To recover
the flat spasetime metric as r −→ ∞ we need to impose
r=the condition c2 = 1. The unknown constant c1 = a can be
interpreted as the mass of the spasetime. As we can see, the
redshift for this model, reaches to the maximum values for
severel times.

C. Gase with ΛW = 0

In this case both f and N are determined, given by

N = rβ
√

f, f = rγ± (26)

γ± =
−βλ+ β + λ− 1

2(λ− 1)
± (27)

±(

√
β2λ2 − 2β2λ+ 6βλ2 − 4βλ+ β2

2(λ− 1)
−

−
√

2β + 9λ2 − 18λ+ 9

2(λ− 1)
),

where β is another integration constant. If we want that the
solution to be real, it is necessary and sufficent to have λ > 1.
This solution has a curvature singularity at r = 0 for general
λ in agreement with the results of [11]. It also has a curvature
singularity at x = ∞ if β > 0. The exact solution in this case
can be written as

ds2 = −r2β+γ±dt2+r−γ±dr2+r2(dθ2+sin2(θ)dϕ2) (28)

For some values of the pair β, γ± that γ± = −β the
solution (28) converts to a conformally stationary solution

ds2 = e2U (−dt2 + dr2) + r2(dθ2 + sin2(θ)dϕ2) (29)

Where the Newtonian potential U(r) = β
2 log(r). Indeed

there exist a vast family of such exact solutions which can be
written as the below

ds2 = e2U(ξ)(−dt2+dξ2)+ e2K(ξ)(dθ2+ sin2(θ)dϕ2) (30)

Here ξ = r1−β−γ±
1−β−γ±

eU(ξ) = ((1− β − γ±)ξ)
β+γ±

2(1−β−γ±) (31)

eK(ξ) = ((1− β − γ±)ξ)
1

1−β−γ± (32)

In the last one, the potential functions are defined for β <
1
2 , γ± = β

V. CONCLUSION

Horava-Lifshitz gravity is a potentially powerful alternative
candidate for quatum gravity. In its original form, it must
be modified to give the correct cosmological and dynamical
predictions. One of the important problems in the old version
of this theory was why the non dynamical lapse function
appeared?. This may be solved by inserting a new auxillary
field in the action and investigation of it’s dynamical behavior.
In this work, motivated by some modifications of this theory,
we study the spherically symmetric solutions in this version.
We obtained three different class of solutions.
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