
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

268

Model-Based Automotive Partitioning and Mapping
for Embedded Multicore Systems

Robert Höttger, Lukas Krawczyk, Burkhard Igel

Abstract—This paper introduces novel approaches to partitioning
and mapping in terms of model-based embedded multicore system
engineering and further discusses benefits, industrial relevance and
features in common with existing approaches. In order to assess
and evaluate results, both approaches have been applied to a real
industrial application as well as to various prototypical demonstrative
applications, that have been developed and implemented for
different purposes. Evaluations show, that such applications improve
significantly according to performance, energy efficiency, meeting
timing constraints and covering maintaining issues by using
the AMALTHEA1 platform and the implemented approaches.
Furthermore, the model-based design provides an open, expandable,
platform independent and scalable exchange format between
OEMs, suppliers and developers on different levels. Our proposed
mechanisms provide meaningful multicore system utilization since
load balancing by means of partitioning and mapping is effectively
performed with regard to the modeled systems including hardware,
software, operating system, scheduling, constraints, configuration and
more data.

Keywords—Partitioning, mapping, distributed systems, scheduling,

I. INTRODUCTION

S INCE the automotive industry is still facing specific
challenges among parallelism exploitations for embedded

multicore systems especially in context with the AUTOSAR
[1] standard, the AMALTHEA platform [2] has been
developed in order to face these challenges and create
meaningful solutions by providing automatic and effective
processes for application distribution. Furthermore, increasing
demands and requirements like computational power, safety
issues, energy efficiency, various standards or product-line
engineering call for the need of new approaches. Partitioning
and mapping are two mandatory and established methods for
program parallelization, that exhibit enormous impact on the
complexity of and the required effort for system engineering.
Hence, facilitating these processes among an automatic,
scalable and modular basis becomes an important issue. By
providing a development comprehensive, model-based, open,
expandable and platform-independent exchange format in
AMALTHEA, partitioning and mapping in the same context
provide meaningful relevance in terms of industrial- and
scientific-based applications.

Partitioning focuses in our work on forming tasks,
consisting of runnables, that define execution units with
a specific amount of instructions, and dependencies,

Robert Höttger, Lukas Krawczyk and Burkhard Igel are with the Pimes
Research Department at Dortmund University of Applied Sciences and Arts,
Otto-Hahn-Str. 23, 44227 Dortmund, Germany (E-mail: {robert.hoettger,
lukas.krawczyk, igel@fh-dortmund.de)

Funded by the ITEA 2 committee and the Bundesministerium für Foschung
und Bildung, Germany

1ITEA 2 project call 4 Project No. 09013

that are derived from read and write accesses to labels
(abstract memory), via an automatic mechanism with different
objectives. The mechanism examines weighted directed
acyclic graphs (WDAGs) and resulting partitions can be
effectively distributed among processors without violating
ordering constraints of runnables while considering
activation rates, independent runnable groups, cyclic
dependencies and communication overheads.

Mapping faces the problem of assigning tasks to
specific processors effectively and thereby identifying a task
allocation solution, that utilizes given resources in form of
hardware models by different objectives. Such objectives are
either implemented using ILP (integer linear programming)
solver with respect to load balancing or energy-aware
mapping strategies or by using heuristic methods like DFG
(Data Flow Graph) load balancing in order to find effective
solutions.

The parallel execution of such partitioned and mapped
applications benefits from lower execution times and less
energy consumption compared with sequential execution due
to running more processors with lower frequencies [3].
Since both mechanisms rely on the model-based architecture
and models can be imported and exported to and from
industrial established tools as well as verified against
various specifications, the implementations remain AUTOSAR
compliant and provide consistent integration to state of the art
automotive developments.

Modeling
• Initial model of

software

AMALTHEAPartitioning
Identification of Tracing

Trace
Model

• Identification of
initial tasks

Tracing
• Binary file
• OT1

AMALTHEA

System
Model

M i C d

Model

Mapping
• Simulation
• Optimization

Codegen
• C-code tasks
• OIL file

composed in cooperation with Robert Bosch GmbH]

Fig. 1 shows both the partitioning and the mapping approaches
integrated to the AMALTHEA platform. Each process accesses
specific models and adapts them based on their configuration
and corresponding model analyses. Further topics like
Modeling, Codegeneration and Tracing provide necessary
features for comprehensive system engineering but are not

embedded multicore systems, model-based, system analysis.

Fig. 1 Amalthea Platform: Processing Simulation and Analysis [has been

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

269

scope of this paper. Further information is given in [4].
The paper is organized as follows. The next section II

outlines basic related work, whereas specific related work
is referenced all over the paper. Section III describes
the partitioning approaches as well as corresponding
necessary and optional features, among their scientific intend,
implementations and an example. Section V describes the
subsequent mapping phase and outlines main benefits among
another example. Finally, Section VI concludes the presented
contents, emphasizes on benefits for industrial applications and
proposes some future work.

II. RELATED WORK

Over the years, several strategies for partitioning and
mapping in context of embedded software have been
developed. In [5] a simulation methodology for embedded
real-time and cyber-physical systems is introduced, which
focuses on timing behavior as well as the combination of
architecture properties and requirements. Each domain can
be represented with specific computation models and recent
work is addressing the multicore migration topic by means of
specific algorithms.

Recent research featuring Augmented Hierarchical Task
Graphs and several optimization techniques e.g. genetic
algorithms and integer linear programming, has been described
by Cordes in [6]. The author describes a parallelization
framework, which integrates these techniques in order to
perform an automated partitioning and mapping of software
to heterogeneous hardware.

Furthermore, various scheduling publications like [7] or
[8] or hardware and software co-synthesis publications using
genetic algorithms like [9] address similar problems like the
partitioning and mapping approaches of our work. However,
compared to [7] our partitioning approach neither requires a
unique exit node nor node duplication and merges tasks
just within a specific configuration using a heuristic method.
We further provide optimal WDAG partitions according to
Amdahl’s law [10].

We will see, that various algorithms and approaches will
be used for different purposes in the course of this paper.
References are stated correspondingly.

III. PARTITIONING APPROACH

Forming partitions mostly concerns the division of processes
into subprocesses whereas each subprocess, mostly denoted as
a node (or runnable in our case), consists of computational
load (also denoted as weight i.e. instructions) [11].
A partitioning process in context of (WDAGs), which occur
in most computing applications as computation DAGs or
task graphs [12], influences system performance according
to later parallel execution. The more efficient the partitioning
process forms computation sets distributed among computation
units i.e. processors, the more the system benefits from time
issues, energy demands or resource utilization in order to
improve real-time applications. These aspects are common
topics of interest in almost all areas of science and technology.

Effective partitioning and mapping mechanisms provide
parallel executable applications, consuming less processor
time, such that more computation power can be used for
further needs or less energy is consumed due to lower
processor utilization. The following sections describe specific
AMALTHEA approaches, that have been implemented within
the tool platform in [2], for distributing modeled applications.

A. Preliminary Features

In terms of graph-theoretical computing, partitioning DAGs
comes with a wide range of problems and methodologies,
spread across a variety of applications. Although many
tools and algorithms have been developed for such purposes
in the past decades, they are not fully applicable to
embedded real-time systems due to their desktop-, computer-
or high-performance focus. Therefore, we propose different
phases, that address the challenges in the automotive
embedded real-time domain.

AMALTHEA data is stored within open source eclipse
EMF models for various representations. Information
used within the approaches presented in this paper
address the software model consisting of labels
(abstract memory), runnables, label accesses and
activations as well as the constraints model consisting
RunnableSequencingConstraints (dependencies).
More detailed AUTOSAR[1]-compliant model descriptions
can be found at [4].

For the embedded real-time system focus, the initial
phase addresses grouping runnables referencing the
same activation instance, such that any group only
contains runnables with the same activation rate.
Activations can be set to periodic, single,
sporadic or custom and define the call frequency or
call intervals of the referenced model element. Groups are
modeled within ProcessPrototypes, that reference a
specific activation and define a pre-task state for
analysis purposes. ProcessPrototypes are transformed
to tasks 1-to-1 after the analysis phases, such that a task
consists of multiple runnables, can be called by a scheduler
and features different properties and data like call graphs,
activations and more.

Since our partitioning approach requires WDAGs, the
subsequent phase considers dependency analysis and the
elimination of directed cycles, also denoted as feedbacks.
In our case, dependencies are derived from runnable’s
label accesses, such that, if runnable A writes
a label and runnable B reads the same label, a
RunnableSequencingConstraint (RSC) within the
constrains model is created, containing A as parent
runnable and B as child runnable. In other words,
dependencies are automatically derived from label accesses
and stored within the constraints model, representing
directed edges. In order to utilize the advantages of WDAGs,
the recently available WDGs have to be transformed to be
acyclic. Since such cycle elimination corresponds minimal
feedback arc set (MFAS) determination (where an arc denotes
an edge i.e. a dependency within a modeled RSC) and is

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

270

an NP-complete problem [13], we firstly check whether the
WDAG is planar. In the latter case, the problem can be solved
within polynomial time [14]. In case the WDAG is non-planar,
finding a minimum feedback arc set is trivial, enumerating all
instances efficiently is not necessarily as simple [15]. However,
different MFAS feature different resulting graphs, if the MFAS
is removed or transformed for feedback elimination. Such
transformation is addressed in our case, in order to retain the
dependencies for later analysis phases or code generations.
In model terminology, MFAS RSCs are decomposed into
AccessPrecedences. These AccessPrecedences are
used to represent dependency on the one hand but to keep
the dependency invisible to graph analysis on the other hand.
According to later phases i.e. the code generation, such
AccessPrecedences also define the data runnables
work with, since some runnables need to be informed to
work with data, that has been calculated in preceding iterations
instead of waiting for current iteration updates.

Hence, each MFAS resulting WDAG is assessed according
to parallelization potential and sequential runtime (the graph’s
critical path), such that a MFAS is identified, that provides
minimal edge transformation and minimal sequential runtime
regarding the resulting graph in case the edges are transformed.
The following (1) results in the cardinality of MFAS solutions:

|MFAS| =
Ci\Cmce∑

⎛
⎝

Cj\Ci∪Cmce∏
|ECj

|

⎞
⎠− |ECmce(mce)|

(1)

C describes a cycle, ECi
the edges within the cycle Ci, Cmce

the cycle with the most common edges with other cycles and
|ECmce(mce)| the most common edge cardinality of the cycle
with most common edges. Equation (1) adds the products
of each remaining cycle’s edge amounts to each edge, that
belongs to more than one cycle. This ensures on the one hand,
that only the minimal number of edges are transformed and
on the other hand, that all MFAS combinations are considered.
Since each product contains a solution, that includes all
most common edges, these solutions must be subtracted (via
the term −|ECmce(mce)| in 1), since they are not valid or
ineffective (because they mostly result in a complete sequence
→ not parallelizable). Simple cycles are determined via the
Tarjan algorithm [16] using the JgraphT library [17]. The result
of this phase are WDAGs and AccessPrecedences for the
transformed dependencies.

Before the actual partitioning is performed, another
phase can be performed, that identifies independent
graphs. Independent graphs do not share any
resource or activation and are modeled within
ProcessPrototypes. Such methodology allows forming
tasks, that can be totally distributed to either different
cores or even to totally different systems or electronic
control units (ECUs). Furthermore, such independent
ProcessPrototypes can be used for components,
providing modularity and reusability. This phase also allows
independent runnables to be merged into the same
ProcessPrototype to prevent unnecessary system

overhead (context switches, data passing) via considering the
system’s critical path (CP), that provides the lower bound on
the total time to execute a complete DAG [18]. The CP is
defined by runnables and dependencies, forming a path
from an entry node to an exit node, of which the sum of
computation and communication costs is the maximum [19].
Communication costs is in this case derived from the label
size of the information exchanged between runnables. The
ProcessPrototype merging methodology is based upon
a simple timing based combination heuristic, that merges two
ProcessPrototypes, if they do not exhibit overlapping
computations i.e. runnables, that are assigned to similar
time slices at different ProcessPrototypes.

The resulting WDAG is defined via G = (V,E, C, T) where
V is the set of vertices (runnables), E is the set of edges
(dependencies), C is the set of communication costs and T is
the set of node computation costs.

B. Critical Path Partitioning

The previously mentioned CP is also used for
one partitioning approach. Sine the CP shall not be
distributed due to increased execution time caused by
communication and data exchange, it is assigned to the
first ProcessPrototype and the graph’s branches are
assigned to further ProcessPrototypes following a
specific algorithm shown in the above pseudocode Algorithm
1. Further ProcessPrototypes (next to the CP) never
exceed the CP’s execution or cause the CP to wait on input
data. [20] already presents, that critical path partitioning, also
denoted as dominant sequence clustering, provides comparable
or even better performance than much-higher-complexity
heuristics.
1 Dete rmine r u n n a b l e ’s t o p o l o g i c a l o r d e r s and e a r l i e s t i n i t i a l t i me

(eit) and l a t e s t s t a r t t ime (lst) v a l u e s
2 Le t T d e n o t e t h e s e t o f t a s k s
3 De te rmine t h e graph’s c r i t i c a l p a t h CP and a s s i g n i t t o t h e f i r s t

t a s k t i n T
4 Le t U d e n o t e a l l u n a s s i g n e d r u n n a b l e s
5 WHILE U i s n o t empty
6 c r e a t e t a s k tx , s e t tt=0;
7 WHILE t a s k t im e tt < CPTime
8 l e t ar d e n o t e t h e s e t o f a s s i g n a b l e r u n n a b l e s a c c o r d i n g t o tt ,

eit and lst v a l u e s and p r e c e d i n g r u n n a b l e s
9 SWITCH ar.size

10 CASE 0 :
11 No a s s i g n a b l e r u n n a b l e → i n c r e a s e tt t o eit of t h e n e x t

a p p l i c a b l e r u n n a b l e
12 CASE 1 :
13 Ass ign t h e r u n n a b l e (a r [0]) t o t and remove i t from U
14 CASE >1:
15 d e t e r m i n e each r u n n a b l e ’s communica t ion o v e r h e a d and

s h i f t i n g p o t e n t i a l and t h e c o r r e s p o n d i n g most e f f e c t i v e
a s s i g n a b l e r u n n a b l e mer , a s s i g n mer t o t , i n c r e a s e tt
c o r r e s p o n d i n g l y and remove mer from U

16 ENDSWITCH
17 ENDWHILE
18 ENDWHILE

Algorithm 1. Pseudocode for critical path partitioning algorithm

The Algorithm 1 calculates a time frame for each runnable
(line 1 in Algorithm 1), that provides earliest initial time
(eit) and latest start time (lst) values. These values define,
to which extent a runnable can be shifted with regard to
the CP in order to not violate any order constraints defined by
dependencies. The algorithm creates ProcessPrototypes
(respectively tasks in line 6 in Algorithm 1) and checks
time-slice-wise (line 7 in Algorithm 1) which runnables
can be assigned according to ordering constraints i.e.
dependencies (all preceding runnables must have finished
their execution) (line 8 in Algorithm 1). From that runnable

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

271

amount, the algorithm decides, which runnable features
the most limited time frame, such that runnables with
more flexible time shifting values are selected at succeeding
assignments (line 15 in Algorithm 1). This approach ensures
minimal overall execution time and an accordingly low number
of tasks. However, this approach is not able to limit the
number of tasks, since the creation process is automated.

C. ESS Partitioning

Another implemented partitioning approach is based on an
earliest start scheduling (ESS) and features a task number
limitation. For this purpose, only runnable’s eit-values are
calculated, that define the sum of the longest preceding path’s
instructions.
1 Le t R d e n o t e t h e s e t o f a l l r u n n a b l e s
2 Le t T d e n o t e t h e s e t o f t a s k s (+ i n i t)
3 Le t A d e n o t e t h e s e t o f a s s i g n e d r u n n a b l e s
4 WHILE A . s i z e < R . s i z e
5 l e t edr d e n o t e t h e r u n n a b l e wi th l o w e s t eit
6 l e t tdi d e n o t e t h e i n d i c e s o f t a s k s , t o which l a t e s t r u n n a b l e s

edr i s d e p e n d e n t t o
7 SWITCH (tdi)
8 CASE 0 :
9 a s s i g n edr t o t a s k , t h a t f e a t u r e s t h e l o w e s t tt / u t i l i z a t i o n

, n o t e a r l i e r t h a n edr’s max end t ime a c c o r d i n g t o c u r r e n t
d i s t r i b u t i o n

10 CASE 1 :
11 a s s i g n edr t o t a s k , t h a t edr i s d e p e n d e n t t o
12 CASE >1:
13 a s s i g n edr t o t a s k wi th l a t e s t dependency
14 ENDSWITCH
15 ENDWHILE

Algorithm 2. Pseudocode for ESS partitioning algorithm

The value of T is predefined by the user. However, in case
a complete sequential runnable ordering would define the
algorithm’s input, all runnables would be assigned to
the same partition (task), since line 8 and the subsequent
switch case in Algorithm 2 keeps track of the dependencies
and distributing a sequence of runnables would increase
overall execution time due to additional synchronization and
communication. Such synchronization or communication is
required for partitions to share data via shared memory
for example. We will later see, that the ESS approach
provides better partitions compared with approaches based
on earliest-deadline-first scheduling for instance. Line 9 in
Algorithm 2 ensures, that load is balanced among partitions
in case no parent of the runnable is located at the
current tasks, since the runnable is assigned to the
task featuring the lowest utilization and no order constraint
is violated (parent assignment consideration). Line 11 and
13 assign runnables to the task, that contains the
runnable’s (latest) parent. This keeps also communication
low since no data has to be exchanged to other tasks
and balances runnables among the predefined number of
partitions.

Fig. 2 outlines all previously described features and phases
i.e. activation analysis, label access analysis, cycle elimination
and the partitioning approaches denoted as graph analysis.
The different phases provide a modular structure and efficient
runnable distribution among partitions. Assessments are
stated in section IV. Each phase can be configured and
performed via a configuration- and a context menu or via a
workflow engine provided by the AMALTHEA Tool platform.

Two more features are implemented within the partitioning
methodology, which concern the graph visualization with the

R2

R6

R4

R8

R5

R11 R12
R10

R13

R1

R14

R3

R9
R7

R0
R1

R0 R14

R13 R8

R6

R7

R4 R9

R12 R10

R3

R5 R11

R2

R1

R0 R14

R13

R8

R6

R7

R4 R9

R12 R10

R3

R5 R11

R2

Runnables
(smallest execution units)

Activation Analysis

Label Acces Analysis
(e.g. memory access)

1ms
20
ms

10
ms

5ms

Activations

R0 R14 R8

R4 R9

R12 R10

R3

R5 R11 R2

Graph Partitioning
(independent graph identification and local graph

partitioning or earliest start partitioning)

R13 R6R7

R1

Feedback Decomposition
(also cycles among many runnables)

Tasks

→ Feedback Decomposition → Graph Partitioning

help of Jgraph [17] applets and the generation of more flexible
graph representation models. The latter case addresses further
analyses and optimization methods with commercial tools like
the TA Toolsuite [21].

IV. PARTITIONING EVALUATION

The following sections describe key metrics for performance
assessment in IV-A and evaluation regarding applications
features and types including an actual embedded system
application evaluation in IV-B.

A. Key Metrics

The partitioning approaches perform various calculations
among WDAGs, in order to gain information about partial
orders and effective load balancing. WDAG information is
defined via the span, that is the length of the critical path
and via the work, that is the sum of the node’s execution
cycles (instructions). The partitioning’s result can be
evaluated with regard to key metrics like parallelism, that is
the sequential runtime divided by the parallel runtime, and the
slackness, that is the factor by which the parallelism exceed the
number of processors in the system [18]. EDF results are based
on earliest deadline first scheduling [22]. Given an example
graph from Fig. 3, we can derive

span =

RCP,n∑
RCP,i=0

I(RCP,i), CP = {D9, J4; span = 9+4 = 13

(2)
with I(Ri) defining the Runnable Ri’s instructions,

work =

Rn∑
Ri=0

I(Ri) = 34 (3)

parallelism factors px:

pCPP =
34

13
≈ 2, 62; pESS2 =

34

17
= 2; pESS3 =

34

14
≈ 2, 43;

pEDF2 =
34

22
≈ 1, 55; pEDF3 =

34

18
≈ 1, 89

(4)

Fig. 2 Partitioning Phases: Activation Analysis → Label Access Analysis

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

272

EDF3ESS3

LGP

ESS2

B3

G5
F2

H3

I2

E1

A1
C4

D9

J4

A1

C4

E1
F2

G5

J4

B3

D9

H3

I2

A1
B3 C4

D9

E1
F2

G5
H3

J4

I2

task2

task1 task2 task3

task1 task2 task3task1

time

0

9

0

10

13

1

14

time

time

0

8

13

17

D9

J4

B3 C4

E1

H3

I2

EEEEEEEE111
A1

G5

F2

A1
B3 C4

D9

E1

F2
G5 H3

J4

I2

EDF2

A1

C4

E1

F2

G5

J4

B3

D9

H3

I2

task2task1 task1 task2 task3

time

0

6

9

18

22

time

0

8

14

18

and slackness factors sx:

sCPP =
34

3 · 13 ≈ 0, 87; sESS2 =
34

2 · 17 = 1;

sESS3 =
34

3 · 14 ≈ 0, 81; sEDF2 =
34

2 · 22 ≈ 0, 77;

sEDF3 =
34

3 · 18 ≈ 0, 63

(5)

Furthermore, Amdahl’s law [10] is used for speedup
assessment using the following (6):

T imebefore
T imeafter

=
1

f
K + (1− f)

≤ Speedupmax =
1

1− f
=

T1

T∞
(6)

Amdahl’s law in (6) defines the total speedup, in case a change
improves a fraction f of the workload by a factor K. Some
references also denote f as the amount of parallelizable code
and K as the amount of processors.

Since the CPP approach always considers the critical path
(span) as the most cost intensive task and creates tasks
with no limitation among the branches of the graph, it always
creates optimal system partitions, such that the resulting
speedup corresponds Amdahl’s law’s best solution T1

T∞
and

thereby the maximal speedup. Both ESS’s and EDF’s speedup
factors are calculated using the left part of 6 and thereby
mostly do not achieve maximal speedup due to their task
number limitation. However, the ESS approach is still able
to create partitions that feature better slackness and speedup
factors compared with EDF solutions. With regard to solutions
shown in Fig. 3, the CPP provides the best complete system
execution time of 14 instructions, followed by the ESS3
solution, that executes within 15 instructions.

Fig. 4 shows the system’s speedup depending on the critical
path’s length among three different amount of partitions. Such
system speedups can be achieved using the CPP approach
without task number limitation. The values are calculated
using Amdahl’s law and the parallelism factors based on a
simple system with 1000 equal runnables. Fig. 4 reveals,
that the shorter the critical path gets, the more speedup can
be achieved using the CPP partitioning.

��

��

��

��

��

��

	�

�

��

��

���������

��
��
��

��

�	
��
���
����������

��
�������� ��
�������� ��
��������

B. Application Features and Types

For the purpose of comparing the presented approaches and
assessing them among features, types and resulting partitions,
Fig. 5 provides four graphs from different origins with regard
to the presented key metrics. The first graph describes a
fictional system, that features a balanced graph structure, such
that optimal slackness factors of 1 can be achieved using the
CPP or ESS5 approaches (index of 5 refers to the configured
amount of tasks). The second graph represents the example
from Fig. 3. The third graph has been derived from a real
automotive engine control system and the fourth graph has
been transformed from a control flow oriented example.

The ESS approach provides more industrial relevance
because of its task number limitation feature. As control flow
oriented applications especially according to bigger structures
feature relatively low span but rather high work values,
the amount of tasks grows disproportionately. Hence, it is
important to note, that the great parallelism factor of 6.28 at
the G4ESS result could only be achieved using 53 tasks. The
rather low utilization of the result can be derived from the low
slackness value of 0.12 such that the ESS4 result, featuring
four tasks, describes a more reasonable solution.

According to smaller and certain data flow oriented
applications, the CPP approach has been proven to provide
more effective parallel executable partitions according to
overall system execution time as seen in Fig. 5. The slackness
factors thereby indicate the load balance among tasks and ESS
solutions should be preferred as soon as the CPP’s slackness
value falls below the ESS’s. EDF results feature higher
execution and worse (lower) slackness factors compared with
ESS solutions according to all four graphs and applications
respectively.

With regard to slackness, execution and parallelism values,
the user gets informed about which partitioning method creates
more reasonable solutions within AMALTHEA [2].

V. MAPPING APPROACH

While the focus of the partitioning approach lies in
determining an ideal granularity and runnable distribution
for the executable software partitions (runnables,
tasks), the goal of the mapping process is to find one
optimal allocation to the processors (cores) of a multi- or
many-core hardware target. For this, we have implemented

Fig. 3 Partitioning solutions with example graph

Fig. 4 CPP’s Speedup (critical path length) diagram

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

273

G1CPP10
G1ESS5

G1EDF G2CPP3
G2ESS3

G2ESS2
G2EDF G3CPP4

G3ESS4
G3EDF G4CPP53

G4ESS4
G4EDF

0

5

10

15

5

10

12

13

14

17

18

10.4
11.2

13.1

2.03

4.91

6.1

10

5
4.17

2.62 2.42
2 1.89

3.46 3.21
2.75

6.28

2.6
2.09

1 1 0.83 0.87 0.81 1 0.62 0.87 0.8 0.69
0.12

0.65 0.52

Execution in x1000 instructions parallelism slackness

several ILP based strategies in order to support the creation
of pareto-optimal mapping solutions, each optimized towards
one specific goal, e.g. minimizing the total execution time [23]
or energy consumption [24]. The strategy for execution time
minimization performs load-balancing in order to allocate
tasks to cores, whereas the strategy for minimizing the energy
consumption utilizes an heuristic algorithm. Minimizing the
energy consumption is furthermore achieved by exploiting
less power consuming voltage levels, which slow down
tasks without harming the applications deadline. For both
strategies, the ILP models describing the allocation problem
are automatically created by the Amalthea Tool Platform,
using only abstract models of the hardware and software
descriptions.

Since determining such an optimal allocation is well known
to be a NP complete problem, finding solutions for especially
larger problem sizes will usually require a substantial amount
of time. By following our two-phased approach however,
we are able to significantly reduce the number of allocation
subjects to a mere fraction of the original problem’s size using
one of the presented partitioning functionalities. A typical
engine control system for instance can usually consist of over
1200 runnables, which leads to approx. 6 × 10933 valid
allocations. By applying the partitioning approach, these can
be agglomerated into 54 tasks, abstracting the problem and
reducing the amount of possible allocations to approx. 1×1072,
which are comparatively trivial to optimize.

The results of our experimental evaluation using both
presented mapping strategies are illustrated in Fig. 6. It shows
the minimal, average and maximal run-time, which is based
on ten batched executions of the respective mapping strategy.
During this evaluation, the energy minimization strategy is
used for distributing 43 tasks on a hardware platform with
four homogeneous cores, each consisting of two voltage levels,
whereas the execution time minimization strategy is applied
on a system with 54 tasks and a hardware platform with six
heterogeneous cores. The functionality for solving both ILP
models is provided by the open-source oj! Algorithms library2.

2see http://ojalgo.org/

Energy consumption Execution Time

0

2

4

·104

598

3,285

634

15,856

661

38,420
ru

n
−

ti
m
e
(m

s)
Min
Avg
Max

strategies for minimizing the execution time and energy consumption.

As we can see, both approaches will generate allocations in
less then one minute, which makes the mapping functionality
suitable for rapid development of embedded systems. The
quickest mapping generation can be observed on the energy
minimization approach, which remains stable at less then
one second. Since the approach for minimizing energy
consumptions can be solved in a polynomial WCET (worst
case execution time) for target cores with two voltage levels
[24], this method will be suitable for even larger problem
models. The run-time for the execution time minimization
approach takes up to 39 seconds, which also indicates the
upper bound of allocable tasks if rapid development is
desired. Increasing the number of tasks to e.g. 72 will lead
to run-times of up to 10 minutes.

VI. CONCLUSION

In this paper, we have presented partitioning and mapping
approaches among the AMALTHEA Tool platform as well as
their benefits in developing automotive embedded multicore
systems. Different required analyses like the cycle elimination,

Fig. 5 CPP, ESS and EDF partitioning comparison regarding execution, parallelism and slackness values

Fig. 6 Measured minimal, average and maximal run-times for applying the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

274

activation consideration or the model-based design address
various demands of the automotive industry. By using the
interfaces of AMALTHEA, the user is able to develop and
automatically distribute AUTOSAR compliant applications
for embedded multicore systems. We discussed ESS, EDF
and CPP based partitioning techniques for WDAGs, which
are used for solving the task partitioning problems. We
show, that partitions can be formed optimally with no
task number limitation and effectively with task number
limitation according to key metrics.

With regard to mapping, ILP based methods have
been presented, which provide optimal mapping generations
towards specific goals, e.g. energy efficiency. In future work,
we expect to extend the partitioning and mapping methods and
offer further optimization objectives, e.g. memory utilization.
Furthermore, measurements based on daily modality will be
performed to show the precise gain of the AMALTHEA tool
platform and in order to reveal further optimization potential.

Finally, we can conclude, that the partitioning approach
can be used to agglomerate the runnables into tasks
in order to simplify the mapping process and to facilitate
optimization techniques, that could not be applied to the
high (unpartitioned) amount of runnables otherwise. The
important innovation is the two phase approach as well as the
combination and adaption of various methods and techniques
among WDAG partitioning and ILP mapping.

ACKNOWLEDGMENT

The authors would like to express their appreciation to the
AMALTHEA consortium for sharing expertise, experience and
knowledge.

REFERENCES

[1] “Autosar - automotive open system architecture,” http://www.autosar.org,
June 2014.

[2] “Amalthea project homepage,” http://www.amalthea-project.org/, April
2014.

[3] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for
reduced cpu energy,” in Proceedings of the 1st USENIX Conference
on Operating Systems Design and Implementation, ser. OSDI ’94.
Berkeley, CA, USA: USENIX Association, 1994. [Online]. Available:
http://dblp.uni-trier.de/db/conf/osdi/osdi94.html

[4] Amalthea platform: Help documentation, Itea 2 project 09013 Amalthea,
www.amalthea-project.org, 2014.

[5] T. Kuhn, T. Forster, T. Braun, and R. Gotzhein, “Feral - framework
for simulator coupling on requirements and architecture level.”
in MEMOCODE. IEEE, 2013, pp. 11–22. [Online]. Available:
http://dblp.uni-trier.de/db/conf/memocode/memocode2013.html

[6] D. A. Cordes, “Automatic parallelization for embedded multi-core
systems using high-level cost models,” Ph.D. dissertation, Technische
Universität Dortmund, 2013.

[7] T.-Y. Choe, “Task scheduling algorithm to reduce the number of
processors using merge conditions,” International Journal on Computer
Science and Engineering (IJCSE), February 2012.

[8] K. Kanoun, D. Atienza, N. Mastronarde, and M. van der Schaar,
“A unified online directed acyclic graph flow manager for multicore
schedulers,” in Design Automation Conference (ASP-DAC), 2014 19th
Asia and South Pacific, 2014, pp. 714–719. [Online]. Available:
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6742974

[9] G. S. Hornby, L. Sekanina, and P. C. Haddow, “Evolvable systems:
From biology to hardware,” in 8th International Conference, ICES 2008.
Springer, 2008.

[10] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in Proceedings of the April 18-20,
1967, Spring Joint Computer Conference, ser. AFIPS ’67 (Spring), New
York, NY, USA, 1967, pp. 483–485.

[11] R. Preis, “Analysis and design of efficient graph partitioning methods,”
Ph.D. dissertation, University Paderborn, 2000.

[12] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to parallel
computing: design and analysis of algorithms. Benjamin/Cummings
Publishing Company Redwood City, CA, 1994.

[13] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide
to the Theory of NP-Completeness. New York, NY, USA: W. H.
Freeman & Co., 1990.

[14] C. Lucchesi, A Minimax Equality for Directed Graphs. Thesis
(Ph.D.)–University of Waterloo, 1976. [Online]. Available: http:
//books.google.de/books?id=KA8nnQEACAAJ

[15] B. Schwikowski and E. Speckenmeyer, “On enumerating all minimal
solutions of feedback problems,” Discrete Applied Mathematics, vol.
117, no. 1-3, pp. 253–265, Mar. 2002.

[16] R. Tarjan, “Depth first search and linear graph algorithms,” SIAM
Journal on Computing, 1972.

[17] “Jgrapht - a free java graph library,” http://jgrapht.org/, November 2013.
[18] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to Algorithms. MIT Press, 2009, vol. 3, ch. 21, 24 and 27.
[19] Y.-K. Kwok and I. Ahmad, “Dynamic critical-path scheduling: An

effective technique for allocating task graphs to multiprocessors,”
Parallel and Distributed Systems, IEEE Transactions on, vol. 7, no. 5,
pp. 506–521, 1996.

[20] T. Yang and A. Gerasoulis, “Dsc: Scheduling parallel tasks on an
unbounded number of processors,” IEEE Transactions on Parallel and
Distributed Systems, vol. 5, pp. 951–967, 1993.

[21] T. A. GmbH, “Personal meetings and technical discussions,” March
2014, unpublished.

[22] J. Hong, X. Tan, and D. Towsley, “A performance analysis of
minimum laxity and earliest deadline scheduling in a real-time system,”
IEEE Transactions on Computers, vol. 38, no. 12, pp. 1736–1744,
1989. [Online]. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?
arnumber=40851

[23] M. Drozdowski, Scheduling for Parallel Processing, ser. Computer
Communications and Networks. Springer, 2009.

[24] Y. Zhang, X. S. Hu, and D. Z. Chen, “Task scheduling and voltage
selection for energy minimization,” in Proceedings of the 39th annual
Design Automation Conference. ACM, 2002, pp. 183–188.

Robert Höttger (robert.hoettger@fh-dortmund.de)
started his Ph.D. studies in 2014 among a
collaboration between Dortmund University
of Applied Sciences and Arts and Technical
University Dortmund, Germany. His research
focuses on automotive parallel software engineering
and adaptive system behavior using trace data
with logical clocks. Especially feedback-aware
requirements and tracing as well as DAG-algorithms
form recent activities in the AMALTHEA4public
project.

Lukas Krawczyk
(lukas.krawczyk@fh-dortmund.de) recieved his
M.Sc. degree in informatics and started his Ph.D.
studies in 2014 among a collaboration between
Dortmund University of Applied Sciences and
Arts and University Bielefeld, Germany. His
current research focuses on optimized deployment
of software to embedded-systems hardware and
many-core scheduling.

Burkhard Igel (igel@fh-dortmund.de) received his
doctoral degree (Ph.D.) in computer science from
University of Dortmund after studying electrical
engineering and computer science. After more than
15 years working for Siemens Corporation now he is
Professor at University of Applied Science and Arts
in Dortmund and chairman of the supervisory board
of itemis AG. His research area covers distributed
and parallel computing as well as requirements
engineering and model-based design.

