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 
Abstract—This paper presents the scaling laws that provide the 

criteria of geometry and dynamic similitude between the full-size 
rotor-shaft system and its scale model, and can be used to predict the 
torsional vibration characteristics of the full-size rotor-shaft system by 
manipulating the corresponding data of its scale model. The scaling 
factors, which play fundamental roles in predicting the geometry and 
dynamic relationships between the full-size rotor-shaft system and its 
scale model, for torsional free vibration problems between scale and 
full-size rotor-shaft systems are firstly obtained from the equation of 
motion of torsional free vibration. Then, the scaling factor of external 
force (i.e., torque) required for the torsional forced vibration problems 
is determined based on the Newton’s second law. Numerical results 
show that the torsional free and forced vibration characteristics of a 
full-size rotor-shaft system can be accurately predicted from those of 
its scale models by using the foregoing scaling factors. For this reason, 
it is believed that the presented approach will be significant for 
investigating the relevant phenomenon in the scale model tests. 
 

Keywords—Torsional vibration, full-size model, scale model, 
scaling laws.  

I. INTRODUCTION 

ORSIONAL vibration problems are important research 
topic of rotor-shaft systems. Hence, a lot of researchers 

have studied the relating problems. For example, Koser and 
Pasin [1] have studied the torsional vibrations of the drive 
shafts and mechanisms by means of analytical approach. 
Khulief and Mohiuddin [2] have investigated the torsional 
dynamic behaviour of a rotor-bearing system using finite 
element method and modal reduction technique. Yan and 
Zhang [3] have studied the dynamic problems of multi-spans 
rotor system, consists of rotors, bearings, oil film, supports, 
etc., using discrete element method and experiments. Aleyaasin 
et al. [4] has used the transfer matrix method to perform the 
flexural vibration analysis of a rotor mounted on fluid film 
bearings. Brusa et al. [5] have performed the torsional vibration 
analysis of a crankshaft system. Drew and Stone [6] have 
measured the torsional vibration characteristics of rotating 
machines by experiments. Wu and Chen [7] have presented a 
technique for replacing the gear-branched system with an 
equivalent straight-geared system, and then used the last model 
to study the torsional vibration characteristics of gear-branched 
system with finite element method. Qing and Cheng [8] have 
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studied the coupled torsional and lateral vibrations of 
rotor-shaft systems using finite element method and [9], [10] 
have investigated those of unbalanced rotors by means of 
Lagrangian dynamics. In the foregoing researches, the 
theoretical torsional vibration analyses of the rotor-shaft 
systems were performed based on the full-size models of the 
rotor-shaft systems. However, if the size of the rotor-shaft 
system is very large and the theoretical analysis results must be 
validated by experiments, a full-size model test is usually 
expensive and time-consuming.  

In general, the inherent vibration characteristics of a full-size 
structural system cannot be accurately predicted from the 
relevant features observed in its scale model if the latter is not 
properly scaled. Therefore, several researchers have 
investigated the relating problems. For example, [11] has 
investigated the physical modelling and similitude of marine 
structures. Qian et al. [12] have studied the scaling laws for 
impact damage in fibre composites. Rezaeepazhand and 
Simitses et al. [13]-[15] have used the similitude theory to 
establish the similarity conditions between the chosen 
structural systems, and then the scaling laws are derived and 
used to predict the vibration responses of the full-size structures 
from those of their scale models. Wu et al. [16] have derived the 
scaling laws for the vibration characteristics between a full-size 
crane structure and its scale model. Later on, [17], [18] have 
further derived the scaling laws for predicting the dynamic 
behaviour of a full-size plate subjected to multiple moving 
loads from those of its scale model. In these researches, the 
scaling laws were obtained by means of the similitude theory 
[19] and the dimensional analysis [20].  

From the above-mentioned literature, it is seen that the 
researchers usually tackle the scaling issues by using the 
similitude theory and the scaling laws. In which, the similitude 
theory [19] is first employed to establish the similarity 
conditions between the full-size system and its scale model. 
Next, the scaling laws are derived based on the last similarity 
conditions and dimensional analysis theory [20]. Finally, the 
scaling laws are used to predict the dynamic characteristics of 
the full-size system from the corresponding ones of its scale 
model. Since the last approach has not been applied to the 
prediction of torsional vibration characteristics of rotor-shaft 
system, the title problem is studied here.  
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II. SCALING LAWS FOR FREE VIBRATION OF A ROTOR-SHAFT 

SYSTEM 

The equation of motion for a rotor-shaft system free 
vibrating in its torsional direction takes the form [21] 

 

}0{)}(]{[)}(]{[)}(]{[ ***  tKtCtJ  
   (1) 

 

where ][ *
J , ][ *

C  and ][ *
K  are respectively the overall mass, 

damping and stiffness matrices, while )}({ t , )}({ t  and 

)}({ t  are respectively the rotational acceleration, velocity and 

displacement vectors at any time t.  
Perform the conventional modal analysis [21] to (1), one 

obtains  
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where iiJ  and i  are, respectively, the generalized mass and 

damping ratio, whereas i , i  and i  are, respectively, the 

generalized angular acceleration, velocity, and displacement, 
each quantity corresponding to the ith mode with natural 
frequency i . 

For a scaled rotor-shaft system vibrating in its ith mode, (2) 
can be re-written as 
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where the subscript s denotes the scaled rotor-shaft system. 

Similarly, for a full-size rotor-shaft system vibrating in its ith 
mode, its equation of motion can be written by 
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where the subscript F denotes the full-size rotor-shaft system. 

Under the assumption that the scaling factors ( ix ) are 

defined as the physical parameters of the scale model divided 
by the corresponding ones of the full-size model, the variables 
of (3) and (4) have the relations 

 

iFisi    , Fst tt , iFisi    , 

iiFiisiJ JJ , iFisi             (5) 
 
Substituting (5) into (3) yields 
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Rearranging (6) leads to 
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Because (7) is obtained according to the equation of motion 

of the scaled rotor-shaft system and the scaling factors between 
the scaled and the full-size models, (4) and (7) are equivalent. 
For this reason, the terms in the parentheses of (7) are equal to 
each other, thus, 
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The last equation is the requirement for the dynamic 

similarity between scaled and full-size rotor-shaft system free 
vibrating in their ith mode. Hence, based on the theory of mode 
superposition method [21], (8) can be re-written as 
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Equation (9) is the scaling laws between the scaled and 

full-size rotor-shaft system studied in this paper. 

III. SCALING FACTORS FOR FREE TORSIONAL VIBRATION 

Since the natural frequency ( ) is the reciprocal of time (t), 
therefore, 

 

t


1
          (10) 

 
Introducing (10) to the first two terms of (9), one obtains 
 

1               (11) 

 
In such a case, (9) can be simplified as 
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Since (12) is an equation of equality, several sets of  ,  , 

J  and t  may be obtained to satisfy the last equation. 

However, if the geometry similarity between scaled and 
full-size rotor-shaft systems is completely achieved, one may 
easily obtain a set of scaling factors (  ,  , J  and t ) 

according to the fundamental physics concept. If the scaled and 
full-size rotor-shaft system possess completely geometry 
similitude, then one may define the scaling factor for length as a 
constant ratio, for example,  . In such a case, the scaling 

factors for length (  ) and diameter ( d ) of shaft element,   

and d , are given by 
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            (13) 
 

 d           (14) 
 
If the scaled and full-size rotor-shaft systems are made of the 

same material (i.e., the mass density   of both system are the 

same), one has 
 

Fs JJ ][][ *5*
          (15) 

 

where the sJ ][ *
  and FJ ][ *

  represent the mass matrices for 

scaled and full-size models, respectively. 
Thus, the scaling factor for mass moment of inertia, J , is 

given by 
 

 5
 J          (16) 

 
Because the geometry between the scaled and full-size 

rotor-shaft systems is assumed to be completely similar in this 
paper, the scaling factor for angular displacement is taken to be 
1, i.e. 

 

 1           (17) 
 
Substituting (10), (16) and (17) into (12) yields the scaling 

factor for time ( t ) and frequency ( ). 
 

  t            (18) 
 

 1             (19) 
 
Equations (13) and (14) are the scaling factors for complete 

geometry similarity between the scaled and full-size rotor-shaft 
systems, while (11) and (16)-(19) are those for complete 
dynamic similarity between the last structures in free vibration 
conditions. It is noted that if the scaling factors for dynamic 
similarity are completely achieved, those for geometry 
similarity must also be completely achieved. This is because 
the scaling factors for dynamic similarity are derived based on 
the requirement of complete geometry similarity, as one may 
see from (13)-(19). 

IV. SCALING FACTORS FOR FORCED TORSIONAL VIBRATION 

According to [19], if the scaled and the full-size rotor-shaft 
systems possess geometric, kinematic and dynamic similarity, 
and the scaling factors of mass, length and time for a free 
vibration system are J ,   and t , then the scaling factor of 

external force (i.e., torque) for the forced vibration system, T , 

may be determined from the relation  
 

2
tJT             (20) 

 
The last expression is derived from Newton’s second law 

)()( tJtT   and has been validated by numerical examples 

[19], where )(tT , J  and )(t  are external force (or torque), 

mass moment of inertia and angular acceleration of the 
vibration system, respectively. 

Now, the scaling factor of the external torque ( T ) for the 

forced vibration system can be obtained by substituting 
(16)-(18) into (20). 
 

325
  T         (21) 

V. SCALING FACTOR FOR SPRING STIFFNESS OF ROTATIONAL 

SPRING 

Under the assumption that the material of the scaled and 
full-size models is the same (i.e., the shear modulus G  of both 
models are the same), one obtains the relation 

 

Fs KK ][][ *3*
          (22) 

 

where the sK ][ *
  and FK ][ *

  represent the stiffness matrices for 

scaled and full-size models, respectively. 
Thus, the scaling factor for the spring stiffness of rotational 

spring is given by 
 

 3


 iK           (23) 

VI. SCALING FACTOR FOR DAMPING COEFFICIENT OF 

ROTATIONAL DAMPER 

The relation between the force (i.e., torque) and rotational 
damper is given by 

 

)(tCT rc           (24) 
 

where cT  is the force (i.e., torque) due to rotational damper, 

rC  is the damping coefficient of the rotational damper, while 

)(t  is the angular velocity. 

Therefore, the scaling factor for damping coefficient of 
rotational damper can be determined from the relation 

 

)( t

T
c 




          (25) 

 
Substituting (17), (18) and (20) into (25), one obtains 

 
4
 c          (26) 

VII. NUMERICAL RESULTS AND DISCUSSIONS 

A. Validation of Scaling Factors for Torsional Free 
Vibration  

In this subsection, a full-size clamped-free shaft carrying a 
tip disk and its scale model (c.f. Fig. 1) are studied. Where the 
physical properties for the full-size rotor-shaft system are: 
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shear modulus FG =8.01 1010  N/m2, mass density F =7820 

kg/m3, diameter of shaft Fd = 0.115 m, polar moment of inertia 

of shaft cross-section area pFI = 324
Fd =1.716  510  m4, 

mass moment of inertia per unit length pFJ = 1pFF I = 1.342

  110  kgm, length of the shaft FL =6.0 m, and mass moment 

of inertia of the disk DFJ = FpF LJ  =8.052  110  kgm2. On 

the other hand, those for the 1/5 scale shaft are: shear modulus 

sG =8.01 1010  N/m2, mass density s =7820 kg/m3, diameter 

of shaft sd = 0.023 m, polar moment of inertia of shaft 

cross-section area psI = 324
sd =2.746   810  m4, mass 

moment of inertia per unit length psJ = 1pss I = 2.147  410  

kgm, length of the shaft sL =1.2 m, and mass moment of inertia 

of the disk DsJ = sps LJ  =2.577  410  kgm2. It is worthy of 

mention that the subscripts s and F respectively represent the 
scale and full-size rotor-shaft system. Besides, either the 
full-size rotor-shaft system or its scale mode is subdivided into 
20 identical shaft elements. 
 

 

Fig. 1 A clamped-free shaft carrying a tip disk with mass moment of 
inertia LJJ pD   

 
For convenience, the scale shaft and its full-size model are 

respectively called C-shaft1 and C-shaft5 hereafter. If length is 
the key parameter for the scaling between C-shaft1 and 

C-shaft5, then the scaling factor for length should be 5
1 , i.e., 

 

5
1            (27) 

 
Substituting (27) into (11), (13), (14) and (16)-(19), the 

scaling factors relating to the dynamic similarity are 
determined. 
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From the last equation, one sees that if the total length and 

diameter of C-shaft1 is 5
1  of C-shaft5 (i.e.,  = d = 5

1 ), then 

the scaling factors for time ( t ), natural frequency (  ), 

damping ratio (  ), mass moment of inertia ( J ), angular 

displacement (  ) and torque ( T ) are equal to 5
1 , 5, 1, 3125

1 , 1 

and 125
1 , respectively.  In other words, although C-shaft1 and 

C-shaft5 are made of the same material and the scaling factor 
for the length (  ) is equal to 5

1 , the values of most the other 

scaling factors (such as t ,  ,  , J ,   and T ) are quite 

different from 5
1 . This is because, in addition to the conditions 

for the geometric similarity required by the static problem, the 
conditions for the kinematic and dynamic similarity required by 
the dynamic problem must also be satisfied.  

From the descriptions of the physical properties for C-shaft1 
and C-shaft5, one sees that the scaling factor for length (  ), 

diameter ( d ) and mass moment of inertia ( J ) are 

respectively 
 

5
1 Fs LL , 5

1 Fsd dd , 5
5
1 )( DFDsJ JJ  (29) 

 
Table I lists the first five natural frequencies of the full-size 

rotor-shaft system, iF  ( i =1 to 5), and those of its 1/5 scale 

model, is  ( i =1 to 5). From the final column of the table, one 

sees that the scaling factor for natural frequencies 
( Fs   ) is very close to 5, i.e. 

 

501.5           (30) 
 
Since (29) and (30) agree with the scaling factors for length, 

diameter, mass moment of inertia and natural frequency, given 
by (28), it is believed that the presented scaling laws and 
scaling factors is viable for the torsional free vibration of the 
rotor-shaft system. 

 
TABLE I 

FIRST FIVE NATURAL FREQUENCIES 
i  ( i =1 TO 5) OF THE FULL-SIZE AND 

SCALE CLAMPED-FREE SHAFT CARRYING A TIP DISK AND ITS SCALE MODEL 

Natural 
frequencies, 

i  (rad/s) 

Scale model, 

is
 

Full-size model, 

iF  
Scaling factor, 

iFisi     

1  2294.6067 458.9056 5.00 

2  9146.4821 1829.1090 5.00 

3  17240.7555 3447.7575 5.00 

4  25653.0886 5130.0180 5.00 

5  34285.4273 6856.2765 5.00 

Average ------- ------- 5.00 

B. Validation of Scaling Factors for Torsional Forced 
Vibration  

The scaling factors for torsional free vibrations are validated 
in the last subsection. This section will validate the scaling 
factors for torque, damping ratio and time by using the forced 
torsional vibration characteristics of preceding two rotor-shaft 
systems with their tip disks subjected to a torque, rotates about 
x  axis, respectively. The values of torque, damping ratio and 
time for the last two rotor-shaft systems are listed in Table II. 
For simplicity, the initial conditions for both the full-size 
rotor-shaft system and its scale model are assumed to be “at 
rest” in this paper. 

Figs. 2 (a) and (b) show the time histories for angular 
displacements (i.e. torsional angles) of tip disk of the C-shaft1 
and C-shaft5, )()1( ts  and )()5( tF . From the figures, one sees 

x

L

d pp JI   , DJ
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that the time histories for the angular displacements of tip disk 
of the scale rotor-shaft system, )()1( ts , are exactly similar to 

the corresponding ones of its full-size model, )()5( tF ; however, 

the scale ratios of Figs. 2 (a) to (b) are 1 to 5 and 1 to 1, 
respectively, for the time axis (abscissa) and for angular 
displacement (i.e., torsional angle) axis (ordinate), i.e., 5

1t  

and 1 . Therefore, the scaling factor for time and angular 

displacement are respectively, 5
1t  and 1 . This agrees 

with (28).  
From the given data and numerical results shown in Table I 

and Fig. 2, it can be shown that all values of the scaling factors 
that provide dynamic similarities in (28) are satisfied. Because 
the scaling factors given by (28) do provide satisfactory 
dynamic similarity between the full-size rotor-shaft system and 
its scale model, the scaling factors given by (10), (21) and 
(13)-(19) should be viable for the rotor-shaft system studied in 
this paper. 
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Fig. 2 Torsional angles for the disk of (a) C-shaft1, )()1( ts  and (b) 

C-shaft5, )()5( tF  

 
 

TABLE II 
VALUES OF TORQUE, DAMPING RATIO AND TIME FOR FULL-SIZE 

CLAMPED-FREE ROTOR-SHAFT SYSTEM AND ITS SCALE MODEL 

Parameters 
Scale rotor-shaft 

system 
(C-shaft1) 

Scaling 
factors 

Full-size rotor-shaft 
system 

(C-shaft5) 

Torque (Nm) 
sT )sin(0 tT 

=200sin(300t) 

125
1T  

5   

 TsF TT 

))sin(()( 0 tT T  
=25000sin(60t) 

Time (s) 2.0st  
5
1t  0.1 tsF tt   

Damping 
ratio 

001.0s  1  001.0  sF  

VIII. CONCLUSIONS 

The scaling laws and scaling factors for free and forced 
torsional vibration of rotor-shaft systems are presented in this 
paper. Based on the last scaling laws and scaling factors, one 
may successfully predict the dynamic characteristics of a 
full-size rotor-shaft system based on the relevant phenomenon 
of its scale model. From the numerical examples, one may 
conclude that if the total length and diameter of the scale shaft 
is 5

1  of its full-size model (i.e.,  = d = 5
1 ), then the scaling 

factors for time ( t ), natural frequency (  ), damping ratio (

 ), mass moment of inertia ( J ), angular displacement (  ) 

and torque ( T ) are equal to 5
1 , 5, 1, 3125

1 , 1 and 125
1 , 

respectively. In other words, although the scale and the full-size 
rotor-shaft systems are made of the same material and the 
scaling factor for the length (  ) is equal to 5

1 , the values of 

most the other scaling factors (such as t ,  ,  , J ,   

and T ) are quite different from 5
1 . This is because, in addition 

to the conditions for the geometric similarity required by the 
static problem, the conditions for the kinematic and dynamic 
similarity required by the dynamic problem must also be 
satisfied. 
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