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 
Abstract—Higher order ΔΣ Modulator (DSM) is basically an 

unstable system. The approximate conditions for stability cannot be 
used for the design of a DSM for industrial applications where risk is 
involved. The existing second order, single stage, single bit, unity 
feedback gain , discrete DSM cannot be used for the normalized full 
range (-1 to +1) of an input signal since the DSM becomes unstable 
when the input signal is above ±0.55. The stability is also not 
guaranteed for input signals of amplitude less than ±0.55. In the 
present paper, the above mentioned second order DSM is modified 
with input signal dependent forward path gain. The proposed DSM is 
suitable for industrial applications where one needs the digital 
representation of the analog input signal, during each sampling 
period. The proposed DSM can operate almost for the full range of 
input signals (-0.95 to +0.95) without causing instability, assuming 
that the second integrator output should not exceed the circuit supply 
voltage, ±15 Volts. 
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I. INTRODUCTION 

HE second order, single stage, discrete, single bit 
quantizer and unity feedback gain ΔΣ Modulator (DSM) 

is shown Fig. 1, and is a typical (conventional) DSM where 
xanalog is the analog input signal. The Sample and Hold (S/H) 
circuit samples the input signal at a sampling period which is 
same as the clock period of DSM circuit, TC. The delay unit D 
gives a delay of one clock period and Q is the binary quantizer 
and the output can be +1 or -1. The conventional DSM 
becomes unstable when the normalized input signal is above 
 0.55. Let x(i) is the sampled analog input signal to the DSM 
circuit during the ith sampling period. The average value of the 
output of quantizer during kth, update period TU (TU>> TC), is 
denoted as y(k). The normalized input signal during the kth 
update period, xnor(k), is the ratio of average value of input 
samples to the feedback gain. For a typical DSM with unity or 
greater than unity feedback gain, y(k) is equal to xnor(k) during 
the kth update period [1]-[3].  

Hein and Zahor [4] stated that in a typical DSM, with dc 
inputs satisfying |xnor|<1, the following bounds apply. 
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From (2), as |xnor|1, |x2(k)|  . The analytic bound on 

|x2(k)| is fairly tight for |xnor| 7.0  but increases quickly as 
|xnor|>0.7. If the absolute value of the normalized input 
exceeds 0.7, then the input to the quantizer saturates the 
operational amplifier, which is used as comparator, and thus 
the DSM becomes unstable. 

Bourdopoulos G. I. proposed a method for achieving 
adaptive reduction in the order of the loop filter of usual high-
order, single-stage, single-bit DSM in order to improve the 
stability range and SNR [5]. The resulting DSM recovers from 
instability, with extended input range when compared to the 
corresponding conventional DSM. 

The loop stability is obtained by feed forward coefficients 
and feedback coefficients are added to optimize quantization 
noise response in base band [1], [3]. By using multiple feed 
forward and feedback features into second order structure, 
more flexibility is obtained for improving stability and 
improving dynamic range. 

Normally used DSM structures are high order modulator 
with single loop and MASH structure [6]. The single loop high 
order DSM is likely to be unstable but can provide high SNR 
with relaxed circuit specifications. The input range depends on 
the quantizer and number of levels used in DAC.  

Jiaxin Ju, Wanrong Haolin Du, Yanfeng Jiang and Yamin 
Zhang presented a low voltage switching capacitor DSM and 
focused on the implementation of unity gain and conventional 
DSM which could reduce the requirement of operational 
amplifier DC gain and was able to reduce the circuit 
complexity, power consumption and area. However, the SNR 
falls when the normalized input signal exceeds -3dB [7]. 

Yavari M., Shoaei O. and Rodriguez-Vazquez A. described 
single loop double sampling DSM topologies. To lessen the 
quantization noise folding effect into the signal band, a FIR 
NTF with an additional zero at fs/2 was used [8]. Unity-gain 
STF (signal transfer function) was employed to decrease the 
modulator’s sensitivity to the circuit non-idealities. The 
proposed fifth order structure is more sensitive to the sampling 
paths mismatch compared to the third and fourth order 
structures. This is because in fifth order structure the out-of 
band quantization noise is larger with a lower OSR.  

In [9] is presented, a single-loop DSM with extended 
dynamic range. It employs an auxiliary quantizer to process 
the quantization error of the main quantizer. This simple 
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addition guarantees improved stability over a wider signal 
input range and also reduces the sensitivity to the front-end 
DAC nonlinearity. 

A low-voltage and low – power Delta Sigma modulator is 
presented in [10]. The modulator employs a third-order single-
loop topology with feed-forward path and a single-bit 
quantizer. It saves power and improves SNR but the dynamic 
range is limited. 

The key feature of the modulator which is proposed in [11] 
is that it makes use of the advantages of 2-2 MASH delta-
sigma modulator compared to other conventional cascaded 
delta-sigma-pipeline modulators. This architecture offers the 
possibility of implementation of a power efficient, fourth-
order cascaded delta-sigma-pipeline modulator without having 
the stability or DAC non-linearity problems but is complex in 
design. 

In [12] is presented, the design and FPGA implementation 
of a 2nd order all-digital Adaptive Delta Sigma modulator with 
one bit quantization. The 2nd order adaptive ΔΣ modulator 
presented, exhibits an average SQNR improvement. It also 
exhibits an increased dynamic range of approximately 24 dB 
over the 2nd order non-adaptive ΔΣ modulator but it is 
complex in design. 

In [13] is presented, a delta-sigma modulator which is based 
on a 4th-order single loop switched-capacitor architecture with 
a 4-bit quantizer. Due to the power and area overheads an 
adder-less input-feed forward delta-sigma architecture is used. 
As a result, the designed architecture eliminates the extra 
power consumption and silicon area required by the adder. 
The modulator achieves a dynamic range of 76 dB and a peak 
signal-to-noise plus- distortion ratio of 72.3 dB in a signal 
bandwidth of 6 MHz. In the proposed DSM, the dynamic 
input range of positive SNR is 85dB and the maximum SNR is 
77.7 dB. 

This paper proposes a DSM with input signal dependent 
forward path gain that is suitable for industrial applications, 
where one needs highly stable DSM operation for a wide 
range of amplitude of normalized input signal(-0.95 to +0.95). 
The range restriction is arrived assuming the supply voltage of 
the operational amplifiers which are used in the design of 
DSM as ±15 Volts. If the supply voltage can be increased to 
±30 Volts, the normalized input signal can be increased to 
±0.98. The application demands that the net (positive pulses-
negative pulses) number of pulses at the output of DSM is 
proportional to the average of sampled analog input signal 
during each data update period. The net number of pulses at 
the output is used to control the stepper motors, switching 
converters etc., during each update period through the 
interface circuit. In Section II A, the linearity of the proposed 
DSM is proved. In Section II B, the stability of the proposed 
DSM is proved.  

II. PROPOSED DSM WITH SIGNAL DEPENDENT FORWARD PATH 

GAIN 

The instability occurs due to the non-linear nature of the 
quantizer. The gain of the quantizer which minimizes the error 
signal power needs to be found. If both S/H circuit and DSM 

circuit are operated by the clock with period TC and if the 
outputs of the first integrator, second integrator and quantizer 
are denoted as x1(n), x2(n) and y(n) respectively during nth 
clock period then the optimum value of the quantizer gain, kopt 
for N number of samples in typical DSM, is given by 
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Equation (3) clearly shows that kopt depends on x2(n), which 

in turn depends on the modulator input xanalog. Consequently 
one must have a prior knowledge of signal statistics in order to 
find kopt [2]. The fact that there should be signal dependent 
gain element in the circuit to compensate the non-linear 
characteristics of the quantizer remains unsolved.  

A. Block Diagram of Proposed DSM and Its Linearity 

One possible solution is to use input signal dependent gain 
unit in the forward path as shown in Fig. 2. The signal 
dependent gain unit (|x|) is inserted between the first summing 
unit and the first integrator. Xanalog is the low frequency control 
signal and is over sampled at a sampling period TC.  

 

 

Fig. 1 Conventional DSM 
 

 

Fig. 2 Proposed DSM with signal dependent forward path gain 
 

The proposed modulator increases the input signal range, 
keeping the upper bounds on the output of integrators (x1(i)max, 
x2(i)max) well within the safe limits and making the DSM more 
stable.  

The linearity of the proposed DSM can be proved, 
considering the linear model which is shown in Fig. 2. In a 
linear model the quantizer is not overloaded which means that 
|x2(i)max|  2. Let e(i) is the quantization error signal (white 
noise) in ith sampling period. The equation connecting x(i), y(i) 
and e(i) in z-domain, in a sampling period is given by;  
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Equation (4) can be written as, 
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The average values of x(i) and y(i) can be obtained by 

setting z=1 in (5). If the dc value of e(i) is finite then from (5),  
 

)1()1( YX   or )()( kykx   or x = y       (6) 
 
 By definition, the average value of the output signal in each 

sampling period is given by 
 

U

Cp

T

TN
y




||
||

                                             

(7) 

 
where NP is the net number of pulses at the output. But |x| = |y| 
and therefore, 
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From (9), it is clear that during each update period

|||| xN p  , which means that during each update period, the 

net number of pulses at the output gives the digital 
representation of the input signal. 

B. Stability of Proposed DSM for DC Input Signal 

To find the upper bounds on the state variables, x1(i) and 
x2(i) for dc input signal, the difference equations of proposed 
DSM circuit need to be solved for each clock period. At the 
start of the first clock period, x1(0) = x2(0) = y(0) = 0. 
Assuming x(i) (for dc input signal x(i) can be represented by x) 
is positive, for the first clock period the difference equation for 
the first integrator is given by 

 
2
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The difference equation for the second integrator is given 

by 
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with initial conditions x1(0) = x2(0)= 0, the solutions of (10) 
and (11), which are valid during the first clock period, are 
given by    
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Equations (12) and (13) are valid only for i=1 because 

during each clock period x1(i), x2(i), y(i) and the feedback 

signal changes, resulting in new set of difference equations. 
Substituting k=1 in (12) and (13), result in x1(1)=x2 and 
x2(1)=x2. If x is positive, y(1)=1. The procedure is to be 
repeated till one limit cycle is completed.  

 

 

Fig. 3 Outputs of proposed DSM for dc signal. (TU = 5ms and TC = 
0.1ms) [Horizontal axis – Time in sec. Vertical axis – Voltage in 

Volts for (a) to (e)] 
 

 

Fig. 4 Outputs of proposed DSM for sine signal. TU = 1ms and TC = 
1μsec.) [Horizontal axis - Time in sec. Vertical axis – Voltage in 

Volts for (a) to (e)] 

III. SIMULATION RESULTS 

The software, MATLAB Simulink, is used to simulate the 
proposed DSM. Fig. 3 shows the simulation results for a dc 
(0.57V) input signal. The simulation results for x1(i), x2(i) and 
y(i) and the analytical results obtained in section 2.2, are the 
same. Figs. 4 (b)-(d) show the different outputs of the 
proposed DSM for sampled analog input signal (x) of peak 
amplitude 0.95 V and period one sec. which is shown in Fig. 4 
(a). In the conventional DSM, when |x|→0.55, the second 
integrator output abruptly increases making the DSM unstable. 
Fig. 4 (c) shows the second integrator output of the proposed 
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DSM and the maximum value never exceeds ±15 V which is 
the supply voltage to the DSM circuit. Fig. 4 (d) shows the 
demodulated signal of the quantizer output of the proposed 
DSM, with the delay of one update period. The demodulated 
signal is the average voltage at the output of the quantizer 
during each update period. It can be seen that the demodulated 
signal is nearly equal to the analog input signal. The maximum 
error signal is about 5mV as seen in Fig. 4 (e). The Power 
Spectral Density (PSD) of the demodulated output of proposed 
DSM is shown in Fig. 5. The signal level is -10dB and near 
the vicinity of signal frequency the noise level is -40dB and 
the noise bed level is -100dB. 

Fig. 5 (a) compares the SNR of conventional second order 
DSM and the proposed DSM2. In DSM2, the SNR never falls 
after certain range of input signal. The SNR steadily increases 
and reaches 77.7dB when xnorp is equal to 0dB. The dynamic 
input range of positive SNR of DSM2 is 85dB, which shown 
in Fig. 5 (b). The maximum SNR of conventional DSM is 71.5 
dB when xnorp is equal to -7dB and when xnorp>-7dB, the SNR 
falls. For xnorp -7dB, the SNR plot of DSM2 almost follows 
the SNR plot of conventional DSM. For xnorp> -7dB, the SNR 
continues to increase. Considering the complete input range, 
the SNR of DSM2 is better than that of conventional DSM. 

 

 

Fig. 5 SNR of Proposed DSM 
 

 

Fig. 6 PSD of Proposed DSM 

IV. CONCLUSION 

The proposed DSM, with signal dependent forward path 
gain, is highly stable and suitable for industrial applications 
where failure increases the risk. The DSM can operate for 
input signals with wide variation (-0.95 to +0.95) with the 
supply voltage of ±15 V. The state variables can never 
increase abruptly which would make the system unstable. In 
the demodulated signal, the noise level is well below the 
signal level. 
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