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 
Abstract—Strong anion exchange resins with QN+OH-, have the 

potential to be developed and employed as heterogeneous catalyst for 
transesterification, as they are chemically stable to leaching of the 
functional group. Nine different SIERs (SIER1-9) with QN+OH-were 
prepared by suspension polymerization of vinylbenzyl chloride-
divinylbenzene (VBC-DVB) copolymers in the presence of n-heptane 
(pore-forming agent). The amine group was successfully grafted into 
the polymeric resin beads through functionalization with 
trimethylamine. These SIERs are then used as a catalyst for the 
transesterification of triacetin with methanol. A set of differential 
equations that represents the Langmuir-Hinshelwood-Hougen-
Watson (LHHW) and Eley-Rideal (ER) models for the 
transesterification reaction were developed. These kinetic models of 
LHHW and ER were fitted to the experimental data. Overall, the 
synthesized ion exchange resin-catalyzed reaction were well-
described by the Eley-Rideal model compared to LHHW models, 
with sum of square error (SSE) of 0.742 and 0.996, respectively.  

 
Keywords—Anion exchange resin, Eley-Rideal, Langmuir-

Hinshelwood-Hougen-Watson, transesterification.  

I. INTRODUCTION 

RANSESTERIFICATION reaction is also known as 
alcoholysis since it takes place by exchanging the alcohol 

groups and where the original ester reacts with an alcohol. In 
transesterification reactions, one mole of triglycerides in the 
vegetable oil or animal fat reacts with three moles of alcohol 
in the presence of a base or acid catalyst, producing three 
moles of the respective fatty acid alkyl esters and one mole of 
glycerol as a by-product. Since transesterification is an 
equilibrium reaction, the alcohol to be exchanged is generally 
added in excess in order to achieve a high yield of the desired 
ester.  

Nearly all the processes use homogeneous base catalysts 
since they give conversion rates to biodiesel of over 95%. 
Even though reproduction of biodiesel using homogeneous 
base-catalysts involves a rapid process resulting in high 
conversion rates with minimal side reactions, it is still not very 
commercially competitive compared to petroleum diesel due 
the factors. Firstly, the catalyst cannot be recovered and 
secondly, the use of homogeneous catalyst necessitates the 
neutralization of glycerol at the end of the reaction. Replacing 
 

H. W. Yussof is with the Faculty of Chemical & Natural Resources 
Engineering, Universiti Malaysia Pahang, 26300 Kuantan, Pahang, Malaysia 
(609-549-2894; fax: 609-549-2894; e-mail: hafizuddin@ump.edu.my).  

S. S. Bahri is with the Faculty of Chemical & Natural Resources 
Engineering, Universiti Malaysia Pahang, 26300 Kuantan, Pahang, Malaysia 
(syamsutajri@gmail.com).  

A. P. Harvey is with the School of Chemical Engineering and Advanced 
Materials, Newcastle University, NE4 7RU Newcastle Upon Tyne, UK. He is 
now Professor of Process Intensification (adam.harvey@ncl.ac.uk). 

liquid homogeneous catalysts with solid heterogeneous 
catalysts is expected to yield a product that does not require 
neutralization, leading to lower processing costs, because the 
catalyst will not have to be continually replaced. Several types 
of heterogeneous base catalysts have been developed for the 
transesterification of vegetable oils into biodiesel over the past 
few years. Among these, ion exchange resin with a quaternary 
ammonium functional group (QN+OH−) have been identified 
as an alternative to homogeneous base catalysts that suitable 
for transesterification in biodiesel production, due to their 
physical strength, as they are not easily degraded by oxidation 
or hydrolysis and the better conversion rates achieved [1], [2]. 

A number of researchers have modelled the kinetics of the 
transesterification reaction as many of them use homogeneous 
rather than heterogeneous alkaline catalysts. Not much 
information is available regarding the kinetics of 
heterogeneous base-catalyzed transesterification. Reference 
[3] studied the kinetics of heterogeneous alkaline earth metal 
oxides. A five-step mechanism was proposed for the 
transesterification of ethyl acetate, with different rate-
determining steps according to the basicity of the catalyst. The 
basic strengths of alkaline earth metal oxides are in the order 
BaO>SrO>CaO>MgO. It was assumed that the surface 
reaction step is rate-determining step for catalysts of higher 
basicity, such as BaO, SrO and CaO. However, methanol 
adsorption was assumed to be the rate-determining step for 
alkaline earth metal oxide catalysts of the lower basicity, such 
as MgO [3]. 

A similar conclusion was reached by [4], who studied the 
kinetics of heterogeneous MgO-catalyzed transesterification 
by comparing three different models. The first one had been 
proposed by [3], while the other two are the Langmuir-
Hinshelwood-Hougen-Watson (LHHW) and Eley-Rideal (ER) 
models. Based on the satisfactory agreement found with 
experimental data over the range of conditions investigated, a 
kinetic model was proposed by [4] based on a three-step 
mechanism of the Eley-Rideal. It was suggested that the rate-
determining step for the lower basicity MgO is methanol 
adsorption on its active sites [4].  

In the present paper, it was propose to investigate the 
kinetics model of nine different synthesized ion exchange 
resins (SIERs) in the transesterification of triacetin with 
methanol. Tricetin is used as model triglyceride in this study, 
due to its structural simplicity, which makes the identification 
and quantification of reaction products easier. 
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II. EXPERIMENTAL 

A. Synthesis of Ion Exchange Resins 

Suspension polymerization was carried out by adding the 
organic phase solutions to the three-necked round-bottomed 
flask containing the aqueous phase solutions in a nitrogen 
environment and at room temperature. Then, 1 wt. % of 2,2’-
azobis(2-methylpropionitrile) or AIBN was added to the 
reactor. Next, the temperature was raised to 80oC at a stirring 
speed of 350 rpm and polymerization was allowed to continue 
for 24h. The polymer beads were then washed with hot 
distilled water to remove the suspending agent (PVOH), and 
hot ethanol to remove any traces of monomers and diluents. 
Next, the beads were filtered and dried, and sieved to the 
range of 150-300 microns. The resins were further washed 
with methanol and dried at 60oC for 48h in the oven. 
Amination of resin beads was carried out using 
trimethylamine solution in ethanol. The final product was 
washed with distilled water, methanol, and a 1M NaCl 
solution and dried. 

B. Transesterification of SIERs with Triacetin 

The experimental method was performed using the three-
necked round-bottomed flask. 45 mL of reagent grade 
methanol (Fisher Scientific, UK) was mixed with 35 mL of 
triacetin at 99 wt. % (Sigma-Aldrich, UK). The molar ratio of 
methanol to triacetin was maintained at 6:1 (mol/mol). Then, 
the reaction mixture was heated to 60oC in a water bath. 
Transesterification was then initiated by charging with 5.5 
mmol/g of the SIER. This SIER catalyst was mixed using an 
overhead stirrer at 450 rpm for 4h. 1 mL samples were taken 
initially and then at specified time intervals, before being 
filtered and analyzed. 

C. Kinetic Modeling 

The transesterification reaction can be presented by the 
following stoichiometric equation. The stoichiometric 
equation contains three reversible steps, forming the 
intermediate di- and monoglycerides, and then glycerol. Each 
equilibrium is described by its respective constant, 
௜ܭ݁ݎ݄݁ݓ௜ ሺܭ ൌ

௞೔

௞೔శభ
ሻ, where i = 1, 3 and 5 
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with the overall reaction : 
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where triglyceride is TG, diglyceride is DG, monoglyceride is 
MG, methanol is A, glycerine is G and fatty acid methyl ester 
(biodiesel) is BD.  

In order to model the transesterification kinetics of the 
SIERs reaction, the Langmuir-Hinshelwood-Hougen-Watson 
(LHHW) and Eley-Rideal models have been applied in the 
present study, in sets of differential equations, in line with the 
work by [4]. 

1.  Langmuir-Hinshelwood-Hougen-Watson (LHHW) 
Model 

Two special cases of LHHW are presented in this study 
from models developed from [5]. The first LHHW model is 
based on the surface reaction as the rate-determining step, and 
the second on the adsorption of methanol as the rate 
determining step. The rate equations with the assumption that 
surface reaction is the rate-determining step (RDS) and 
adsorption of A (methanol) is the rate-determining step (RDS) 
areshow below, respectively obtained from [5] and [6]: 
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where Ki is the equilibrium adsorption constant for each 
component. 

The reaction scheme for LHHW in the transesterification of 
triglycerides is given as follows [7], where the concentration 
of the bulk species is in square brackets and θi is the fraction 
of component vacant sites: 
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2. Eley-Rideal (ER) Model 

The derivation of Eley-Rideal reaction kinetics is similar to 
that for LHHW. The only difference is that it is assumed that 
only some of the molecules involved in the reaction are 
adsorbed onto the catalyst [8]. Reference [4] derived equations 
to describe the ER mechanism. When the rate-determining 
step is methanol adsorption, the rate of reaction is given by: 
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However, when the rate-determining step is the surface 

reaction, the rate of reaction becomes: 
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