
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

178

Harmony Search-based K-Coverage Enhancement
in Wireless Sensor Networks
Shaimaa M. Mohamed, Haitham S. Hamza, Imane A. Saroit

Abstract—Many wireless sensor network applications require
K-coverage of the monitored area. In this paper, we propose a
scalable harmony search based algorithm in terms of execution
time, K-Coverage Enhancement Algorithm (KCEA), it attempts to
enhance initial coverage, and achieve the required K-coverage degree
for a specific application efficiently. Simulation results show that
the proposed algorithm achieves coverage improvement of 5.34%
compared to K-Coverage Rate Deployment (K-CRD), which achieves
1.31% when deploying one additional sensor. Moreover, the proposed
algorithm is more time efficient.

Keywords—Wireless Sensor Networks (WSN), Harmony Search

I. INTRODUCTION

W IRELESS sensor network, (WSN), has been deployed
widely in various applications, such as structural

[1], [2], environmental [3]–[5], habitat monitoring [6]–[9],
military surveillance [10], and intrusion detection [11]. A
WSN typically consists of a large number of sensor nodes, and
one or more sink nodes. Those nodes are usually deployed to
monitor certain event or phenomenon [12]. One of the main
challenges in WSN, and a key to the successful operation of
several applications is coverage [8].

WSN applications differ greatly in their coverage
requirements. Some applications do not need coverage, such
as monitoring human physiology data, while others require
each point to be covered by only one sensor, such as habitat
monitoring. Whereas, other applications require more than
one sensor to monitor each point, such as surveillance, and
intrusion detection applications.

There are generally two methods for deploying sensor
nodes: 1) deterministic deployment, where node locations are
calculated prior to deployment. 2) random deployment, where
it is more practical in some environments, such as in [13],
[14]. Using random deployment [15]–[18] may not achieve
the required coverage; therefore, algorithms are needed after
initial random deployment to ensure that the required coverage
degree is achieved.

Dynamic deployment [18]–[21] is one solution to enhance
initial random coverage. It ensures full coverage by
redistributing nodes after initial random deployment.

In this paper, we consider the case where there are additional
sensor nodes available after initial random deployment, and
rather than redistributing the deployed nodes, we calculate
optimal positions for placing more nodes, so that the coverage
degree required by the application is achieved. We propose use

Shaimaa M. Mohamed, Haitham S. Hamza and Imane A. Saroit are with the
Department of Information Technology, Faculty of Computers & Information,

a harmony search based algorithm for achieving the required
K-coverage, so the proposed algorithm is named K-Coverage
Enhancement Algorithm (KCEA).

Simulation results show that KCEA outperforms
K-Coverage Rate Deployment (K-CRD) [22], in terms
of both the coverage improvement, and execution
time. In deployments with initially 30 sensors, KCEA
achieves 28.42%, while K-CRD achieves 19.8% coverage
improvement, when deploying 6 additional sensors. Moreover,
KCEA produces these improvements in 14s; whereas, K-CRD
takes 75s. In deployments with initially 60 sensors, KCEA
achieves 13.81% overage improvement with 4.8s execution
time, while K-CRD achieves 10.2% coverage improvement
with 45.8s execution time. Also, simulations show that the
proposed solution is scalable (in terms of execution time);
as the number of additional nodes increase, the required
coverage degree K increases, and the maximum tolerable
evaluation error (MTEE) [22] decreases.

The remainder of the paper is organized as follows. Related
work is presented is Section II. The proposed K-Coverage
Enhancement Algorithm (KCEA) is presented in Section III.
Simulation experiments are presented in Section IV. Finally,
concluding remarks are presented in Section V.

II. RELATED WORK

A number of literature considered the coverage problem
in WSN, which is concerned with whether every point in
the deployment area is monitored by at least one of the
sensor nodes [19], [23]–[25]. A generalization to this problem
is K-coverage [21], [22], [26], [27], where every point in
the deployment area should be within the sensing radii of
K-distinct sensors. K refers to the coverage degree (or level).

In [22], the authors consider two problems: 1) coverage
determination and 2) coverage deployment. A K-Coverage
Rate Evaluation (K-CRE) algorithm is proposed to determine
the coverage degree of the monitored area. The algorithm
uses non-uniform grids, and calculates coverage information
of each grid. Grids with uncertain coverage information are
further divided into sub-grids. The sud-griding process is
repeated until the ratio of uncertainly covered area relative
to whole monitored area (Maximum Evaluation Error) is
greater than the Maximum Tolerable Evaluation Error (MTEE)
permitted for a target application. In our proposed algorithm,
K-CRE is used for evaluating the coverage of the monitored
area.

In addition, the authors present a K-Coverage Rate
Deployment (K-CRD) algorithm, that can be used if the
required K-coverage is not achieved, and there are additional

Algorithms, K-Coverage, Mobile WSN.

Cairo (e-mail: s.mosaad@fci-cu.edu.eg).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

179

sensor nodes available for deployment. The algorithm uses
deployment regions of the grids to determine optimal positions
for node placement. The deployment region is the area where
if a sensor is deployed, it will fully cover the grid. In an
attempt to reduce the computational cost, K-CRD1 algorithm
is proposed, in which only α-grids rather than all the grids are
considered.

The work in [26] investigates the use of Ant Colony
Optimization (ACO) to find the optimal positions for node
deployments. The authors propose EasiDesign, an improved
ACO algorithm that finds positions that minimize cost,
achieves both connectivity, and K-coverage.

The work in [28] studies coverage in hybrid WSN. The
authors assume that there are a number of static nodes
deployed randomly, and determine the optimal locations for
placing m mobile nodes using Artificial Bee Colony (ABC)
algorithm.

III. THE PROPOSED ALGORITHM

A. Original Harmony Search (HS) Algorithm

Harmony search (HS) is an optimization algorithm, which
is based on the experiences of Jazz musicians [29]. HS
has three main phases: Parameter Initialization, Improvising,
and updating. The algorithm starts with an initial random
population (harmonic) stored in Harmony Memory (HM),
for which an optimization function is calculated for each
of its harmonic (solution vector). HS depends on three
operations to explore the search space, and generate a new
harmonic: harmony memory consideration, pitch adjusting,
and randomization. Memory consideration carries the best
solutions to the new population. Pitch adjustment adjusts a
solution to a neighboring value, while randomization explores
new solutions. HS generates only one new harmonic, which
replaces the worst one in the older population.

Since its development, a number of variants has been
proposed [30]–[33]. Local-best harmony search algorithm
with dynamic subpopulations (DLHS) is one of the HS
variants (Fig. 1), which attempts to enhance the parameter
initialization phase, and solve continuous optimization
problems [34]. It uses an adaptive parameter selection
strategy, and divides the HM into a number of small-sized
sub-HMs, where improvisation is performed independently
on each sub-HM. The sub-HMs are regrouped frequently
in order to retain population diversity, and to exchange
information among the solutions (The dotted parts in Fig. 1).

1. Problem and Parameter Initialization
During parameter initialization step, the following

parameters are initialized:
- Harmony memory size (HMS), the population size.
- Number of decision variables (N).
- The number of iterations (NI).
- The harmony memory (HM) is populated randomly

with solution vectors.

2. PSL initialization
The DLHS algorithm uses an adaptive learning mechanism

to determine the best values of HMCR, and PAR in order to
achieve both good exploration, and exploitation. A parameter
set list (PSL) is initialized randomly, containing random
values of HMCR, and PAR, such that HMCR ∈ [0.9, 1],
and PAR ∈ [0, 1] as in [34]. At the start of each iteration, the
values of HMCR, and PAR are selected from the PSL list.
HMCR, and PAR values, that generate a harmony better
than all those stored in the sub-HM are added to a new list
called a winning parameter set list (WPSL). Once all the
HMCR, and PAR values in the PSL are exhausted, it is
refilled from the WPSL with probability 0.75, or randomly
with probability 0.25 [34]. Similarly, the BW value changes
dynamically such that, it decreases with the number of
iterations.

3. Improvising
During the improvising phase, the HM is randomly divided

into m subpopulations. The HMCR, PAR, and BW values
are selected from the PSL list. Then, a new solution vector X
is generated using one of three operations: random selection,
memory consideration or pitch adjustment.

The new harmony vector X replaces the worst harmony
vector in its sub-HM, if it has better objective function. The
HMCR, and PAR values are added to WPSL list. Every R
iterations, the subpopulations are regrouped again to retain the
population diversity, and to exchange information among the
solutions. The process is repeated until the maximum number

Fig. 1 DLHS Flowchart

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

180

of iterations (NI) is reached.

B. K-Coverage Enhancement Algorithm (KCEA)

In some applications, K-coverage rather than 1-coverage is
required. An area has a coverage degree (level) of K, or called
K-covered, if every point in the area is within sensing radii
of K-distinct sensors. Assuming a disk binary sensing model,
a point p = (x, y) is covered by a sensor s if the distance
between them is less than or equal to rs as in (1).

Cs(p) =

{
1 if d(s, p) ≤ rs

0 o.w.
(1)

where,
d(s, p) is the distance between a sensor node s and
a point p.
rs is the sensing radius of the nodes.

If a point can be covered by more than one sensor, the total
coverage of a point is C(p) =

∑k
i=1 CSi(p) [35]; therefore,

K-coverage can be achieved if:

C(p) = k ∀p ∈ A (2)

Using initial random deployment, neither 1-coverage nor
K-coverage can be guaranteed. In these cases, if there are
additional sensor nodes available after initial deployment,
they can be used to achieve the required coverage degree.
The main problem is how to determine the positions of
these nodes efficiently, in order to achieve the required
coverage degree, and to minimize the computational cost.
We propose a K-Coverage Enhancement Algorithm (KCEA),
which attempts to improve the required coverage degree in
such cases. The algorithm uses the DLHS to find the optimal
places for deploying additional nodes efficiently.

KCEA starts with dividing the deployment area into
non-uniform grids using K-CRE algorithm [22]. Then, the
coverage status for each grid is determined. Based on this
information, a number of grids are identified as candidate
grids. Candidate grids are those covered by less than K sensor
nodes. Those grids are, then ordered according to their area,
so that large grids have higher priority for sensor placement
than smaller ones.

The idea of our algorithm (Algorithm 1) is to search
heuristically using DLHS for the optimal position to place
an additional sensor within each candidate grid, such that
K-coverage is improved. Therefore, in KCEA algorithm, HM
contains harmonies equal to the number of candidate grids
(3). Each harmony represents a possible placement for one, or
more additional sensors depending on the required coverage
degree K. Each decision variable represents (x, y) coordinates
of the sensor node. Although, the positions of the sensor nodes
are chosen randomly, they must be within the boundaries of
one of the candidate grids (4). At the end of each iteration,
K-coverage is evaluated (5) and the new harmony is placed in
the HM , if the achieved K-coverage is better than the worst
one in the HM .

Algorithm 1 K-Coverage Enhancement Algorithm (KCEA)

1: Identify the candidate grids as in KCRD algorithm
2: Set HMS equals to number of candidate grids
3: Set N equals to number of additional sensors available
4: Initialize PSL
5: procedure IMPROVISE
6: while n ≤ NI do
7: if PSL �= φ then
8: Select a set of HMCR and PAR from PSL
9: else

10: Refill PSL
11: if n ≤ (NI/2) then
12: BW (m) = BWmax − BWmax−BWmin

NI . 2n
13: else
14: BW (m) = BWmin

15: while i ≤ N do
16: if rand() ≤ HMCR then
17: xi = xbest

i , best ∈ (1, 2, 3, ...HMS) �
Memory Consideration

18: yi = ybesti , best ∈ (1, 2, 3, ...HMS)
19: if rand() ≤ PAR then
20: xi = xirand()± . BW (m) � Pitch

adjustment
21: yi = yirand()± . BW (m)

22: else
23: xi = gLx (j) + rand().(gUx (j) − gLx (j), j ∈

(1, 2, 3, ...HMS)
24: � Random selection
25: yi = gLy (j) + rand().(gUy (j) − gLy (j), j ∈

(1, 2, 3, ...HMS)

26: Calculate F (X)
27: if F (X) > F (Xworst) then
28: Xworst = X
29: Record the HMCR and PAR into WPSL

HM =

⎛
⎜⎜⎜⎜⎝

(x1
1, y

1
1) · · · (xN

1 , yN1) | F (X1)

(x1
2, y

1
2) · · · (xN

2 , yN2) | F (X2)

...
...

(x1
HMS , y

1
HMS) (xN

HMS , y
N
HMS) | F (XHMS)

⎞
⎟⎟⎟⎟⎠
(3)

xj
i = gLx (j) + rand(0, 1).(gUx (j)− gLx (j))

yji = gLy (j) + rand(0, 1).(gUy (j)− gLy (j)) (4)

where,
HMS equals the number of candidate grids.
X represents additional sensor possible position
within the candidate grid.
N is the number of decision variables and equals the
number of additional sensors available.
F (X) is the objective function of decision variable X

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

181

gLj , g
U
j is the area of candidate grid j.

Max.(F) = CK (5)

where,
F is the objective function to be maximized.
CK is K-coverage of the the deployment area.

The algorithm parameters are listed in Table I. Since placing
a sensor in one of the candidate grids (which have the largest
grid weight GW) is an efficient way to improve coverage [22],
in the proposed algorithm, HMS is set equal to the number
of candidate grids Ngβ . In order to measure the performance
of the algorithm, the number of additional sensors (N) is
increased from 1 to 48. The number of iterations NI is chosen
to minimize the execution time and maximize the coverage
improvement. The rest of the parameters are set as in [34].

Parameter Value
HMS Ngβ

N varies from 1 to 48
NI 250
R 50
m 3
BWmin 0.0001
BWmax UB − LB/200
PSL length 200

IV. SIMULATION EXPERIMENTS

A. Simulation Setup Parameters

To evaluate the proposed algorithm, a simulator is
implemented using Java language. All the experiments were
evaluated on a Intel Core 2 Duo 2.1 GHz processor with 2
MB cache memory, and 2 GB RAM. The simulator considers
a WSN initially consisting of a number of sensors n, that are
randomly deployed in a 2D rectangular area A. Sensors are
homogeneous, using a binary disk sensing model with radius
rs. For simplicity, network channel is assumed to be error-free
and collision-free. Table II lists the simulation parameters.
Since the results of the proposed algorithm (KCEA) are
compared to the results of the K-CRD1 algorithm, the same
values of the parameters are used as in [22].

SIMULATION PARAMETERS

Parameter Value
n 30, 60 and 90
A 100 m x 100 m
rs 10 m
K K = 1, 2 and 3
MTEE 0.04, 0.02, and 0.01
Number of runs in experiment set 20 runs

In order to evaluate the performance of our proposed
dynamic deployment algorithm, the following metrics are
used:

1) Coverage Improvement Percentage (C%): coverage
rate is to the ratio of covered area relative to the total
monitored area. Coverage improvement percentage is
calculated using (6). In order to calculate K-coverage, a
modified version of the K-CRE scheme [22] is used. The
main problem with the K-CRE scheme is its execution
time, especially with smaller MTEE values. So K-CRE is
used once to determine the initial coverage, then only the
area of the grids which are covered by the new deployed
sensor nodes are added to this initial coverage. K-CRE
is used one more time after the KCEA terminates, to
evaluate the coverage of the final deployment.

C% = (
Cfinal − Cinitial

Cinitial
)x 100 (6)

2) Execution Time (t): execution time expressed in seconds
is used to evaluate the computational speed of our
proposed algorithm.

Simulations are conducted to evaluate the performance of
the proposed algorithm for the following scenarios: 1) various
number of additional sensors (N), 2) various coverage degree
(K), and 3) various MTEE.

C. K-CRE Simulation Results

In order to evaluate the performance of our proposed
algorithm, we have implemented both the K-CRE, and
K-CRD1 schemes presented in [22]. In evaluating the
performance of K-CRE scheme, the number of grids was used
as the basic metric for measuring the computational cost of
the algorithm. We have obtained the same number of grids
using our simulator as those reported in [22]. Fig. 2 shows the
number of grids calculated using our simulator for K = 1.

In addition, we have obtained coverage improvement
percentages using our implementation of the K-CRD1 scheme
similar to the ones reported in [22].

TABLE I
K-COVERAGE ENHANCEMENT ALGORITHM (KCEA) PARAMETERS

TABLE II

(5). B. Performance Metrics

Fig. 2 Number of grids versus MTEE for k = 1

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

182

D. Simulation Results of Deploying N Sensors

An example of deploying an additional sensor node, after
initial random deployment is shown in Fig. 3. Fig. 3(a) shows
the initial random deployment, the deployment has a coverage
rate of 54.3%. Fig. 3(b) shows the deployment after adding
one sensor node using K-CRD1 algorithm, the deployment
has a coverage rate of 55.01% with coverage improvement of
1.31%. Fig. 3(c) shows the deployment after adding one sensor
node using our proposed KCEA algorithm, the deployment
has a coverage rate of 57.2% with coverage improvement
of 5.34%. Clearly, our proposed algorithm achieves better
coverage improvement than the one achieved by K-CRD1.

(a) Initial Deployment

(b) Deployment after using
K-CRD1

(c) Deployment after using
KCEA

Table III shows both the coverage improvement
percentages, and the execution time in seconds for KCEA,
K-CRD (considering all the candidate grids), and K-CRD1
(considering only α candidate grids with α = 3). Increasing
the number of candidate grids used in K-CRD algorithm
calculations, increases the execution time greatly.

EXECUTION TIME VS. COVERAGE IMPROVEMNT
PERCENTAGE K = 1 AND N = 30

MTEE(%) Execution Time(s) Coverage Improvement (%)
KCEA K-CRD1 K-CRD KCEA K-CRD-1 K-CRD

4 3.01 2.09 679 5.32 3.77 3.01
2 2.8 9.2 2208 5.42 3.97 3.07
1 2.8 33.1 8866 5.4 3.4 3.1

The proposed KCEA outperforms both K-CRD, and
K-CRD1 in the achieved coverage improvement. In addition, it
has less execution time except for the case when MTEE=0.04.

Fig. 4(a) shows the coverage improvement percentage for
n = 30, MTEE = 0.005, and K = 1, while Fig. 4(b) shows
the execution time for the same values. KCEA achieves higher
coverage improvement percentages compared to K-CRD1
scheme, and with less execution time. This is mainly because

the proposed algorithm (KCEA) searches heuristically in
all the candidate grids, while K-CRD1 considers only the
deployment regions of α candidate grids. In addition, K-CRD1
mainly searches for the intersection between the deployment
region of the candidate grids, this may result in a position
where the sensing region of the sensor overlap with other
sensors or not. KCEA; on the other hand, searches in the whole
grid area for the position that maximizes coverage. Moreover,
KCEA searches efficiently all of the candidate grids, since it
is based on DLHS algorithm.

While considering all the candidate grids deployment
regions may improve K-CRD1 results, it will increase the
execution time dramatically. Moreover, increasing the number
of additional sensors N , increases the execution time of KCEA
linearly, while the execution time of the K-CRD-1 increases
exponentially.

(a) CoverageImprovement Percentage

(b) Execution Time

K = 1, n = 30, and MTEE = 0.005

The optimal number of sensors needed to achieve full
coverage using a deterministic pattern (the strip-based pattern
[36]) can be calculated as given in [37]. Using a deployment
area of (100 x 100 m2), and rs = 10m, the minimum
theoretical number of sensor to achieve 1-coverage is 40
sensors. Consequently, both algorithms have similar coverage
improvement percentages, when the number of additional
sensors is more than 24. Since, most of the deployment area

Fig. 3 Example of Deployment of an Additional Sensor

TABLE III

Fig. 4 Coverage improvement percentage, and Execution time for

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

183

is covered, and there are less candidate grids to be considered.
Fig. 5 shows the coverage improvement percentage, and

execution time for n = 60, MTEE = 0.01, and K = 1. The
fig. shows similar behavior as Fig. 4, as KCEA achieves better
coverage improvement, and less execution time compared to
K-CRD1.

(a) CoverageImprovement Percentage

(b) Execution Time

K = 1, n = 60, and MTEE = 0.001

As the number of original deployed sensor nodes n
increases, the coverage improvement gap between the two
algorithms decreases, because most of the deployment area
is already 1-fully covered (Fig. 4, 5, and 6).

Fig. 4 (b), 5 (b), and 6 (b) show that our proopsed algorithm
is scalable in terms of the execution time. While increasing the
number of additional sensors N affects the execution time of
K-CRD1 exponentially, our proposed algorithm scales linearly.

E. Simulation Results of Achieving K > 1

Fig. 7 and 9 show the coverage improvement percentage
for K = 2 and n = 90, K = 3 and n = 30. While, Fig.
8 and 10 show the execution time for K = 2 and n = 90,
K = 3 and n = 30. Although, K-CRD1 achieves slightly
better coverage improvement percentages, KCEA has much
less execution time. Since KCEA search heuristically for the
optimal position to place additional the sensor.

(a) CoverageImprovement Percentage

(b) Execution Time

K = 1, n = 90, and MTEE = 0.002

N = 1

Different applications may require various Maximum
Tolerable Evaluation Error (MTEE). Decreasing the MTEE,
increases the execution time of K-CRD1 scheme; conversely,
it has no effect on the execution time of the KCEA algorithm.

Fig. 5 Coverage improvement percentage, and Execution time for

Fig. 6 Coverage improvement percentage, and Execution time for

Fig. 7 Coverage improvement percentage for K = 2, n = 90, and

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

184

N = 1

F. Execution Time

Execution time is used as a metric for measuring
computational cost, and in evaluating the scalability of the

seconds for n = 30, 60, 90, respectively, and N = 1, and
MTEE = 0.04. Increasing the coverage degree K, increases
the execution time of K-CRD1 scheme greatly, especially for
large n. Thus, limiting the scalability of the scheme. Whereas,
increasing the coverage degree K has a small effect on the
execution time of the proposed algorithm.

Increasing the coverage degree K, the number of initially
deployed sensors n, or the number of additional sensors N
results in longer execution time. Descreasing the MTEE also
results in longer execution time. However, KCEA has much
less execution time compared to K-CRD1, when varying any
of the previous factors. This mainly because KCEA is based
on HS algorithm; therefore, requires less computations than
K-CRD1.

V. CONCLUSION

In this paper, a K-coverage enhancement algorithm, KCEA
is proposed. It attempts to efficiently place additional sensors
in order to achieve the coverage degree required by the

N = 1, and n = 30

application. KCEA achieves better coverage improvement
percentages compared to K-CRD1, with much less execution
time. Simulation results show the scalability of our proposed

N = 1, and n = 60

algorithm in terms of execution time. This is due to the
algorithm ability to search heuristically in all the candidate
grids for the optimal position to place the additional sensor

Fig. 8 Execution time for K = 2, n = 90, and N = 1 Fig. 10 Execution time for K = 3, n = 30, and N = 1

Fig. 9 Coverage improvement percentage for K = 3, n = 30, and Fig. 11 Execution time versus value of K for MTEE = 0.04,

algorithm. Figs. 11, 12, and 13 show the execution time in

Fig. 12 Execution time versus value of K for MTEE = 0.04,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

185

nodes. Our ongoing work investigates how to explore the
ability of continuous optimization of the DLHS algorithm to
continuously maintain coverage as the topology changes due
to node failure.

N = 1, and n = 90

REFERENCES

[1] J. Paek, K. Chintalapudi, R. Govindan, J. Caffrey, and S. Masri, “A
wireless sensor network for structural health monitoring: Performance
and experience,” in Embedded Networked Sensors, 2005. EmNetS-II. The
Second IEEE Workshop on, pp. 1–10, 2005.

[2] G. Anastasi, G. Lo Re, and M. Ortolani, “Wsns for structural health
monitoring of historical buildings,” in Human System Interactions, 2009.
HSI ’09. 2nd Conference on, pp. 574–579, 2009.

[3] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu,
S. Burgess, T. Dawson, P. Buonadonna, D. Gay, and W. Hong, “A
macroscope in the redwoods,” in Proceedings of the 3rd International
Conference on Embedded Networked Sensor Systems, SenSys ’05, (New
York, NY, USA), pp. 51–63, ACM, 2005.

[4] G. Werner-Allen, J. Johnson, M. Ruiz, J. Lees, and M. Welsh,
“Monitoring volcanic eruptions with a wireless sensor network,” in
Wireless Sensor Networks, 2005. Proceeedings of the Second European
Workshop on, pp. 108–120, 2005.

[5] H. Y. Jeonghwan Hwang, Changsun Shin, “Study on an agricultural
environment monitoring server system using wireless sensor networks,”
2010.

[6] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein,
“Energy-efficient computing for wildlife tracking: Design tradeoffs and
early experiences with zebranet,” SIGARCH Comput. Archit. News,
vol. 30, pp. 96–107, Oct. 2002.

[7] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson,
“Wireless sensor networks for habitat monitoring,” in Proceedings of
the 1st ACM International Workshop on Wireless Sensor Networks and
Applications, WSNA ’02, (New York, NY, USA), pp. 88–97, ACM,
2002.

[8] W. Hu, V. N. Tran, N. Bulusu, C. T. Chou, S. Jha, and A. Taylor,
“The design and evaluation of a hybrid sensor network for cane-toad
monitoring,” in Information Processing in Sensor Networks, 2005. IPSN
2005. Fourth International Symposium on, pp. 503–508, 2005.

[9] A.-K. Othman, K. M. Lee, H. Zen, W. Zainal, and M. F. M.
Sabri, “Wireless sensor networks for swift bird farms monitoring,”
in Ultra Modern Telecommunications Workshops, 2009. ICUMT ’09.
International Conference on, pp. 1–7, 2009.

[10] M. Hussain, P. Khan, and K. kyung Sup, “Wsn research activities for
military application,” in Advanced Communication Technology, 2009.
ICACT 2009. 11th International Conference on, vol. 01, pp. 271–274,
2009.

[11] M. Khanafer, M. Guennoun, and H. Mouftah, “Intrusion detection
system for wsn-based intelligent transportation systems,” in Global
Telecommunications Conference (GLOBECOM 2010), 2010 IEEE,
pp. 1–6, Dec 2010.

[12] Wireless Sensor Networks: Technology, Protocols, and Applications.
Wiley, 2007.

[13] M. S. K. Arash Nikdel and S. M. Jamei, “An intelligent and
energy efficient area coverage protocol for wireless sensor networks,”
International Journal of Grid and Distributed Computing, 2011.

[14] H. R. Mohammad Amin Zare Soltani, Abolfazl Toroghi Haghighat and
T. G. Chegini, “A couple of algorithms for k-coverage problem in
visual sensor networks,” International Conference on Communication
Engineering and Networks, 2011.

[15] M. Cardei, M. T. Thai, Y. Li, and W. Wu, “Energy-efficient target
coverage in wireless sensor networks,” in in IEEE Infocom.

[16] X. Li, H. Frey, N. Santoro, and I. Stojmenovic, “Localized sensor
self-deployment with coverage guarantee,” SIGMOBILE Mob. Comput.
Commun. Rev., vol. 12, pp. 50–52, Apr. 2008.

[17] Y. Zou and K. Chakrabarty, “Sensor deployment and target
localization in distributed sensor networks,” ACM TRANSACTIONS ON
EMBEDDED COMPUTING SYSTEMS, vol. 3, no. 1, pp. 61–91, 2004.

[18] Y. Zou and K. Chakrabarty, “Sensor deployment and target localization
based on virtual forces,” in Twenty-Second Annual Joint Conference of
the IEEE Computer and Communications INFOCOM 2003.

[19] G. Wang, G. Cao, and T. La Porta, “Movement-assisted sensor
deployment,” in Twenty-third Annual Joint Conference of the IEEE
Computer and Communications Societies, INFOCOM 2004.

[20] M. Ma and Y. Yang, “Adaptive triangular deployment algorithm for
unattended mobile sensor networks,” Computers, IEEE Transactions on,
2007.

[21] S. L. X. Bai and J. Xu, “Mobile sensor deployment optimization for k
-coverage in wireless sensor networks with a limited mobility model,”
IETE Technical Review, 2010.

[22] J.-P. Sheu, G.-Y. Chang, and Y.-T. Chen, “A novel approach for
k-coverage rate evaluation and re-deployment in wireless sensor
networks,” in Global Telecommunications Conference, 2008. IEEE
GLOBECOM 2008. IEEE, pp. 1–5, 2008.

[23] G. G. Wang, G. Cao, P. Berman, and T. F. L. Porta, “Bidding protocols
for deploying mobile sensors,” IEEE Transactions on Mobile Computing,
vol. 6, no. 5, pp. 563–576, 2007.

[24] N. Bartolini, T. Calamoneri, E. Fusco, A. Massini, and S. Silvestri,
“Autonomous deployment of self-organizing mobile sensors for a
complete coverage,” in Self-Organizing Systems (K. Hummel and
J. Sterbenz, eds.), vol. 5343 of Lecture Notes in Computer Science,
pp. 194–205, Springer Berlin Heidelberg, 2008.

[25] G. Tan, S. A. Jarvis, and A.-M. Kermarrec, “Connectivity-guaranteed
and obstacle-adaptive deployment schemes for mobile sensor networks,”
IEEE Transactions on Mobile Computing, vol. 8, no. 6, pp. 836–848,
2009.

[26] D. Li, W. Liu, and L. Cui, “Easidesign: An improved ant colony
algorithm for sensor deployment in real sensor network system,” in
Global Telecommunications Conference (GLOBECOM 2010), 2010
IEEE, pp. 1–5, 2010.

[27] H. J. K. Shohreh Ebrahimnezhad and M. E. Moghaddam, “Extending
coverage and lifetime of k-coverage wireless sensor networks using
improved harmony search,” Sensors & Transducers, 2011.

[28] C. Ozturk, D. Karaboga, and B. Gorkemli, “Probabilistic dynamic
deployment of wireless sensor networks by artificial bee colony
algorithm,” Sensors, vol. 11, no. 6, pp. 6056–6065, 2011.

[29] G. L. Z.W. Geem, J.-H. Kim, “A new heuristic optimization algorithm:
Harmony search,” Simulation, 2001.

[30] M. Mahdavi, M. Fesanghary, and E. Damangir, “An improved
harmony search algorithm for solving optimization problems,” Applied
Mathematics and Computation, 2007.

[31] M. G. Omran and M. Mahdavi, “Global-best harmony search,” Applied
Mathematics and Computation, 2008.

[32] C.-M. Wang and Y.-F. Huang, “Self adaptive harmony search algorithm
for optimization,” Expert Systems with Applications, 2010.

[33] S. D. D. J. P. Chakraborty, G.G. Roy, “An improved harmony
search algorithm with differential mutation operator,” Fundamenta
Informaticae, 2009.

[34] J. L. Q.K. Pan, PN Suganthan and M. Tasgetiren, “A local-best
harmony search algorithm with dynamic subpopulations,” Engineering
Optimization, 2010.

[35] B. Wang, “Coverage problems in sensor networks: A survey,” ACM
Comput. Surv., vol. 43, pp. 32:1–32:53, Oct. 2011.

[36] Y.-C. Wang, C.-C. Hu, and Y.-C. Tseng, “Efficient deployment
algorithms for ensuring coverage and connectivity of wireless sensor
networks,” in First International Conference Proceedings on Wireless
Internet, 2005., pp. 114–121, 2005.

Fig. 13 Execution time versus value of K for MTEE = 0.04,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

186

[37] X. Bai, S. Kumar, D. Xuan, Z. Yun, and T. H. Lai, “Deploying wireless
sensors to achieve both coverage and connectivity,” in Proceedings of
the 7th ACM International Symposium on Mobile Ad Hoc Networking
and Computing, MobiHoc ’06, (New York, NY, USA), pp. 131–142,
ACM, 2006.

