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Abstract—The recommended limit for cadmium concentration in 

potable water is less than 0.005 mg/L. A continuous biosorption 
process using indigenous red seaweed, Gracilaria corticata, was 
performed to remove cadmium from the potable water. The process 
was conducted under fixed conditions and the breakthrough curves 
were achieved for three consecutive sorption-desorption cycles. A 
modeling based on Artificial Neural Network (ANN) was employed 
to fit the experimental breakthrough data. In addition, a simplified 
semi empirical model, Thomas, was employed for this purpose. It 
was found that ANN well described the experimental data (R2>0.99) 
while the Thomas prediction were a bit less successful with R2>0.97. 
The adjusted design parameters using the nonlinear form of Thomas 
model was in a good agreement with the experimentally obtained 
ones. The results approve the capability of ANN to predict the 
cadmium concentration in potable water. 
 

Keywords—ANN, biosorption, cadmium, packed-bed, potable 
water. 

I. INTRODUCTION 

EAVY metals are very toxic elements that accumulate 
through the food chain and affects the human health. 

Cadmium is one of the big three toxic metals that can readily 
enter to the surface waters. The recommended limit for this 
metal in potable water is less than 0.005 mg/L [1]. 

Biosorption is a unique technique for heavy metal removal 
from aqueous solutions that includes many advantages over 
the traditional physicochemical methods. Numerous 
biomaterials have been studied for heavy metal biosorption 
purposes. Among them, seaweeds are very less costly and 
available in high amounts in coastal cities like Bushehr, Iran. 
In addition, it has been proved that they have high ability in 
heavy metal biosorption. Therefore, this makes the process 
more economical.  

Separation based on adsorption-desorption cycles are 
widely used in various scales. Packed-bed column is usually 
preferred due to its effectiveness and high sorption capacity 
with very low effluent concentrations [2], [3]. 

A reliable modeling can help to calculate some 
characteristics or design parameters as well as to predict the 
breakthrough curve behavior for scale up purposes and 
performance comparison. Several factors including axial 
dispersion, sorption kinetics, mass transfer, and intraparticle 
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diffusion resistances should be considered to have a reliable 
and perfect model for a packed-bed column process. Solving 
such a complex model needs a series of non-linear partial 
differential equations [4].  

The simplified semi empirical models are known as 
alternative methods to fulfill this purpose. Thomas model is 
one of them has frequently been employed by several 
researchers for describing the experimental breakthrough 
curve data [1], [2], [5]. This model suggests some 
simplifications that are usually not validated in reality. 
Therefore, the precision is not high enough to trust the results. 
However, this is good for achieving some design parameters 
based on experimental data [4].  

Most of the equations which were used in these modeling 
studies are not applicable for a wide range of conditions in 
various processes, because they are only appropriate for a 
certain set of conditions and they could be used under some 
assumptions. Therefore the significance of techniques which 
are directly based on experimental data and their development 
to predict the result of processes seems to be obvious. Among 
these techniques, Artificial Neural Network (ANN) is an 
excellent tool to predict the results of processes using 
experimental data. Similar studies have proved this fact [6]-
[8]. The neural network based models are recently used to 
describe the column data. It has been employed by several 
researchers [9]-[11]. 

In the present study, a continuous-flow packed-bed column 
with indigenous red seaweed, Gracilaria corticata, was 
employed for continuously removing cadmium contaminations 
from potable water. The breakthrough curves were plotted for 
three consecutive sorption-desorption cycles under fixed flow 
rate, influent concentration, and bed height. ANN approach 
was employed to describe the breakthrough curves. The semi 
empirical Thomas model was also employed to obtain some 
design parameters as well as to compare by ANN fitting. 

II. MATERIALS AND METHODS 

A. Biosorbent Preparation 

The red seaweed, Gracilaria corticata, was harvested from 
Bushehr coastal waters, Iran. It was washed several times with 
tap water to removal salts and sands. Dried biomass in size 
between 0.5 to 0.7 mm was employed in the column. 

B. Column 

A glass column with an internal diameter of 2.5 cm and 20 
cm height was used and a 3 cm height of glass beads (1 mm in 
diameter) was placed at the top and the bottom of the bed in 
order to pack the biomass as well as provide a uniform inlet 
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where ݔ௝ is the input signal, ݓ௞௝ is the neuron’s weight, ݑ௞ is 
the linear combiner output due to input signals, ܾ௞ is its bias, 
߮ is the activation function, and ݕ௞ is the output signal of 
neuron. 

MLP neural network is used in the current study, where it is 
trained by the Levenberg Marquardt (LM) algorithm. The 
transfer functions of hidden and output layers are linear. The 
current training algorithm has provided the lowest error value; 
consequently, the optimal number of hidden layer neurons has 
been achieved. The operating parameter is the process time, so 
the input layer of the network has 1 neuron. The output is the 
ratio of input cadmium concentration in to output cadmium 
concentration, which results in one neuron in the output layer. 
The number of hidden layer neurons is achieved by the 
training of several networks with different number of hidden 
layer neurons and the comparison between the results of 

predictions for the desired output. The number of hidden 
layer’s neurons for cycles 1, 2, and 3 are 9, 15, and 9, 
respectively. The adequacy criterion for the optimized number 
of neurons is determined by the calculation of MSE between 
the network output and the training data.  

III. RESULTS AND DISCUSSIONS  

Plotting the effluent metal concentration versus time gives a 
sigmoid shape profile, which is called breakthrough curve. It 
is used to characterize the performance of a packed-bed 
column. The Cd2+ biosorption process was stopped when the 
effluent cadmium concentration reached the influent one 
(Figs. 2 and 3). It is where the biosorbent is saturated and it is 
essential to be regenerated for reuse in several cycles due to 
economic reasons [17]. The regenerant gradually destructs the 
surface ligands and decreases number of accessible biding 
sites for metal ions. This causes to reduce the column 
performance, maximum biosorption capacity (Table I), and 
decline the slope of breakthrough curve (Figs. 2 and 3) as the 
cycles progressed.  

 
TABLE I 

COMPARISON OF LINEAR AND NONLINEAR THOMAS MODEL WITH ANN FOR FITTING THE BREAK THROUGH CURVES FOR THREE CONSECUTIVE CYCLES 

Model Cycle No. ܳ௘௫௣ (mg/g) ܳ௠௢ௗ௘௟ (mg/g) ்ܭ௛ (l/mg min) R2 SSE MSE RMSE 

Linear Thomas 

1 23.53 0.135 0.00059 0.478 - - - 

2 21.96 0.131 0.00057 0.586 - - - 

3 20.80 0.134 0.00047 0.796 - - - 

Nonlinear Thomas 

1 23.53 22.44 0.00073 0.996 0.025 0.0008 0.0288 

2 21.96 20.01 0.00058 0.990 0.078 0.0025 0.0502 

3 20.80 18.94 0.00042 0.979 0.103 0.0034 0.0588 

ANN 

1 - - - 0.999 6.94 10-6 2.24 10-7 0.0005 

2 - - - 0.994 6.93 10-6 2.17 10-7 0.0004 

3 - - - 0.996 6.94 10-6 2.31 10-7 0.0005 

 
The low values of correlation coefficient, R2, as well as 

non-consistency between the experimental and predicted Q 
values reported in Table I for linear Thomas model, imply that 
it was not successful at all to achieve reliable parameters for 
describing the experimental data. It could be due to the 
asymmetry profile of the experimental breakthrough curves. 
The Thomas model simply ignores axial dispersion and also is 
useful for fitting symmetry curves [13], [18]. 

 

 

Fig. 2 The breakthrough curves for three consecutive cycles by 
nonlinear Thomas model 

 
As an alternative method, the model directly fitted to the 

experimental data using a nonlinear least-squares fitting by 
Excel software. It can be seen from Table I that the R2, SSE, 
MSE, and RMSE are significantly good for nonlinear Thomas 
model. Furthermore, the predicted ܳ values are in good 
agreement with the experimental ones. The dashed lines in 
Fig. 2 illustrate data fitting by Thomas model for three cycles. 

As can be seen in Fig. 2, there are over predictions in the 
leading and trailing edges of the curves. 

The input variables of NNs significantly affect their 
efficiency, since they reflect the physical principles of the 
studied system. The input data have been normalized between 
zero and one prior to training step. The input variable in this 
study is the process time. The structure of an ANN network 
comprises of three layers, including: input, hidden, and the 
output. There is one node in input layer corresponded to one 
input operating variable. The inputs are directly sent from the 
input nodes to the hidden layer (considered one) by the 
weights, where the main data processing is performed there by 
the calculation of inputs weighted summation. The output 
layer has one node since there is only one output variable, the 
ratio of input cadmium concentration in to output cadmium 
concentration. It is worth noting that a set of initial values are 
assigned to weights which are corrected during the training 
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through the comparison between experimental data and the 
model results. The minimization of errors is done as the result 
of their back propagation.  

70%, 80%, and 80% of all of cycles 1, 2, and 3 
experimental data are randomly selected for the training and 
the rest were used for the network testing. The hidden layer 
neuron number is determined through the minimization of 
difference between the validation set of data and the results of 
network calculations. LM algorithm presented more accurate 
results during the training compared to scaled conjugate 
gradient, gradient descent with momentum, adaptive learning 
rate back-propagation, and resilient back-propagation. 
Therefore, the current network was trained using LM 
algorithm. After the training the network was tested by the 
new set of data which were not used during the training. Fig. 3 
represents the graphical comparison between the experimental 
data and the results of ANN modeling. The dashed lines 
depicted in Fig. 3 shows the data prediction by ANN model.  

 

 

Fig. 3 The breakthrough curves for three consecutive cycles by ANN 
modelling 

 
The value of correlation coefficient was 0.999, which 

denotes that the model output follows the target properly. It 
can be said that there is an excellent agreement between the 
data produced by the experimental data and the results of 
ANN modeling. 

The values of SSE, MSE, RMSE, and ܴଶare reported in 
Table I.  

The high value of ܴଶ and the reported errors show that the 
output variations are shown well by the target. The results of 
modeling approved the fact that ANN is an appropriate tool to 
predict the ratio of input cadmium concentration in to output 
cadmium concentration. 

Figs. 4 (a)-(c) show the evaluation of network error in 
training, validation, and testing as a function of learning 
epochs. The MSE became constant after 7, 1, and 7 epochs in 
cycles 1, 2, and 3, respectively, which denotes the network 
convergence. Therefore the acceptable error was achieved 
these number of epochs. 

 

 

Fig. 4 Evolution of MSE values of training, validation, and test errors 
during ANN training for cycles 1 (a), 2 (b), and 3 (c) 

IV. CONCLUSION 

A reliable modeling can be useful for characterizing the 
breakthrough curve. It can be also applied for design 
parameter adjustment or prediction the system behavior. A 
semi empirical model, Thomas, and a neural network based 
modeling, ANN, were employed to describe the breakthrough 
data obtained by cadmium biosorption from potable water 
using a packed-bed column. It was found that, the precision of 
parameters obtained by the linear form of Thomas model was 
not good enough to describe the experimental data. However, 
fitting the nonlinear form of Thomas directly to the 
experimental data achieved more precise results. The ANN 
modeling results suggest a reliable method for predicting the 
breakthrough data. The high values of correlation of 
coefficient, Rଶ, revealed that this approach well fitted the 
experimental data and can be applicable for prediction of 
cadmium removal from potable water. 
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