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Abstract—We present a trigonometric scheme to approximate a
circular arc with its two end points and two end tangents/unit
tangents. A rational cubic trigonometric Bézier curve is constructed
whose end control points are defined by the end points of the circular
arc. Weight functions and the remaining control points of the cubic
trigonometric Bézier curve are estimated by variational approach to
reproduce a circular arc. The radius error is calculated and found less
than the existing techniques.

Keywords—Control points, rational trigonometric Bézier curves,
radius error, shape measure, weight functions.

I.  INTRODUCTION

IRCLES are around us everywhere and inspired the

mankind even before the beginning of recorded history.
Circles are the main source of many wonderful inventions,
such as circular ripples, wheels, circular gears which run the
machines in urban factories and make our life much easier.
Circular arcs are basic tools in engineering design, web design
and mobile design. They are also used as user interface tool
and in many other projects due to their exceptional properties
such as constant curvature, constant distance from a fixed
point etc.

The trigonometric polynomial curves were first introduced
by Schoenberg [6]. The control point form of quadratic and
cubic trigonometric polynomial curves were presented by Han
in [3] and [4]. Wang, Chen and Zhou [7] defined
trigonometric B-splines, known as algebraic-trigonometric B-
splines (NUAT). These contributions only narrowed down the
properties of trigonometric polynomial curves and did not
focus on its applications. The authors in [7] used trigonometric
polynomial curves for the shape preservation of data.

In this research paper, the circular approximation problem is
considered. This problem is defined as: Given two end points
and end tangents/unit tangents of a circular arc, construct a
curve which interpolates the end points of circular arc and
close to it between these endpoints.

Integral Bézier curves were in account for the
approximation of circular arc by a number of researchers. Lee
[5], Goldapp [2] and Fang [1] presented the G°, G! and G?
approximations of circular arc by quadratic, cubic and quintic
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Bézier curves respectively. The radius error between the
circular arc and the approximating Bézier was minimized to
obtain the best approximation.

In this research paper, rational cubic trigonometric Bézier
curves are developed for approximating circular arc,
particularly when its
1. Two end points and end tangents vectors are given.

2. Two end points and end unit tangents vectors are given.

Il.  RATIONAL TRIGONOMETRIC BEZIER CURVE

In this section, rational quadratic and cubic trigonometric
Bézier curves are introduced over the interval [o,%].

The parametric form of newly developed rational quadratic
trigonometric Bézier curve p(t),t € [0,%], is defined by the
relation given in (1):

p(t) = ZsoprbiOw 1)

O

where bZ(t) and w, are the quadratic trigonometric basis
functions and weight functions respectively. po, p;, p, are the
control points of rational quadratic trigonometric Bézier curve.
The quadratic trigonometric basis functions b2(t) of (1), are
defined as

b2(t) = (1 —tan(t))?, b2(t) = 2(1 — tan(t)) tan(t), b3(t) = tan?(t).

It can be easily verified that

Y2 _oR2(t) =1and R2(t) = 0fork =0,12, (2)
where
RE() = i
and

p(0) = po, p(Z) = P2 ®)

Thus from (2) and (3), the rational quadratic trigonometric
Bézier curve (1), satisfies the convex-hull property and
endpoints interpolation property.

The parametric form of the developed rational cubic
trigonometric Bézier curve is given by the following relation.

_ Soribi(Ow ™
x(t) = SO 0<t<? 4)
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where T, i; and b} (t)are the control points, weight functions
and basis functions respectively. These cubic trigonometric

basis functions b} (t), are defined as
300 = (3 3—ig o icp) i —
b3(t) = (l) (1 - tan())3"itani(t),i = 0,1,2,3.  (5)

The cubic trigonometric Bézier curve (4) satisfies the
following properties:
(i) End point interpolation property: x(0) = ro and x(%) = r3,
(ii) Convex-hull property:

PRI =1,R}() =0fori=0,1230<t<T,
where
3
RH©) = RO/ ) b O
i=0

The weight functions wy, k =0,1,2, and y;,i=0,1,2,3, are
positive real numbers.

By

Tp =1y rs =P,

Fig. 1 The control polygon of rational quadratic and rational cubic
Bézier curve

I1l.  REPRESENTATION OF A CIRCLE BY TRIGONOMETRIC
BEzIER CURVES

In this section, the rational quadratic and rational cubic
representations of a circular arc are established. If the control
points p,, p1, v, form an isosceles triangle with base p,p,and
the weight functions wy, k = 0,1,2 taken as

wo =w, =1, w; = cosé, (6)

then the rational quadratic trigonometric Bézier curve (1)
represents circle. Here @ is the base angle of the triangle A
pop1P2 (See Fig. 1). Thus the rational quadratic trigonometric
Bézier curve (1) is rewritten as

Pob3 (1) +p1w1bF () +p2b3 (1) (7)
b§ (t)+w1bf (t)+b3 ()

p(t) =

The control point p, is the intersection of the lines given by
the end points p,, p, along with unit tangents t,, t; at p, and
p2 respectively as shown in Fig. 1. Now by degree elevation
of rational quadratic trigonometric Bézier curve (7), we get a
rational cubic trigonometric representation of the same
circular arc with control pointsry, ry, r,andr; and weights
1,u4,u5, 1. The relation between control points and weights of

rational quadratic trigonometric Bézier curve (7) and rational
cubic trigonometric Bézier curve (4) is given as follows

_ 2w1p1+po _ 2wip1tp2 _
To =Po "1="1,20) ' T2 = (42w, ' 13 = P2
U= Uy = %(1 + 2w;), where w; = cos 8. (8)

Thus the rational cubic trigonometric Bézier curve is
rewritten as

_ 1ob3 (D) +114, b3 (£)+72u,b3 (1) +73b3 (1)
() = e b O+ b3 0+ 53O ©)

where control points r;, i = 0,1,2,3 and weight functions u,u,
are defined in (8).

With reference to Fig. 1, the following notations are
introduced

llr3—oll
m= 3 0’
2

my = Ip1 = Pollng = lIry — 1oll,6 = m £ pypop,. (10)

It can be seen from Fig. 1 that cosf = ==, or my = —

mg cosf’

Also, putting the values of ry and r4 from (7) in (10) to get

ng =Lmo. Since w; = cos 8, SO n, can be written as a
(1+2w,)

function of 6 as

Ny = —2 (11)

= G+2cos6)’
By vector algebra, from Fig. 1, we have
ry —To = Nolyp. 12)
From (10) and (11), we get

2m (13)

ri =T — 1.
1 0 + (142 cos 8) to

2m t
(1+2cos@) 1*

Similarly, r, = r; —
IV. RATIONAL CuBIC TRIGONOMETRIC APPROXIMATION OF
CIRCLE WHEN TwO END POINTS AND END TANGENTS ARE
GIVEN

In this section, the problem of approximation of a circle by
rational cubic trigonometric Bézier curve (9) is discussed. If
two end points and end tangents of a circular arc are given,
then the end control points ry and r3of the rational cubic
trigonometric Bézier curve (9) are equal to the end points of
the given circular arc. For solving this problem, we calculate
the control points r;,r, and the corresponding weights
U1, Uo. From Fig. 1, we have

rH =Ty + kOtOI o =7T3— kltlv (14)
where toand t; are the end tangents, given as t, = ||1E3||
b )
[EC
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The derivative vectors x(0) and ;‘c(%) are computed as

#(0) = 3, (ry — 7o) and (%) = 3w, (3 —1,). Using (14),
these derivative vectors are rewritten as

#(0) = 3pskotoand # (3) = 3ps,k, ;.

This gives
o =l gng g, — ||"‘3(uzz)||] (15)
where
I :§(1+2c0590) and u, =§(1+2c0501). (16)

6, is the angle between x(0) and r; — reand 6,is the angle
between x(%) and rz —ry. Now, when the input data is

coming from a circle, then the rational cubic trigonometric
Bézier curve, with control points and weights defined in (8),
will reproduce the circle.

V. RATIONAL TRIGONOMETRIC CUBIC APPROXIMATION OF
CIRCLE WHEN TwO END POINTS AND END UNIT TANGENTS
ARE GIVEN

In this section, the problem of approximation of a circle is
discussed when its two end points and end unit tangents, t,
and t,; are given. Again the end points of the rational cubic
trigonometric Bézier curve are identical to the end points of
the given circular arc. Thus we have to find the Bézier points
ry and r, and the weights y; and y,. The unit tangents ¢, and
tymake the angles 8,and 6,with the base ryr; respectively.
Using (13), we can find the Bézier points r;and r; i.e.

2m 7

r=r — .
1 3 + (1+2cos6,) tl

2m
o+ mto, ry=r
The corresponding weight functions p, and p, are
calculated by (16). The other weights are unity. The angles 8,
and 6;are approximated by minimizing the shape measure
quantities s;(x) and s,(x) defined in (18) and (19)
respectively.

n
4

s1(x) = [k’ (D] dt. (18)
s, (x) = |approximated radius — exact radius| (19)

Equation (18) shows that the change in curvature is more
significant than its magnitude. The discontinuous curvature is
acceptable as long as the slope k'(t) is continuous. The quality
of the developed rational cubic trigonometric circular
approximation scheme is measured by g (x), defined by

aG) = [ [ 5(60,61)d0,d0;. (20)

Here,a, b,c,d are the limitations of admissible values for
6yand 6;. Here a = —-90°, b =90° and ¢ =90°, d = 270° i.e.
all acceptable t, have a positive x-component, and all
admissible t{have a negative x-component.

VI. NUMERICAL EXAMPLES

In this section, a circular arc is estimated by the schemes

developed in Sections IV and V.

(a). Minimization of s;(x): In this case the values of 8, and
6, are obtained by minimizing the integral given in (18)
for rational cubic trigonometric Bézier curve (9). The end
points of the circle are taken as ro(—1,0)and r3(1,0). The
optimized values of 6, = 1.6435and 6,=1.4732, and
corresponding to these values we have r(—1,1.6896),
15(1,2.0350), pu; = 0.3946 and p, = 0.3276. The resulting
graph is close to circle with radius error between 0 and
0.0836. The approximated circle is shown in Fig. 2.

(b). Minimization of s,(x): In this case the values of 6, and
6, are obtained by minimizing the integral given in (19)
for (9). The end points of the circle are taken as r(—1,0)
and r3(1,0). The optimized values of 6, =1.5708 and
0,=1.5708, and corresponding to these values we have
r1(=1,2), 7(1,2), u, =0.333 and pu, =0.3333. The
resulting graph is close to circle with radius error between
0 and 9.9880x 10~%. The approximated circle is shown
in Fig. 3.

(c). Geometric Approach: When we used the geometric
approach, the circle is reproduced with 6, =§ and elzg

(See Fig. 4). Corresponding to these values, we have
r1(=12), 12(1.2), py =3 and g, =3 In this case, the
rational trigonometric curve (9) will reproduce the circle
(See. Fig. 5) which is the same as obtained by the
minimization of s,(x). In Figs. 6 and 7 the curvature
derivative plots of (9) are shown for the above mentioned
cases.

VII. CONCLUSION

In this research paper, we have discussed the rational cubic
trigonometric techniques to approximate the circle. We have
used approaches, the variational and the geometric one. The
quality of the rational cubic trigonometric problem is
calculated using (20), which is found to be g(x) = 17.6099. It
is 375.3 for polynomial Hermite interpolant it is 375.3. This
shows that our rational cubic trigonometric schemes did better
than integral and rational polynomial Hermite interpolant.
Radius error is found less than many existing schemes [1].
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Fig. 2 A rational cubic trigonometric approximation of circle using
51(x)
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Fig. 3 A rational cubic trigonometric approximation of circle using
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Fig. 4 Tangents direction
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Fig. 5 The graphical representation of circle using geometric
approach
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Fig. 6 Curvature derivative plot of cubic trigonometric Bézier using
geometric approach
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Fig. 7 Curvature derivative plot of cubic trigonometric
Bézier using variational approach
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