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Abstract—We present a trigonometric scheme to approximate a 

circular arc with its two end points and two end tangents/unit 
tangents. A rational cubic trigonometric Bézier curve is constructed 
whose end control points are defined by the end points of the circular 
arc. Weight functions and the remaining control points of the cubic 
trigonometric Bézier curve are estimated by variational approach to 
reproduce a circular arc. The radius error is calculated and found less 
than the existing techniques. 

 
Keywords—Control points, rational trigonometric Bézier curves, 

radius error, shape measure, weight functions. 

I. INTRODUCTION 

IRCLES are around us everywhere and inspired the 
mankind even before the beginning of recorded history. 

Circles are the main source of many wonderful inventions, 
such as circular ripples, wheels, circular gears which run the 
machines in urban factories and make our life much easier. 
Circular arcs are basic tools in engineering design, web design 
and mobile design. They are also used as user interface tool 
and in many other projects due to their exceptional properties 
such as constant curvature, constant distance from a fixed 
point etc. 

The trigonometric polynomial curves were first introduced 
by Schoenberg [6]. The control point form of quadratic and 
cubic trigonometric polynomial curves were presented by Han 
in [3] and [4]. Wang, Chen and Zhou [7] defined 
trigonometric B-splines, known as algebraic-trigonometric B-
splines (NUAT). These contributions only narrowed down the 
properties of trigonometric polynomial curves and did not 
focus on its applications. The authors in [7] used trigonometric 
polynomial curves for the shape preservation of data. 

In this research paper, the circular approximation problem is 
considered. This problem is defined as: Given two end points 
and end tangents/unit tangents of a circular arc, construct a 
curve which interpolates the end points of circular arc and 
close to it between these endpoints.  

Integral Bézier curves were in account for the 
approximation of circular arc by a number of researchers. Lee 
[5], Goldapp [2] and Fang [1] presented the ,  and  
approximations of circular arc by quadratic, cubic and quintic 
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Bézier curves respectively. The radius error between the 
circular arc and the approximating Bézier was minimized to 
obtain the best approximation.  

In this research paper, rational cubic trigonometric Bézier 
curves are developed for approximating circular arc, 
particularly when its 
1. Two end points and end tangents vectors are given. 
2. Two end points and end unit tangents vectors are given. 

II. RATIONAL TRIGONOMETRIC BÉZIER CURVE 

In this section, rational quadratic and cubic trigonometric 

Bézier curves are introduced over the interval 0, . 

The parametric form of newly developed rational quadratic 

trigonometric Bézier curve , 0, , is defined by the 

relation given in (1): 
 

∑

∑
,                           (1) 

 
where  and  are the quadratic trigonometric basis 
functions and weight functions respectively. , ,  are the 
control points of rational quadratic trigonometric Bézier curve. 
The quadratic trigonometric basis functions  of (1), are 
defined as 
 

1 , 2 1 , . 
 
It can be easily verified that  
 

∑ 1 and 0 for 0,1,2,    (2) 
 
where 

∑
, 

 
and 

0 , .        (3) 
 

Thus from (2) and (3), the rational quadratic trigonometric 
Bézier curve (1), satisfies the convex-hull property and 
endpoints interpolation property. 

The parametric form of the developed rational cubic 
trigonometric Bézier curve is given by the following relation. 

 
∑

∑
, 0 ,  (4) 
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where ,  and are the control points, weight functions 
and basis functions respectively. These cubic trigonometric 

basis functions , are defined as 
 

 3 1 , 0,1,2,3.   (5) 

 
The cubic trigonometric Bézier curve (4) satisfies the 

following properties: 
(i) End point interpolation property: 0  and , 
(ii) Convex-hull property:  

 
∑ 1 ,  0 for 0,1,2,3,0 ,  

 
where 

/ . 

 
The weight functions , 0,1,2, and , 0,1,2,3, are 

positive real numbers. 
 

 

Fig. 1 The control polygon of rational quadratic and rational cubic 
Bézier curve 

III. REPRESENTATION OF A CIRCLE BY TRIGONOMETRIC          

BÉZIER CURVES 

In this section, the rational quadratic and rational cubic 
representations of a circular arc are established. If the control 
points , ,  form an isosceles triangle with base and 
the weight functions , 0,1,2 taken as  

 
1, cos ,                       (6) 

 
then the rational quadratic trigonometric Bézier curve (1) 

represents circle. Here  is the base angle of the triangle 
 (See Fig. 1). Thus the rational quadratic trigonometric 

Bézier curve (1) is rewritten as 
 

.       (7) 

 
The control point  is the intersection of the lines given by 

the end points ,  along with unit tangents ,  at  and 
 respectively as shown in Fig. 1. Now by degree elevation 

of rational quadratic trigonometric Bézier curve (7), we get a 
rational cubic trigonometric representation of the same 
circular arc with control points , , and  and weights 
1, , , 1. The relation between control points and weights of 

rational quadratic trigonometric Bézier curve (7) and rational 
cubic trigonometric Bézier curve (4) is given as follows 

 
, , , , 

 1 2 , where  cos .    (8) 
 

Thus the rational cubic trigonometric Bézier curve is 
rewritten as 
 

.      (9) 

 
where control points , 0,1,2,3 and weight functions ,  
are defined in (8). 

With reference to Fig. 1, the following notations are 
introduced  
 

, , ,  . (10) 
 

It can be seen from Fig. 1 that cos , or . 

Also, putting the values of  and  from (7) in (10) to get 
. Since cos , so  can be written as a 

function of  as  
 

.         (11) 

 
By vector algebra, from Fig. 1, we have   

 
.         (12) 

 
From (10) and (11), we get 
 

cos
.       (13) 

 

Similarly, . 

IV. RATIONAL CUBIC TRIGONOMETRIC APPROXIMATION OF 

CIRCLE WHEN TWO END POINTS AND END TANGENTS ARE 

GIVEN 

In this section, the problem of approximation of a circle by 
rational cubic trigonometric Bézier curve (9) is discussed. If 
two end points and end tangents of a circular arc are given, 
then the end control points  and of the rational cubic 
trigonometric Bézier curve (9) are equal to the end points of 
the given circular arc. For solving this problem, we calculate 
the control points ,  and the corresponding weights 

, . From Fig. 1, we have 
 

, ,                   (14) 
 

where and  are the end tangents, given as and 

. 
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