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 
Abstract—Several of the practical industrial control processes are 

multivariable processes. Due to the relation amid the variables 
(interaction), delay in the loops, it is very intricate to design a 
controller directly for these processes. So first, the interaction of the 
variables is analyzed using Relative Normalized Gain Array 
(RNGA), which considers the time constant, static gain and delay 
time of the processes. Based on the effect of RNGA, relative gain 
array (RGA) and NI, the pair (control configuration) of variables to 
be controlled by decentralized control is selected. The equivalent 
transfer function (ETF) of the process model is estimated as first 
order process with delay using the corresponding elements in the 
Relative gain array and Relative average residence time array 
(RARTA) of the processes. Secondly, a decentralized Proportional-
Integral (PI) controller is designed for each ETF simply using 
frequency response specifications. Finally, the performance and 
robustness of the algorithm is comparing with existing related 
approaches to validate the effectiveness of the projected algorithm. 

 
Keywords—Decentralized control, interaction, Multivariable 

processes, relative normalized gain array, relative average residence 
time array, steady state gain. 

I. INTRODUCTION 

ONTROLLING of multivariable processes is 
significantly intricate than those process which have 

single input and single output. During the past several years, 
despite of the lot of theoretical developments in analysis and 
design of multivariable process control systems, a 
decentralized control technique is still extensively using in 
many of industrial control processes [1], [2], because of 
simple implementation, proficient maintenance, simple tuning 
approaches and robust performance even under model 
mismatches and uncertainties. It is soundly identified that the 
decentralized controllers are intrinsically further robust, even 
under disturbances, interactions and controller loop failures.  

The fundamental step, which is predominantly used in 
design of a decentralized control, is the identification of 
control configuration. The pioneering effort of Bristol [3], 
introduced the RGA and it is the first method proposed for 
control configuration. Moreover, RGA pairing criterion 
considers only the static gain of the process, which may result 
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in incorrect measures of interaction and consequently the loop 
pairing decisions. 

To overcome the boundaries of RGA, dynamic RGA 
(DRGA) was proposed, which employs the transfer function 
model in place of static gain matrix to estimate RGA [4], [5]. 
However, DRGA is a lot controller dependent which makes 
more complex to understand by practice engineers. Xiong et 
al. [6] was projected an Effective Relative Gain Array 
(ERGA). However, the computation of ERGA depends on 
critical frequency of individual transfer function elements [6], 
[7], different assortment criteria for critical frequency point’s 
effect in different REGAs, subsequently; it causes suspicions 
in selection of control configurations.  

Recently, He et al [8] was projected a Relative Normalized 
Gain Array (RNGA), which considers both static and transient 
behavior of process. 

In this paper we used, the RNGA based pairing rules in 
combination with the RGA and Niederlinski’s index (NI). 
According to the values of RNGA, NI the control 
configuration is selected. Hence, Equivalent Transfer 
Functions (ETF) of model is approximated by the 
corresponding RGA, RNGA and RARTA [8], [9]. Controllers 
for each selected loop are designed individually based on 
constraints of gain margin and phase margin [10], [11]. The 
structure of decentralized control for interactive multivariable 
processes with closed loop is shown in Fig. 1.  

 

 

Fig. 1 Decentralized control of interactive multivariable processes  

II. SELECTION OF CONTROL CONFIGURATION 

The efficiency of decentralized control system is 
exclusively depends on pairing of controlled and manipulated 
variable. Here it is done by the integration of relative 
normalized gain array, relative gain array and Niederlinski’s 
Index (RNGA-RGA-NI). This is explained in the following 
sub sections. 

A. Relative Gain Array 

The Relative Gain Array (RGA) is defined and computed as 
follows: Let pG (s) is the n n  multivariable process, 

 

Control Configuration Selection and Controller Design 
for Multivariable Processes Using Normalized Gain 

R. Hanuma Naik, D. V. Ashok Kumar, K. S. R. Anjaneyulu 

C 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:8, No:10, 2014

1644

 

 

11 12 1n

21 22 1n

n1 n 2 nn

g (s) g (s) ... g (s)

g (s) g (s) ... g (s)

... ... ... ...

g (s) g (s) ... g (s)

G (s) =p

 
 
 
 
 
 
 

                        (1) 

 
Assume that, each element of the 

pG (S) be represented by 

first order process with delay time (FOPDT) model as, 
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Therefore, RGA ( )  for n n  systems is,  
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If the value of RGA ( )  is greater than 0.5 and approaches 

in the direction of unity, the interaction also leads between 
corresponding pairs [4]. The pairing which directs the 
instability is avoided by means of Niederlinski’s theorem. The 
Niederlinski’s index (NI) for the control configuration above 
is denoted by N(G) and expressed as,  

 

pG (0 )
N (G ) = i, j = 1 , 2 , 3 , . . . . .n

π g ij        (3) 
 

where pG (0)  represents determinant of matrix pG (0)  and

ijg  represents product of diagonal elements of G(0) for a 

centralized control system. For a stability of composite 
nonlinear system, NI should be greater than zero. 

B.  Relative Normalized Gain Array (RNGA)  

The process normalized gain N,ij(K ) for each particular 

transfer function element ij(g (s)) is defined as [9], 

 
ij ij

N,ij
ij ij ij

k k
K  

                                       (4) 
 

Here ij  is the average residence time (ART) and it 

represents the fastness of controlled variable to manipulated 
variable. The RNGA ( )  is expressed using process 

normalized gain, and hence, it can be determined as, 
 

T
N NK K                                          (5) 

 
where ' ' is element by element product. Thus the RGA-NI-
RNGA rules for selection of control configuration are 
developed as [8]: i) All paired Relative Gain Array elements 
should be positive, ii) Corresponding Niederlinski’s index 
(NI) is positive, iii) The paired Relative Normalized Gain 

Array elements must closest to 1.0 and iv) The huge RNGA 
value elements must be avoided. 

III. EQUIVALENT TRANSFER FUNCTION MODEL (ETF) 

To obtain ETF between when all other loops are open and 
closed, we first define the Relative average residence time 

ij( )
 
as the relation of the loop yi-ui average residence time, 

when all other loops are closed and open, 
 

ij ij
ij

ij ij

̂ 
  

 
                                       (6) 

 

The relative average residence time ij( )  in array form, 

known as relative average residence time array (RARTA) and 
it is expressed as, 

 

11 12

21 22

  
     

                               (7) 

 
By (4) and (6), it can be rewritten as, 
 

 ij ij ij ij ij ij ij̂                                       (8) 
 

By using RNGA ( ) , RARTA ( ) and RGA ( ) , ETF 

when all other loops open is written as, 
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where i j̂  is the delay time of the equivalent transfer function 

(ETF). From this, ETF when all other loops closed becomes, 
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IV. DECENTRALIZED CONTROL DESIGN 

The controller (PI) of each loop is considered as in the 
standard form: 

 
i,i

c ,i p ,i

k
g (s) k

s
                                  (11) 

 
Similarly, ETF of the main loop (i.e. diagonal element) of 

Ĝ(s)  is represented as, 
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Then, the open loop system transfer function is, 
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Abbreviating the gain margin (GM) and phase margin (PM) 
specifications as m,iA and m,i , their crossover frequencies as

g,i and p,i , respectively, we get,            

   

c,i g,i ii g,iˆarg[g (j )g (j )]   
                          (14) 

m,i c,i g,i ii g,iˆA g ( j )g ( j ) 1  
                          (15) 

c,i p,i ii p,iˆg ( j )g ( j ) 1  
                                (16) 

 m,i c,i p,i ii p,iˆarg[g ( j )g ( j )]                               (17) 

 
By substitution and oversimplification, we obtain, 
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which results,                                                                 
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By these relations, some of possible gain margin (GM) and 

phase margin (PM) values are listed in Table I. 
 

TABLE I 
TYPICAL VALUES OF GAIN AND PHASE MARGINS 

m,i  /4  /3  3 /8  2 /5  

m,iA  2 3 4 5 

 
The controller parameters are computed as [8], 
 

,ii
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         (18) 

V. PERFORMANCE AND ROBUSTNESS 

In design of control system, large values of GM and PM 
leads to sluggish closed loop response, while small values 
result in less sluggish and more oscillatory [12]. The choices 
for GM and PM should also replicate model exactness and 
expected process changeability. The entire response, from t=0 
sec until steady state has been reached, can be used for the 
formulation of a dynamic performance criterion. These are 
integral of absolute error (IAE) and integral of square error 
(ISE): 
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whereas IAE penalizes little errors, ISE penalizes huge errors 
in the processes. The GM and PM values used, quantify the 
amount of uncertainty that can be tolerated. Here GM 3 and

0PM 60 are selected as robustness boundaries [13], [14].                         

VI. SIMULATION RESULTS 

Example.1: Consider the process ISPR (Industrial scale 
polymerization reactor) proposed by Chien et al. [15] is, 

p

22.89 -11.64-0.2s -0 .4se e
4.572s + 1 1.807s + 1G (s) =

4.689 5.80-0.2s -0 .4se e
2.174s + 1 1.801s + 1

 
 
 
 
 

 

 

The RGA ( ) , RNGA ( ) , NI values for main diagonal and 

off diagonal pairing of Example.1 is given in Table II.  
 

TABLE II 
THE RGA, RNGA, NI VALUES OF DIAGONAL PAIRINGS. 

S.No Control configuration RGA(  ) RNGA(  ) NI 

1 (1,1)-(2,2) 0.7087 0.5482 1.4111 

2 (1,2)-(2,1) 0.2913 0.4518 -3.4323 

 
The results of RGA-NI-RNGA, suggests the pair of u1-y1, 

u2-y2 and corresponding equivalent transfer function as per 
(10), can be written as,     

                                                       

0.1547s 0.3094s
11 22

32.3003 8.1844ˆ ˆg (s) e g (s) e
3.5368s 1 1.3932s 1

  
   

 
The phase and gain margin chosen for the controller design 

are, 720 and 5.0 respectively. The proposed Decentralized 
controllers (RNGA-DCC) together with other related methods 
are listed in Table III. 
 

TABLE III  
DECENTRALIZED CONTROLLER FOR EXAMPLE.1 

Control loop 
RNGA-DCC RGA-DCC NDT-PI [13] 

kp,ii i,ii  kp,ii i,ii  kp,ii i,ii  

Control Loop 1 0.2222 3.5368 0.263 1.42 0.3561 1.3920 

Control Loop 2 0.1727 1.3932 0.163 1.77 0.2838 1.4374 

 
Fig. 2 and Table IV show the performance for different 

tuning methods with sequential set point changes in loops.  
 

TABLE IV 
PERFORMANCE OF EXAMPLE.1 (MP% IS OVERSHOT AND TR IS RISE TIME) 

Tuning Method Input(u)-output(y) IAE ISE Mp (%) Tr 

RNGA-DCC u1-y1 2.638 1.248 19.5 1.225 

u2-y2 2.157 1.052 19.4 1.760 

RGA-DCC u1-y1 2.592 1.003 37.0 0.945 

u2-y2 2.296 1.114 11.5 1.900 

NDT-PI u1-y1 4.134 1.702 49.0 0.7424 

u2-y2 3.18 1.223 48.9 1.1700 
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TABLE VI  
PERFORMANCE OF EXAMPLE.2 (MP% IS OVERSHOT AND TR IS RISE TIME) 

Tuning Method Input(u)-output(y) IAE ISE Mp(%) Tr 

RNGA-DCC u1-y1 17.48 8.533 32.00 11.39 

u2-y2 

u3-y3 
13.62 
21.02 

8.25 
10.89 

16.70 
10.10 

13.40 
20.20 

Loh.et.al u1-y1 18.79 8.992 48.60 10.14 

u2-y2 

u3-y3 
17.22 
17.04 

9.392 
8.905 

25.40 
26.90 

14.40 
12.60 

VII. CONCLUSIONS 

In this paper, RNGA DCC is intended for multivariable 
processes. The control relationship is selected based on 
RNGA. The coupling is done by the integrity of RGA-NI-
RNGA rules. The ETF of the process was determined with the 
assist of RGA, RNGA and RARTA. Consequently, the 
decentralized controllers designed simply by means of single 
loop frequency response approach. Here, two different 
dimensional industrial processes are considered for study of 
the effectiveness of proposed method. Simulation results of 
these processes shows that the projected RNGA DCC provides 
the overall better performance comparing to the other related 
approaches in terms of IAE, ISE, rise time and overshoot. The 
pro of this method is simple to use by field engineers and 
more significant for high dimensional processes with modest 
interaction and even under model mismatches. 
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