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 
Abstract—Exact solution of an unsteady flow of elastico-viscous 

electrically conducting fluid through a porous media in a tube of 
elliptical cross section under the influence of constant pressure 
gradient and magnetic field has been obtained in this paper. Initially, 
the flow is generated by a constant pressure gradient. After attaining 
the steady state, the pressure gradient is suddenly withdrawn and the 
resulting fluid motion in a tube of elliptical cross section by taking 
into account of the transverse magnetic field and porosity factor of 
the bounding surface is investigated. The problem is solved in two-
stages the first stage is a steady motion in tube under the influence of 
a constant pressure gradient, the second stage concern with an 
unsteady motion. The problem is solved employing separation of 
variables technique. The results are expressed in terms of a non-
dimensional porosity parameter (K), magnetic parameter (m) and 
elastico-viscosity parameter (β), which depends on the Non-
Newtonian coefficient. The flow parameters are found to be identical 
with that of Newtonian case as elastic-viscosity parameter and 
magnetic parameter tends to zero and porosity tends to infinity. It is 
seen that the effect of elastico-viscosity parameter, magnetic 
parameter and the porosity parameter of the bounding surface has 
significant effect on the velocity parameter. 

 
Keywords—Elastico-viscous fluid, Elliptic cross-section, Porous 

media, Second order fluids. 

I. INTRODUCTION 

LOW through porous media has been the subject of 
considerable research activity in recent years because of 

its several important applications notably in the flow of oil 
through porous rock, the extraction of geothermal energy from 
the deep interior of the earth to the shallow layers, the 
evaluation of the capability of heat removal from particulate 
nuclear fuel debris that may result from a hypothetical 
accident in a nuclear reactor, the filtration of solids from 
liquids, flow of liquids through ion exchange beds, drug 
permeation through human skin, chemical reactor for 
economical separation or purification of mixtures and so on. 

In many chemical processing industries, slurry adheres to 
the reactor vessels and gets consolidated. As a result of this, 
the chemical compounds within the reactor vessel percolates 
through the boundaries causing loss of production and then 
consuming more reaction time. In view of such technological 
and industrial importance wherein the heat and mass transfer 
takes place in the chemical industry, the problem by 
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considering the permeability of the bounding surfaces in the 
reactors attracted the attention of several investigators. An 
important application is in the petroleum industry, where 
crude oil is tapped from natural underground reservoirs in 
which oil is entrapped. Since the flow behaviour of fluids in 
petroleum reservoir rock depends, to a large extent, on the 
properties of the rock, techniques that yield new or additional 
information on the characteristics of the rock would enhance 
the performance of the petroleum reservoirs. A related bio-
mechanical application is the flow of fluids in the lungs, blood 
vessels, arteries and so on, where the fluid is bounded by two 
layers which are held together by a set of fairly regularly 
spaced tissues.  

Viscous fluid flow over wavy wall had attracted the 
attention of relatively few researchers although the analysis of 
such flows finds application in different areas, such as 
transpiration cooling of re-entry vehicles and rocket boosters, 
cross hatching on ablative surfaces and film vaporization in 
combustion chambers etc. Especially, where the heat and mass 
transfer takes place in the chemical processing industry, the 
problem by considering the permeability of the bounding 
surface in the reactors assumes greater significance. Many 
materials such as drilling muds, clay coatings and other 
suspensions, certain oils and greases, polymer melts, 
elastomers and many emulsions have been treated as non-
Newtonian fluids. Because of the difficulty to suggest a single 
model, which exhibits all properties of non-Newtonian fluids, 
they cannot be described simply as Newtonian fluids and there 
has been much confusion over the classification of non-
Newtonian fluids. However, non-Newtonian fluids may be 
classified as (i) fluids for which the shear stress depends only 
on the rate of shear; (ii) fluids for which the relation between 
shear stress and shear rate depends on time; (iii) the visco-
elastic fluids, which possess both elastic and viscous 
properties. 

Because of the great diversity in the physical structure of 
non-Newtonian fluids, it is not possible to recommend a single 
constitutive equation as the equation for use in the cases 
described in (i) – (iii). For this reason, many non-Newtonian 
models or constitutive equations have been proposed and most 
of them are empirical or semi-empirical. For more general 
three dimensional representation, the method of continuum 
mechanics is needed [1]. Although many constitutive 
equations have been suggested, many questions are still 
unsolved. Some of the continuum models do not give 
satisfactory results in accordance with available experimental 
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data. For this reason, in many practical applications, empirical 
or semi-empirical equations have been used. 

It has been shown that for many types of problems in which 
the flow is slow enough in the visco-elastic sense, the results 
given by Oldroyd’s constitutive equations will be substantially 
equal to those of the second or third order Rivilin – Ericksen 
constitutive equations [2]. Thus if this is the sense in which 
the solutions to which problems are to be interpreted, it would 
seem reasonable to use the second or third order constitutive 
equations in carrying out the calculations. This is particularly 
so in view of the fact that, the calculation will generally be 
still simpler. For this reason, in this paper, the second order 
fluid model is used. The constitutive equation for the fluids of 
second grade (or second order fluids) is a linear relationship 
between the stress, the first Rivlin - Ericksen tensor, its square 
and the second Rivlin – Ericksen tensor. The constitutive 
equation has three coefficients. There are some restrictions on 
these coefficients due to the Clausius – Duhem inequality and 
the assumption that the Helmholtz free energy is a minimum 
in equilibrium. A comprehensive discussion on the restrictions 
for these coefficients has been given in [3], [4]. One of these 
coefficients represents the viscosity coefficient in a way 
similar to that of a Newtonian fluid in the absence of the other 
two coefficients. The restrictions on these two coefficients 
have not been confirmed by experiments and the sign of these 
material moduli is the subject of much controversy [5]. The 
equation of the motion of incompressible second grade fluids, 
in general, is of higher order than the Navier – Stokes 
equation. The Navier - Stokes equation is second order partial 
differential equation, but the equation of motion of a second 
order fluid is a third order partial differential equation. A 
marked difference between the case of the Navier – Stokes 
theory and that for fluids of second grade is that ignoring the 
nonlinearity in the Navier – Stokes equation does not lower 
the order of the equation however, ignoring the higher order 
nonlinearities in the case of the second grade fluid, reduces the 
order of the equation. Exact solutions are very important for 
many reasons. They provide a standard for checking the 
accuracies of many approximate methods such as numerical 
and empirical. Although computer techniques make the 
complete numerical integration of the non-linear equations 
feasible, the accuracy of the results can be established by a 
comparison with an exact solution. Many attempts to collect 
the exact solution of the nonlinear equations for unsteady flow 
of second grade fluid have been by different researcher for 
different geometries. 

In view of several industrial and technological importance, 
[6] studied the problem of the exact solutions of two 
dimensional flows of a second order incompressible fluid by 
considering the rigid boundaries. Later, a linear analysis of the 
compressible boundary layer flow over a wall was presented 
by [7]. Subsequently, [8] studied the problem of Rayleigh for 
wavy wall while [9] examined the effect of small amplitude 
wall waviness upon the stability of the laminar boundary 
layer. Further, the problem of free convective heat transfer in a 
viscous incompressible fluid confined between vertical wavy 
wall and a particle flat wall was examined by [10], [11]. Later, 

[12] studied the free convective flow of a viscous 
incompressible fluid in porous medium between two long 
vertical wavy walls. Subsequently, [13] had examined the 
problem of MHD flow with slip effects and temperature 
dependent heat source in a viscous incompressible fluid 
confined between a long vertical wall and a parallel flat plate. 
Later, [14] examined the problem of elastico-viscous fluid of 
second order type where the bounding surface is porous and 
subjected to sinusoidal disturbances. Recently, [15] studied the 
unsteady poiseuille flow of second order fluid in a tube of 
elliptical cross section on the porous boundary.  

In all above investigations, the fluid under consideration 
was viscous incompressible fluid and one of the bounding 
surfaces has a wavy character or bounding surface subjected to 
sinusoidal disturbances. In all of the above situations, not 
much of attention has been paid on the study of unsteady flow 
of second order fluid in an infinitely long tube of circular or 
elliptical cross section on the porous boundary under the 
influence of magnetic field. Therefore, an attempt has been 
made to study the effects of the transverse magnetic field on 
the flow of incompressible viscous electrically conducting 
fluid of second order type in an infinitely long tube of 
elliptical cross section is considered under constant pressure 
gradient on the porous boundary. Hence the present 
investigation, this aspect is also studied and during the course 
of discussion both non-magnetic and magnetic cases are 
compared. The results are expressed in terms of a non-
dimensional porosity parameter, which depends on the non-
Newtonian coefficient. It is noticed that the flow properties are 
identical with those in the Newtonian case ( 

0&,0  mK ). 

II. MATHEMATICAL FORMULATION OF THE PROBLEM 

In the sense of [16] a simple material is a substance for 
which stress can be determined with entire knowledge of the 
history of the strain. This is called simple fluid, if it has 
property that at all local states, with the same mass density, are 
intrinsically equal in response, with all observable differences 
in response being due to definite differences in the history. For 
any given history )(sg , a retarded history )(sg

 can be defined 

as: 
 

)()( sgsg   ;  s0 , 10                   (1) 

 
 being termed as a retardation factor. Assuming that the 
stress is more sensitive to recent deformation that to the 
deformations at distant past, it has been established by [17]that 
the theory of simple fluids yields the theory of perfect fluids as 

0  and that of Newtonian Fluids as a correction (up to the 
order of  ) to the theory of the perfect fluids. Neglecting all 
the terms of the order of higher than two in , We have 
incompressible elastic-viscous fluid of second order type 
whose constitutive relation is governed by: 
 

2)1(
3

)2(
2

)1(
1 ijijij EEEPIS        (2) 
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where 

ijjiij UUE ,,
)1(                                 (3) 

and   

jmimijjiij UUAAE ,,,,
)2( 2                      (4) 

 

In the above equations, S is the stress-tensor, iU  and iA  

are the components of velocity and acceleration in the 

direction of the thi  coordinate iX  while P  is indeterminate 

hydrostatic pressure. The coefficients 
21,  and 

3  are material 

constants. The constitutive relation for general [18] fluid also 
reduces to (2), when the squares and higher orders of )2(E are 
neglected, while the coefficients being constants. Also the 
non-Newtonian models considered by [19] could be obtained 

from (2), when 02   and naming 3  as the coefficient of 

cross viscosity. With reference to the [18] fluids, 2  be called 

as the coefficient of elastico- viscosity.  
The Clausius-Duhem inequality and the assumption that the 

Helmholtz free energy is minimum in equilibrium provide the 
following restriction [3]. 

 

01  , 02  , 021   
 

The condition 021  is consequence of the Clausius-

Duhem inequality and the condition 02   follows the 

requirement that the Helmholtz free energy is a minimum in 
equilibrium. A comprehensive discussion on the restrictions 
for 

21,  and 
3 can be found in the work by [4]. The sign of the 

material moduli
1 , 2  is the subject of much controversy [5]. 

In the experiments on several non-Newtonian fluids, the 

experimentalists have not confirmed these restrictions 1 and 

2 . 

If V ),,( 321 UUU  is the velocity component and F

),,( zyx FFF  are the body forces acting on the system, then the 

equation of motion in X, Y and Z directions is given by: 
 

Z

S

Y

S

X

S
F

DT

DU XZXYXX
X 











  1             (5)

 
Z

S

Y

S

X

S
F

DT

DU YZYYYX
Y 











  2                (6) 

Z

S

Y

S

X

S
F

DT

DU ZZZYZX
Z 











  3               (7) 

 
where 

VVV






TDT

D  

 
If the bounding surface is porous, then the rate of 

percolation of the fluid is directly proportional to the cross 
sectional area of the filter bed and the total force, say the sum 
of the pressure gradient and the gravity force [20]. 

)(
21

21 G
HH

PP
CAq 




                        (8) 

 

where A is the cross sectional area of the filter bed, 
k

C   in 

which k  is the permeability of the material and   is the 

coefficient of viscosity and q  is the flux of the fluid. A 

straight forward generalization of (8) yields 
 

][ η-V GP
k 


                         (9) 

 
where V  is the velocity vector and η  is the unit vector along 

the gravitational force. If any other external forces are acting 
on the system, instead of gravitational force, then we have  
 

][ F-V 


 P
k                       (10) 

 

In the absence of external forces, P
k



-V  this gives 

 

V
k

P


 . 

 
Therefore, the net resulting equations (in the dimensional 

form) of motions in the X, Y and Z directions and when the 
bounding surface is porous are given by 
 

1
1 U

kZ

S

Y

S

X

S
F

DT
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X

 










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Introducing the following non dimensional variables as: 
 

L
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i 
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where T  is the (dimensional) time variable, and   the mass 

density and L  a characteristic length. 
We consider a class of plane flows given by the velocity 

components in the directions of rectangular Cartesian 
coordinates x and y. 

 

),,(1 tzyuu  and 02 u                           (14) 

 
The velocity field given by (14) identically satisfies the 

incompressibility condition. The stress can now be obtained in 
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the non-dimensional form as: 
 

2)(
y
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ps cxx 


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In view of the above, the equations of motion in the present 

case of porous boundary will yield 
X - Component: 
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Y - Component         
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Z – Component 
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Equation (18) shows that 
x

p




  must be independent of space 

variables and hence may be taken as )(t ; (19) now yields 
 

2
0 ))(2()()(
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u
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
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
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


z
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showing that )(xpp  . Therefore (18)-(20) reduce to single 

equation the flow characterized by the velocity is given by: 
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where K is the non-dimensional porosity constant and m is 
magnetic parameter. It may be noted that the presence of 
changes the order of differential from two to three.  

Consider the flow of an incompressible unsteady flow of an 
electrically conducting fluid, isothermal second order fluid in 
an infinitely long tube, under constant pressure gradient and 
negligible gravity. A magnetic field of constant strength is 
supposed to be applied parallel to y direction. The induced 
magnetic field is negligible as comparing with applied 
magnetic field, the flow is laminar it is valid for magnetic 
Reynolds number less than unity. The tube has an elliptical 

cross-section with semi-axes a and b . The flow is considered 
to be unsteady and two dimensional. Accordingly the flow 

velocity u has one non-vanishing component xu , which 

depends on the coordinates y and z  given in (21). Boundary 

conditions require that the flow velocity vanishes at the wall 

of the tube, i.e. on the ellipse 1
2

2

2

2


b

z

a

y  and that the gradient 

of the velocity vanishes at the center of the tube, .0 zy  

III. SOLUTION OF THE PROBLEM 

Erdogan has presented the unsteady flows of an 
incompressible viscous fluid in rectangular and circular cross-
sections. In this paper we have solved unsteady two 
dimensional flow problem exactly using separation of 
variables [21]. To reduce the unsteady problem given in (21) 
into steady and transient problems using following 
transformation 

 

),,(),(),,( tzygzyftzyu                (22) 
 
Using (22) in (21) we get, 
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On simplification we get following equation. 
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Comparing the terms from the above (23) we get steady and 

unsteady problems. The steady state problem is related to the 
function ),( zyf in (23) is given by: 
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After rearranging terms in above steady problem we get 

following equation: 
 

fm
Kdx

dp

z

f

y

f
)

1
(

2

2

2

2







                           (24) 

 
To solve the steady state problem by assuming solution 

),( zyf  of the following form 
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Using (25) in (24) we get steady state solution given by 
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On simplification of above equation we get the value of p
is given by 
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Now putting the value of p  in (25) we get steady state 

solution. 
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The unsteady state problem is related to the function

),,( tzyg in (23) is given by: 
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Subject to following boundary and initial conditions 
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To solve above unsteady state IBVP using separation of 

variables method and assuming solution ),,( tzyg  of the 

following form. 
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Using (29) in (27) we get 
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On simplification by using partial differentiation we get 
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Dividing byYZ and rearranging the terms 
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The modified system of differential initial and boundary 
conditions are given by  
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The solutions obtained for differential equations are 
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The solution of the unsteady problem is given by 
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and the complete velocity distribution is given by 
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VI. CONCLUSIONS 

In this paper, a problem is studied in order to show the 
effect of the applied pressure gradient in a channel of elliptical 
cross-section on unsteady flow of a fluid of second order with 
bounding surface is porous under the influence of magnetic 
field. 0m  results are obtained for velocity field in 
agreement to that [15]. When K  and 0m , the results 
obtained for the velocity field in agreement to that of [22]. The 
case of Newtonian fluid can be realized as 0 , K  

and 0m . 

APPENDIX 

1          Coefficient of viscosity                 

)(sg    Retarded history 

iA    Acceleration component in the ith coordinate 

L    Characteristic Length 
m    Dimensionless magnetic parameter  

3    Coefficient of cross-viscosity 

2    Coefficient of elastico-viscosity 

    Density of the fluid 

ia    Dimensionless acceleration component in the ith direction 

c    Dimensionless cross viscosity parameter 

    Dimensionless elastico-viscosity parameter 

F    Dimensionless External force applied 
p    Dimensionless indeterminate hydrostatic pressure 

K    Dimensionless porosity factor 

iu    Dimensionless velocity component along the ith 

coordinate 

)(sg   Given history 

P    Indeterminate hydrostatic pressure 
    Retardation factor 

S    Stress tensor 

T    Time parameter 

iU    Velocity component in the ith direction 
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