
International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:9, No:1, 2015

7

 

 

 
Abstract—The main purpose of this work was verify the 

influence of the accelerated carbonation in the physical and 
mechanical properties of the hybrid composites, reinforced with 
micro and nanofibers and composites with microfibers. The 
composites were produced by the slurry vacuum dewatering method, 
followed by pressing. It was produced using two formulations: 8% of 
eucalyptus pulp + 1% of the nanofibrillated cellulose and 9% of 
eucalyptus pulp, both were subjected to accelerated carbonation. The 
results showed that the accelerated carbonation contributed to 
improve the physical and mechanical properties of the hybrid 
composites and of the composites reinforced with microfibers 
(eucalyptus pulp). 
 

Keywords—Carbonation, cement composites, nanofibrillated 
cellulose. 

I. INTRODUCTION 

EMENT materials have low tensile strength and 
toughness, as a result of cracks formation when they are 

subjected to tensile loads. Cracking starts at the nanoscale and 
has a high impact on the durability of the matrix, because it 
facilitates the ingress of aggressive agents of the environment 
and reduces the potential performance of the building element 
and materials [1]. The incorporation of micro and nanofibers 
is a partial solution, because they act as bridge for transfer of 
stress, and is a solution to reduce the occurrence of cracking at 
early ages, improving the performance of these materials [2]-
[5]. 

The carbon nanotubes have been incorporated into cement 
based composite as nano reinforcement to achieve relative 
high mechanical properties [2], [6], [7]. However, the use of 
vegetable fibers as reinforcement of the cement is an 
alternative due to their mechanical properties which provide 
improvements in ductility, flexibility and resistance to 
cracking of cement composites, besides it being abundant and 
renewable resource comparing to the synthetic fibers [8], [9]. 

The carbonation is the reaction of cement hydration 
products with carbon dioxide (CO2). Accelerated carbonation 
of the cement materials can be employed to improve the 
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durability of the cellulose fibercement composites, because it 
reduces the alkalinity of the cement matrix, lowering the pH 
and making it less aggressive to the cellulose fibers [10]. The 
reactions that occur during accelerated carbonation, provide 
the reduction of the porosity, water absorption, and become 
the cement matrix denser, which constitutes a positive process 
to improve the physical and mechanical properties of the 
composites [11]-[13].  

The aim of this work was the production of the hybrid 
fibercement composites reinforced with bleached eucalyptus 
pulp and nanofibrillated cellulose (NC), and evaluates the 
effect of the accelerated carbonation in the physical and 
mechanical properties of the composites.  

II. MATERIALS AND METHODS 

A. Nanofibrillated Cellulose (NC) Production 

The bleached eucalyptus kraft pulp used to production of 
the NC and as micro reinforcement in the composites was 
provided by Fibria Celulose e Papel, situated at Jacareí city, 
Sao Paulo, Brazil.  

The eucalyptus pulp was nanofibrillated at suspension water 
+ pulp with consistency of 2% (w/w) by the grinding method. 
In this method the cellulose pulp was passed between a static 
grind stone and a rotating grind stone revolving at 1,700 rpm. 

Eucalyptus pulp suspension was nanofibrillated using a 
commercial grinder Supermasscolloider Mini, model MKCA 
6-2, with two grinding stones of aluminum oxide (Al2O3), 
model MKGA 6-80#, produced by Masuko Sangyo Co., Ltda, 
Japan. The two grinding stones were placed one over the 
other, since the bottom stone is rotated and the top stone is 
static. The suspension was passed 20 times through the grinder 
in order to ensure the nanofibrillation. 

B. Fibercement Composites Production  

The hybrid composites with eucalyptus pulp + NC were 
produced and compared to composites reinforced only with 
pulp, to verify the effect of the NC in the physical and 
mechanical properties of the composites.  

The matrix was composed by Ordinary Portland cement 
(OPC) type CP V-ARI, correspondent to ASTM-C150 [14], 
Type I, and metakaolin 40 HP, provided by Metacaulim do 
Brasil, as pozzolanic material for partial replacement of the 
cement. The specific surface area and specific density of the 
metakaolin are 26.5 m2/g and 2.6 g/cm3 and of the OPC are 
0.98 m2/g and 3.10 g/m3, respectively. 

The composition of the fibercement is showed in Table I. 
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Figs. 1 (A), (B), and (C) show, respectively, the mean 
values and standard deviations of the physical characteristics 
of water absorption (WA), apparent void volume (AVV) and 
bulk density (BD) of composites reinforced with 8% of 
eucalyptus pulp + 1% NC, carbonated and non-carbonated and 
composites with 9% of eucalyptus pulp, carbonated and non-
carbonated. 

 

 

 

 

 

Fig. 2 Comparison of the effects of the accelerated carbonation in 
modulus of rupture (A), limit of proportionality (B), modulus of 

elasticity (C) and specific energy (D) of composites with 8% of the 
eucalyptus pulp + 1% NC and composites with 9% of pulp 

 
The results show that using the accelerated carbonation as 

part of curing of the fibercement there was reduction in water 
absorption and higher matrix densification of the composite 
matrix with 8% of pulp + 1% NC and of the composites with 

9% of pulp. According to Almeida et al. [17], carbonation 
reactions promote the filling of the pores in the matrix with 
carbonate products, which reduces apparent water absorption, 
apparent void volume and increase the bulk density, since 
calcium carbonate (CaCO3) , produced from the carbonation is 
denser than calcium hydroxide (Ca(OH)2) that is released in 
the hydration reactions of the cement. 

The physical results showed no difference between the 
hybrid composites, with pulp + NC, and composites reinforced 
with pulp, so, the inclusion of NC had not a prejudicial effect 
in the physical behavior of the composites. 

Figs. 2 (A), (B), (C), and (D) show, respectively, the mean 
values and standard deviations of the mechanical 
characteristics of modulus of rupture (MOR), limit of 
proportionality (LOP), modulus of elasticity (MOE) and 
specific energy (SE) of composites reinforced with 8% of 
eucalyptus pulp + 1% NC, carbonated and non-carbonated and 
composites with 9% of eucalyptus pulp, carbonated and non-
carbonated. 

The carbonation has contributed to improve the mechanical 
performance of the composite with NC and without NC. The 
carbonation favored the better behavior of the composite and 
of the matrix, and also the post-cracked condition. This 
behavior is attributed to the reactions that take place during 
carbonation, where there was the precipitation of calcium 
carbonate (CaCO3) into the pores of the matrix. The calcium 
carbonate is denser than calcium hydroxide, so, occurs a 
greater densification of the matrix by reducing the pores of the 
matrix and it improve the fiber-matrix bonds and consequently 
the mechanical behavior of the fibercement [17]-[19]. 

Fig. 3 shows the typical stress x strain curves of the 
composites reinforced with 8% of eucalyptus pulp + 1% NC, 
carbonated and non-carbonated and composites with 9% of 
eucalyptus pulp, carbonated and non-carbonated. There is a 
clear increase of specific energy and LOP in the composites 
after accelerated carbonation, as a consequence of the matrix 
densification, and the increase in the strength of the 
composites, caused by carbonation.  

 

 

Fig. 3 Typical stress x strain curves at under flexure tests of the 
composites reinforced with 8% of eucalyptus pulp + 1% NC, and 9% 

of eucalyptus pulp in carbonated and non-carbonated conditions 
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IV. CONCLUSIONS 

The physical and mechanical results demonstrated that 
accelerated carbonation is effective to improve the properties 
of the hybrid fibercement reinforced with fibers in micro and 
nanoscale and in composites reinforced with only pulp. The 
use of the NC to produce hybrid composites has not affected 
negatively the physical and mechanical performance of the 
composites subjected to carbonation. 
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