
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

33

1

Abstract—Creating a database scheme is essentially a manual
process. From a requirement specification the information contained
within has to be analyzed and reduced into a set of tables, attributes
and relationships. This is a time consuming process that has to go
through several stages before an acceptable database schema is
achieved. The purpose of this paper is to implement a Natural
Language Processing (NLP) based tool to produce a relational
database from a requirement specification. The Stanford CoreNLP
version 3.3.1 and the Java programming were used to implement the
proposed model. The outcome of this study indicates that a first draft
of a relational database schema can be extracted from a requirement
specification by using NLP tools and techniques with minimum user
intervention. Therefore this method is a step forward in finding a
solution that requires little or no user intervention.

Keywords—Information Extraction, Natural Language
Processing, Relation Extraction.

I. INTRODUCTION

ERIVING a data storage system is a subsection of a
software development life cycle and goes through several

stages before a physical database is created. There are many
manual techniques that can help the system analyst in the early
stages of database development such as data gathering
techniques, designing and analyzing Data Flow Diagrams
(DFDs) and Enhancement Entity Relational Diagrams
(EERDs). There are also several tools which can automatically
help in creating a database schema such as CM_Bulider [9]
and Class_Gen [12]. The purpose of this paper is to
demonstrate a Natural Language Processing tool that will
auto-generate a relational database from a requirement
specification. This paper is organized as follows: work related
to NLP is discussed in Section II. The proposed extraction
method, identification algorithms, and an analysed case study
are discussed in Section III. Section IV describes the
evaluation methodology; case studies; result summary with
discussion; conclusion and future work.

II. RELATED WORK

In 1976 the Entity Relationship Model (ERM) was
introduced by Chen [1]. This model gives clear illustration
about how the information stored in a database is derived. It
shows entities, attributes of each entity, and the relationship

M. Omer is PhD student at the University of Huddersfield, UK (e-mail:

muss.omer@hud.ac.uk).
D. Wilson is a senior lecturer and Course Leader (MSc Advanced

Computer Science, Network Technology and Management, Information
Systems Management) at the University of Huddersfield, UK (e-mail:
d.r.wilson@hud.ac.uk).

between entities. The ERM is obtained through several stages
of development, including data gathering and data analyzing.
These stages are often time consuming as they are preformed
manually. An updated model of the ERM was proposed,
known as the Enhancement Entity Relationship Model
(EERM).

Chen explained that an ERM gives a clear idea about the
system, not just for system and database analysers but also for
database managers and database users. Chen declared that,
there is a relationship between the Entity Relationship Model
and English Sentences Structure. He gave 11 rules to express
the relationship; they are described as guides rather than as
rules [2]. By using Chen’s rules several research projects have
attempted to build an automatic system to derive an ERM, as
will be shown later.

Following on from Chen, an expert system for creating a
relational database was created. The system in question starts
by collecting information about the database by asking a client
questions related to the nature of the database. For example,
details of the information which should be stored in the
database, the relations between database entities and the
attributes of each entity. Next, the information is analyzed and
an Entity Relation Diagram (ERD) is designed. Finally, the
normalized fourth form is established by applying functional
dependencies [3]. The major problem with this system is that
it relies on the interaction between the client and the analyst
and in many cases, a considerable amount of time.

Analyzing documentation is not a new concept. In 1994 a
tool by the name of Data Module Generator (DMG) was
implemented [4]. A requirement specification is written in a
natural language such as English, Chinese, or Arabic. German
was used as a Natural Language to be entered into the DMG
and an EERM data model is output from the tool. The DMG
extracts the information which is needed to create the EERM;
the extraction depends on the relationship between the natural
language and the ERM as per the rules discussed by Chen.
Because of errors and incomplete information that is often
contained within requirement specification, the DMG cannot
achieve a satisfactory output without human intervention. For
this reason, the DMG is considered as a semi-automatic
system and more research needs to be done in this area.
However, with continuing improvements in Natural Language
Processing, we propose that that NLP tools and techniques can
be implemented to analyze a data requirements specification
with a high degree of accuracy with little or no human
intervention.

Meziane explained that a requirement specification is
described in a natural language because it is understood by

Implementing a Database from a Requirement
Specification

M. Omer, D. Wilson

D

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

34

users and developers alike [5]. However, a requirement
specification can often be incomplete and contain errors. As
such, any errors or limitations in a requirement specification
can lead to errors in meeting system requirements. Meziane
converted a requirements specification into a logical form
using language representations to remove errors and
incomplete aspects to obtain entities and relationships.
Meziane’s system was implemented by using Prlog-2 and a
case study was provided [5], [6].

Buchholz proposed a Dialogue Tool to design a database,
specifically the EER model. The functionality of the tool is
such that a moderated dialogue (in the form of a question-
answer) begins when information is entered into the system.
There are three types of questions: Content Questions (CQ)
asking whether there is information that needs to be added;
Linguistic Clarification (LQ) which describes how an event
will be carried out; and Pragmatic Clarification (PC) that
defines the way the objects are described. Secondly, syntax
analysis (grammar lexicon and parse) and semantic analysis
(meaning of the sentences) are achieved. Finally,
programmatic interpretation is carried out to convert natural
language to an ERD [7]. This particular tool still requires a
significant amount of user input however; it requires much
less involvement than the expert system devised by Storey and
Goldstein [3].

Chen showed, as mentioned earlier, there is a direct
correspondence between the English Language and the ERM.
He states there is also a direct correspondence between the
Chinese language and the ERM. The output of Chen’s work
can be used to clarify how a requirement specification could
be analyzed in many languages such as English and Chinese
[8].

Harmain developed a natural language base case tool
known as Class Model Builder (CM_Builder). Its purpose was
to help extract classes, attributes and relationships
automatically rather than done manually by a system analyst.
In other words it produces a class diagram as represented by
the Unified Modelling Language (UML). The CM-Builder is a
semi-automatic system. There are two versions of
CM_Builder. A better performance and less human
intervention is available in CM_Bulider version 2 [9]. The
purpose of CM-Builder was not for producing class models
automatically without human intervention, but was developed
to show that NLP can help in producing an initial class
diagram, which can then be reviewed and refined by software
engineers to produce a final version for the class diagram.

Heuristics were used to design a semi-automated tool
known as ER_converter. ER_Converter will assists in
producing the Entity Relationship Diagram (ERD) from a
requirement specification. The process starts when a
requirement specification is read by the system. The system
then uses heuristics and human intervention to build the ERD
[10]. However, the ER_converter still requires some human
intervention; although less than CM-Builder.

Al-Safadi claimed that there are three ways to implement
Part Of Speech (POS) extraction: Firstly, create a lists of
nouns, verbs, pronouns, adjectives, and adverbs, and then

match the requirements specification to the list to find the
POS. Al-Safadi argued that the problem with this is that some
words can be found in more than one category, for instance,
‘book’ can be both a noun and a verb. Secondly, POS can be
achieved by words with special endings. For instance, one of
the well-known noun's special ending is (- al), depending on
that, the word (several) and the word (rental) are categorized
as nouns. Finally, POS can be implemented by using English
language grammar. Al-Safadi showed that this is an optimal
approach and used it to design a tool known as the Database
Design Tool (DBDT) [11]. DBDT extracts entities, attributes,
relationships between entities, cardinality, and multiplicity.
However, Al-Safadi set rules about how a requirement
specification file should be written.

Elbendak designed a NLP tool known as (Class_Gen) to
produce a class model. This tool produces a ‘first cut’ for the
class model. The software engineer then reviews and refines it
to produce the final class model [12].

Slankas is working to implement a tool to extract access
control policies from unconstrained natural language text. The
input of this system is a natural language text, which describes
a relational database and said access control polices. The
system output will be a set of Structured Query Language
(SQL) commands, which describe the required access control
polices in the database [13]. This work is related to our
research as it intends to extracts a relational database from a
requirement specification as the initial step before extracting
the access control polices (project target).

Fig. 1 System architecture

III. PROPOSED EXTRACTION METHOD

A requirement specification is passed into the system
(system input); it is analyzed by a NLP tool. The Stanford
CoreNLP version 3.3.1 [14], works as a NLP engine and
identifies nouns, adjectives, verbs, subjects and objects; it also

NLP
Engine

Proposed
Model
Processor

To identify nouns, verbs, adjectives,
subjects, objects and relationships
between subjects and objects.

To extract tables, attributes of tables
and relationships between tables.

A requirement specification
(System input)

A database schema (System
output)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

35

detects the relationship between subjects and objects. The
output of the NLP engine is fed into our proposed model
processor. The proposed model processor generates an initial
database. The initial database is reviewed and refined by a
system analyst before a database schema is created (system
output). Fig. 1 represents system architecture.

The proposed solution to the task of auto-generating a
database schema is defined in three stages:
A. Identify the process by which auto-generation will be

achieved (The identification algorithm)
B. Select a suitable case study
C. Apply the identification algorithm

A. The Identification Algorithm

1) Each direct subject, direct object, passive subject, and
passive object, is considered as a candidate table.

2) Each verb is considered as a candidate relation and its
arguments are found.

3) For each candidate table find its frequency.
4) Find compound nouns in sentences and attach them to

their candidate tables and candidate relations.
5) Find some kind of relations, which can give an indication

to attributes such as possession, something has something
and something includes something.

6) Find some relations which can raise primary keys such as
‘identified by’.

7) Remove vague candidate tables.
8) Remove each vague argument in candidate relations.
9) Remove each table which has no attributes from candidate

tables and candidate relations.
10) Remove each candidate table which has no relations.
11) Remove each candidate relation that has less than two

tables as arguments.
12) Assess the initial database; it is reviewed and refined by a

system analyst to produce a final database schema
(System output).

B. Case Study with Analysis (Store Problem)

As in [9], a case study (Store Problem) was taken as it is,
see below

A store has many branches. Each branch must be
managed by at most 1 manager. A manager may manage
at most 2 branches. The branch sells many products.
Product is sold by many branches. Branch employs many
workers. The labour may process at most 10 sales. It can
involve many products. Each Product includes product
code, product name, size, unit_cost and shelf_no. A
branch is uniquely identified by branch_number. Branch
has name, address and phone_number. Sale includes
sale_number, date, time and total_amount. Each labour
has name, address and telephone. Worker is identified by
id’.

C. Applying the Identification Algorithm to Define a
Database Schema

By applying step 1 of the identification algorithm on the
first sentence, it is found that (store) is a candidate table
because it is the subject of the sentence, this appears in

Stanford CoreNLP in the relation nusubj(has-3,store-2).
(Branches) is also a candidate table because it is a sentence
object, this appears in the relations dobj(has-3, branches-5),
see below:

A store has many branches.
root(ROOT-0, has-3)
det(store-2, A-1)
nsubj(has-3, store-2)
amod(branches-5, many-4)
dobj(has-3, branches-5)

A full description of the Collapsed dependencies processed

by the Stanford CoreNLP for the Store problem is given in
appendix A.

Applying step 2 shows that the verb (has) is a candidate
relation and its arguments are store and branches; this appears
in the CoreNLP in the relations nsubj(has-3,store-2) and
dobj(has-3, branches-5), the relation name is (has-3). The
output when the first sentence is analyzed by Stanford is
shown in Tables I and II.

TABLE I

CANDIDATE TABLES FOR FIRST SENTENCE

Candidate table name Frequency

Store 1

Branches 1

TABLE II

NOMINEE RELATIONS FOR FIRST SENTENCE

Candidate relation

Candidate_ relation(has, store, branches)

Steps 1 and 2 are applied on the sentences from 1 to 14 of

Store problem, then the frequency of each candidate table is
found (step 3) as in Tables III and IV.

TABLE III

ALL CANDIDATE TABLES AND THEIR FREQUENCY AT STEP 3

Candidate table frequency

Branch 7

Product 4

Address 2

Labour 2

Name 3

Sale 2

Worker 2

Code_no 1

Date 1

It 1

Manager 1

Phone_number 1

Code 1

Sale_number 1

Shelf_no 1

Size 1

Store 1

Time 1

Total_amount 1

Unit_cost 1

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

36

TABLE IV
ALL CANDIDATE RELATIONS AT STEP 3

Candidate relations

Candidate_relation(has, store, branches)

Candidate_relation(managed, branch)

Candidate_relation(manage, manager, branches)

Candidate_relation(sell, branch, products)

Candidate_relation(sold, product)

Candidate_relation(employs, branch, workers)

Candidate_relation(process, labour, sales)

Candidate_relation(involve, it, products)

Candidate_relation(include, product, code, name, size, unit_cosit, shelf_no)

Candidate_relation(identified, branch)

Candidate_relation(has, branch ,name, address, phone_number)

Candidate_relation(include, sale , sale_number, date, time, total_amount)

Candidate_relation(has, labour, name, address, telephone)

Candidate_relation(identified, Worker

TABLE V

ALL CANDIDATE TABLES AND THEIR FREQUENCY AT STEP 4

Candidate table frequency

Branch 7

Product 2

Address 2

Labour 2

Name 2

Sale 2

Worker 2

Code_no 1

Date 1

It 1

Manager 1

Phone_number 1

Ptoduct Code 1

Sale_number 1

Shelf_no 1

Size 1

Store 1

Time 1

Total_amount 1

Unit_cost 1

Product name 1

TABLE VI

ALL CANDIDATE RELATIONS AT STEP 4

Candidate relations

Candidate_relation(has, store, branches)

Candidate_relation(managed, branch)

Candidate_relation(manage, manager, branches)

Candidate_relation(sell, branch, products)

Candidate_relation(sold, product)

Candidate_relation(employs, branch, workers)

Candidate_relation(process, labour, sales)

Candidate_relation(involve, it, products)
Candidate_relation(include, product code, product name, size, unit_cosit,

shelf_no)
Candidate_relation(identified, branch)

Candidate_relation(has, branch ,name, address, phone_number)

Candidate_relation(include, sale , sale_number, date, time, total_amount)

Candidate_relation(has, labour, name, address, telephone)

Candidate_relation(identified, Worker

By applying step 4, there are two compound nouns
including product code and product number. Compound nouns
are expressed in Stanford CoreNLP as nn, see sentence 9 in
appendix A. This affects the candidate tables and relations, as
in Tables V and VI.

Step 5, there are three (something has something) relations:
1) Candidate_relation (has, store, branches);
2) Candidate_relation (has, branch, name, address,

phone_number);
3) Candidate_relation (has, labour, name, address,

telephone).
There are also two (something includes something)

relations:
1) Candidate_relation (include, product, product code,

product name, size, unit_cost, shelf_no)
2) Candidate_relation (include, sale, sale_number, date,

time, total_number).
Those relationships produce attributes. This means

(branches) is an attribute for the store table. Name, address
and phone_number are attributes for the branch table. Name,
address and telephone are attributes for the labour table.
Product code, product name, size, unit_cost and shelf_no are
attributes for the product table. Finally, sale_number, date,
time and total_number are attributes for the sale table. All
these attributes will be discarded from being candidate tables
and are attached to their tables as attributes.

Step 6, there are two (identified by) relations:
1) Candidate_relation (identified, branch)
2) Candidate_relation (identified, worker).

The expression agent (identified-5, branch_number-7) in
sentence 10 shows that, branch_number is a primary key for
branch table, and the expression agent(identified-3, id-5) in
sentence 14 shows that Id is a primary key for the worker
candidate table. Candidate tables and candidate relations after
the filtering are affected as in Tables VII and VIII.

TABLE VII

CANDIDATE TABLES AFTER APPLYING STEPS 5 AND 6

Symbol Quantity Attributes

Branch 7
Branch_number (Primary key), name, address and

phone_number.

Product 2
Product code, product name, size , unit_cost and

shelif_no
Labour 2 Name, address and telephone

Sale 2 Sale_number, date, time and total_number.
Store 1 Branches

Worker 2 Id (primary key)
It 1

Manager 1

TABLE VIII

CANDIDATE RELATIONS AFTER APPLYING STEPS 5 AND 6

Candidate relations

Candidate_relation(managed, branch)

Candidate_relation(manage, manager, branches)

Candidate_relation(sell, branch, products)

Candidate_relation(sold, product)

Candidate_relation(employs, branch, workers)

Candidate_relation(process, labour, sales)

Candidate_relation(involve, it, products)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

37

TABLE IX
CANDIDATE TABLES AFTER APPLYING STEPS FROM 7 TO 11

Symbol Quantity Attributes

Branch 7 Branch_number (Primary key), name, address and
phone_number.

Product 4 Product code, product name, size , unit_cost and
shelif_no

Labour 2 Name, address and telephone

Sale 2 Sale_number, date, time and total_number.

Store 1 Branches

Worker 2 Id (primary key)

TABLE X

CANDIDATE RELATIONS AFTER APPLYING STEPS FROM 7 TO 11

Candidate relations
Candidate_relation(sell, branch, products)

Candidate_relation(employs, branch, workers)

Candidate_relation(process, labour, sales)

As in Tables IX and X steps from 7 to 11 remove the
candidate table (It) from the tables list, and remove the
argument (It) from candidate relations at Candidate_relation
(involve, it, products) because (it) is vague and because (it)
has no attributes. The (manager) table is also discarded from
candidate tables and candidate relations because it has no
attributes:
1) Candidate_relation(managed, branch)
2) Candidate_relation(manage, branches)
3) Candidate_relation(sold, product)
4) Candidate_relation(involve, products)
are removed from candidate relations because they have one
argument.

Step 12 offers an opportunity for system analysts to review
the initial database and finalize it. Database names, tables,
attributes, attributes type, relations and constraints can be
added or removed. The system produces plain text file that
contains SQL statements to describe a database schema. SQL
statements are chosen as an output because they are
understood by many databases. The final output after step 12
is listed below:

CREATE TABLE branch(address varchar(50), phone_number int,
name varchar(50));
CREATE TABLE labour(address varchar(50), telephone int, name
varchar(50));
CREATE TABLE product(size varchar(50), shelf_no varchar(50),
unit_cost varchar(50),product name varchar(50),product code
varchar(50));
CREATE TABLE sale(sale_number int, time datetime, total_amount
int, date datetime);

IV. EVALUATION METHODOLOGY

This approach attempts to extract an initial database from a
problem description, therefore, it is considered as Information
Extraction (IE) software. An IE system is usually evaluated by
comparing the result of the proposed system with the manual
result. In our case the result of our system is referred to as
(proposed system result) and the result which is already
produced manually by the system analyst is called (manual
result). Recall and precision are also important factors to

measure the performance of our system. They were designed
for evaluating Information Retrieval (IR) systems but they are
widely used in IE systems. Recall is used to measure the
extent the proposed system result is completed, compared to a
manual result. “Using (1), we calculated the recall.”

N correct = total of correct answers produced by the system.
N missed = total of correct answers from a manual result and
are missed from a proposed result.

recall ൌ
N ୡ୭୰୰ୣୡ୲

N ୡ୭୰୰ୣୡ୲ ା N ୫୧ୱୱୣୢ
כ 100 (1)

The precision reflects the extend the information which is

extracted by the proposed system is correct, “Using (2), we
calculated the precision.”

precision ൌ
N ୡ୭୰୰ୣୡ୲

N ୡ୭୰୰ୣୡ୲ ା N ୧୬ୡ୭୰୰ୣୡ୲
כ 100 (2)

N incorrect refers to the total of incorrect answers which are

extracted by the proposed system.
In our case, there is no right or wrong answer, but there is a

good answer and a bad answer. Occasionally the proposed
system gives correct answers but they are not included in a
manual answer, for this reason over-specification is measured.

Over-specification displays to what extent the proposed
system extracts correct answers, which are not found by
system analyst in the manual answer [12]. “Using (3), we
calculated the over-specification.”

over specification ൌ N ୣ୶୲୰ୟ

N ୡ୭୰୰ୣୡ୲ ା N ୧୬ୡ୭୰୰ୣୡ୲
כ 100 (3)

N extra = total of correct answers which are not found in a

manual answer.
One of four classifications will be given to each answer.

CORrect (COR) if it is found in both a proposed system result
and a manual result. INCorrect (INC) when it is not found in a
manual result and both a problem description and our own
argument show it is incorrect. Extracted answer is marked as
EXTra (EXT) when it is not included in a manual result, but
both a problem description and our own argument show it is
correct. MISSed (MISS) if it is a correct answer but it is not
included in the proposed system result.

A. Case Studies

All case studies in appendix B were taken from [12] as they
are with their manual result. At the moment the evaluation is a
partial evaluation as only table names are evaluated. Tables
are considered the most important part for the relational
database. In future, attributes, primary keys, and relations
between tables will be evaluated. Each case study is given a
table to make comparison of the answer, which was obtained
by the proposed system and the answer proposed by the
system analyst. Each table has three columns, the first column
for the table name which are proposed by our system, the
second column for table name which are given by the system
analyst and third column for answer classification. See Tables
XI-XVI.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

38

 TABLE XI
COMPARISON OF THE PROPOSED SYSTEM RESULT AND THE MANUAL RESULT

FOR ATM PROBLEM

Proposed system result Manual result Classification

Account, account data Account COR

Teller machine ATM COR

Bank Bank COR

Cash card Cash Card COR

Cashier Cashier COR

Cashier Station Cashier Station COR

Process transaction Remote Transaction COR

Transaction Cashier Transaction COR

Computer Bank Computer COR

 Customer MISS

 Consortium MISS

 Central Computer MISS

Banking network EXT

Prints receipt EXT

Security provision EXT

Access EXT

Cash INC

Cost INC

Recordkeeping INC

TABLE XII

COMPARISON OF THE PROPOSED SYSTEM RESULT AND THE MANUAL RESULT

FOR ORGANIZATION PROBLEM

Proposed system result Manual result Classification

Department Department COR

Project Project COR

Staff Staff COR

Manager Manager COR

Staff Member EXT

TABLE XIII

COMPARISON OF THE PROPOSED SYSTEM RESULT AND THE MANUAL RESULT

FOR ELECTRICAL FILLING PROGRAM PROBLEM

Proposed system result Manual result Classification

Text document Text Document COR

Keyword Keyword COR

Character ASCII Character COR

Index Index COR

Word word COR

 Junk word MIS

 Abstract MIS

 page MIS

 Author MIS

 Line MIS

Search criteria EXT

Document EXT

Document description EXT

User EXT

Document filed EXT

Search EXT

Retrieval EXT

Example user INC

Filing program INC

EFP INC

TABLE XIV
COMPARISON OF THE PROPOSED SYSTEM RESULT AND THE MANUAL RESULT

FOR LIBRARY SYSTEM PROBLEM

Proposed system result Manual result Classification

Book Book COR

Catalogue note Catalogue_note COR

Delivery note Deleivery_note COR

Note Note COR

Invoice Invoice COR

Order Order COR

 Enquiry Note MIS

 Person MIS

Publisher EXT

Library EXT

Letter EXT

Cheque EXT

TABLE XV

COMPARISON OF THE PROPOSED SYSTEM RESULT AND THE MANUAL RESULT

FOR JOURNAL REGISTRATION PROBLEM

Proposed system result Manual result Classification

Article Article COR

Journal Journal COR

Reader Reader COR

 Issue MIS

 Topic MIS

Permission EXT

Access EXT

Department EXT

TABLE XVI

COMPARISON OF A PROPOSED SYSTEM RESULT VERSUS A MANUAL RESULT

FOR LOCAL HOSPITAL PROBLEM

Proposed system result Manual result Classification

Doctor Doctor COR

Nurse Nurse COR

Patient Patient COR

 Ward MIS

 Prescription MIS

Responsibility EXT

Drug EXT

Hospital EXT

TABLE XVII

RESULT SUMMARY AND DISCUSSION

Case study name Recall Precision Over-specification

ATM 75% 75% 33%

Organization problem 100% 100% 25%

Electrical Filling Program 50% 62% 87%

Library system 75% 100% 67%

Journal registration 60% 100% 100%

Local hospital problem 60% 100% 100%

B. Result Summary and Discussion

In the first case study (ATM problem) the recall is 75%
because there are three tables that are missed. The three
missed tables are customer, central computer and consortium;
all of them have no attributes which mean even if the system
extracts them successfully they will be removed as they have
no attributes (see step 9 of the identification algorithm). The
precision in this case study is 75% because three tables are

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

39

extracted incorrectly, they include: cash, cost, and
recordkeeping and all of them will be discarded later
according to step 9.

In the second case-study (Organization problem), the result
is 100% for recall and precision, it is the same as the manual
result.

In the third case-study, Electrical Filling Program (EFP)
recall is 50% because there are five missed tables including
the page table and the line table which were not mentioned in
problem statement. They also include: junk word, abstract, and
author which have no attributes mentioned in the text. The
precision is 62% because three tables were extracted
incorrectly, they include: example user, filing program, and
EFP. They have no attributes.

In the fourth case-study (Library System problem), recall is
75% because there are two missed tables, they include person
table, and enquire note table; both of them were not mentioned
clearly in the given text.

In the fifth case-study (Journal Registration problem), recall
is 60% because there are two missed tables, they include: issue
table and topic table. Issue table has no clear attributes and no
clear relations, and topic table also has no attributes.

In the sixth case-study (Local Hospital problem), the recall
is 60% because there are two missed tables, they include:
ward, which has no attributes, and prescription, which was not
mentioned in the given text, see Table XVII.

The result is encouraged, especially as it is clear that it is
difficult to obtain a perfect database from a requirement
specification. There are fundamental reasons for this; each
analyst has his/her own viewpoint, and what is seen correct
and important by one system analyst may not be seen
important and correct by others. The given cases-studies do
not cover the entirety of all systems. For instance, the first
case-study ATM, which contains 166 words, does not cover
everything about the ATM system, as in the other cases.
Consequently, at this time, the extracted database will be
incomplete. With information extraction, it is improbable that
we would have guaranteed 100% accurate answers without
implementing an Artificially Intelligent system. Typically, a
computer program would need to think like a human to obtain
consistently good results. This is a difficult task or may be
impossible.

C. Conclusion and Future Work

To the best of our knowledge, no automated NLP based tool
that targets to replace the system analyst is expected to be
successful at present due to the current capability of NLP tools
and techniques. However NLP can help in generating a
relational database schema from a requirement specification.
The proposed system is able to extract an initial database from
a requirement specification with some degree of accuracy. A
requirement specification may be incomplete or contain
ambiguous information which requires extra analysis in order
to extract the relational schema. To overcome this problem,
relation extraction techniques including supervised and semi
supervised methods will be used to build patterns, which can
help us in extracting attributes, relations between tables,

primary keys and other constraints from unstructured text.
Specific domain knowledge could be used to extract a
relational database from a problem description, for instance,
related knowledge and information about education could be
used to analyse the requirements for education systems.

APPENDIXES

A. Collapsed Dependencies Processed in Stanford CoreNLP
for Store Problem

A store has many branches.
root(ROOT-0, has-3)
det(store-2, A-1)
nsubj(has-3, store-2)
amod(branches-5, many-4)
dobj(has-3, branches-5)

Each branch must be managed by at most 1 manager.
root(ROOT-0, managed-5)
det(branch-2, Each-1)
nsubjpass(managed-5, branch-2)
aux(managed-5, must-3)
auxpass(managed-5, be-4)
quantmod(1-9, at-7)
mwe(at-7, most-8)
num(manager-10, 1-9)
agent(managed-5, manager-10)

A manager may manage at most 2 branches.
root(ROOT-0, manage-4)
det(manager-2, A-1)
nsubj(manage-4, manager-2)
aux(manage-4, may-3)
quantmod(2-7, at-5)
mwe(at-5, most-6)
num(branches-8, 2-7)
dobj(manage-4, branches-8)

The branch sells many products.
root(ROOT-0, sells-3)
det(branch-2, The-1)
nsubj(sells-3, branch-2)
amod(products-5, many-4)
dobj(sells-3, products-5)

Product is sold by many branches.
root(ROOT-0, sold-3)
nsubjpass(sold-3, Product-1)
auxpass(sold-3, is-2)
amod(branches-6, many-5)
agent(sold-3, branches-6)

Branch employs many workers
root(ROOT-0, employs-2)
nsubj(employs-2, Branch-1)
amod(workers-4, many-3)
dobj(employs-2, workers-4)

The labour may process at most 10 sales
root(ROOT-0, process-4)
det(labor-2, The-1)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

40

nsubj(process-4, labor-2)
aux(process-4, may-3)
quantmod(10-7, at-5)
mwe(at-5, most-6)
num(sales-8, 10-7)
dobj(process-4, sales-8)

It can involve many products.
root(ROOT-0, involve-3)
nsubj(involve-3, It-1)
aux(involve-3, can-2)
amod(products-5, many-4)
dobj(involve-3, products-5)

Each product includes product code, product name,

size,unit_costand shelf_no
root (ROOT-0 , includes-3)
det (Product-2 , Each-1)
nsubj (includes-3 , Product-2)
nn (code-5 , product-4)
dobj (includes-3 , code-5)
nn (name-8 , product-7)
dobj (includes-3 , name-8)
conj_and (code-5 , name-8)
dobj (includes-3 , size-10)
conj_and (code-5 , size-10)
dobj (includes-3 , unit_cost-12)
conj_and (code-5 , unit_cost-12)
dobj (includes-3 , shelf_no-14)
conj_and (code-5 , shelf_no-14)

A branch is uniquely identified by branch_number.
root(ROOT-0, identified-5)
det(branch-2, A-1)
nsubjpass(identified-5, branch-2)
auxpass(identified-5, is-3)
advmod(identified-5, uniquely-4)
agent(identified-5, branch_number-7)

Branch has name, address and phone_number.
root(ROOT-0, has-2)
nsubj(has-2, Branch-1)
dobj(has-2, name-3)
dobj(has-2, address-5)
conj_and(name-3, address-5)
dobj(has-2, phone_number-7)
conj_and(name-3, phone_number-7)

Sale includes sale_number, date, time and total_amount.
root(ROOT-0, includes-2)
nsubj(includes-2, Sale-1)
dobj(includes-2, sale_number-3)
dobj(includes-2, date-5)
conj_and(sale_number-3, date-5)
dobj(includes-2, time-7)
conj_and(sale_number-3, time-7)
dobj(includes-2, total_amount-9)
conj_and(sale_number-3, total_amount-9)

Each labour has name, address and telephone.
root(ROOT-0, has-3)
det(labor-2, Each-1)

nsubj(has-3, labor-2)
dobj(has-3, name-4)
dobj(has-3, address-6)
conj_and(name-4, address-6)
dobj(has-3, telephone-8)
conj_and(name-4, telephone-8)

Worker is identified by id’.
root(ROOT-0, identified-3)
nsubjpass(identified-3, Worker-1)
auxpass(identified-3, is-2)
agent(identified-3, id-5)

B. Case Studies

ATM problem: Design the software to support a
computerized banking network including both human cashiers
and automatic teller machines (ATMs) to be shared by a
consortium of banks. Each bank provides its own computer to
maintain its own accounts and process transactions against
them. Cashier stations are owned by individual banks and
communicate directly with own bank’s computers. Human
cashiers enter account and transaction data. Automatic teller
machines communicate with a central computer which clears
transactions with appropriate banks. An automatic teller
machine accepts a cash card, interacts with the user,
communicates with the central system to carry out the
transaction, dispenses cash, and prints receipts. The system
requires appropriate recordkeeping and security provisions.
The system must handle concurrent access to the same account
correctly. The banks will provide their own software for their
own computer; you are to design the software for the ATMs
and network. The cost of the shard system will be apportioned
to the banks according to the number of customers with cash
cards.

Organization problem: Each department in an organization
consists of a manager and several departmental staff. Each
manager is in charge of only one department and departmental
staff is assigned to a single department. Several projects are
attached to each department. All departmental staff is assigned
to projects, with some staff being assigned to several projects,
not necessarily in the same department. Each project is run by
a management group that consists of the manager of the
department together with a selection of staff working on the
project. No departmental staff member is ever required to sit
on more than one management group.

Electrical Filling Program problem: An electronic filing
program (EFP) can be used to store and retrieve text
documents. Any document created by a word processor, editor
or other means may be stored in the electronic filing system.
Documents may be filed along with keywords, authors and/or
document description or abstract describing the document.
Documents field in the system may also be removed or
deleted. Documents stored in the EFP are indexed to enable
rapid retrieval. Documents are retrievable according to
convenient schemes not found in conventional classifications;
example users may retrieve or locate documents based on their
content, description, author(s), or a user defined keywords.
Therefore, the document description, authors, keywords,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

41

and/or the actual text document itself may be searched. A user
may specify a search criterion, which results in a number of
documents being found that meet the specified search criteria.
The user may then continue to specify additional search
criteria, successively narrowing down the search until the
required documents are found. Documents found that meet the
search criteria may then be viewed or printed. The user is
provided with the capability of specifying any extraneous or
junk words which if found in the content of the document will
not be searched or indexed. The user can also specify which
alphanumeric characters will be indexed and searched (the
filing character set), thereby limiting the search and index to
only portions of a document(s).

Library System problem: When a library first receives a
book from a publisher it is sent, together with accompanying
delivery note, to the library desk. Here the delivery note is
checked against a file of books ordered. If no order can be
found to match the note, a letter of enquiry is sent to the
publisher. If a matching order is found, a catalogue note is
papered from the detail on the validated delivery note. The
catalogue note, together with the book is sent to the
registration department. The validated delivery note is sent to
accounts department, where it is stored. On receipt of an
invoice from the public accounts department checks its store
of delivery notes. If the corresponding delivery note is found
then an instruction to pay the publishers is made, and
subsequently a cheque is sent. If no corresponding delivery
note is found, the invoice is stored in pending file.

Journal Registration problem: The personal department of
large research institute is responsible for the purchase and
dissemination of journals to readers in the other department in
the organization. Readers may be interested in certain specific
topics relating to their research interests, while it is also
possible to be pleased on a circulation list. Usually, reader het
access to an issue of a journal for a fixed period of time,
typically two weeks. It is possible to have access to an issue
for a longer period of time, but permission must be granted
from personal department. Journals appear on a regular basis
each journal contain information on the publisher, language
frequency of publication. The system should keep reader
informed of the topics that are of interest to them and which
appear in the different journals. Furthermore, it should be
possible for reader to find articles which deal with topics they
are interested in.

Local Hospital problem: A local hospital consists of many
wards, each of which is assigned many patients. Each patient
is assigned to one doctor, who has overall responsibility for
the patients in his or her care. Other doctors are assigned on an
advisory basis. Each patient is prescribed drugs by the doctor
responsible for that patient. Each nurse is assigned to a ward
and nurses all patients on the ward, though is given special
responsibility for some patients. Each patient is assigned one
nurse in this position of responsibility. One of the doctors is
attached to each ward as an overall medical advisor.

REFERENCES
[1] P. P.-S. Chen, "The entity-relationship model_toward a unified view of

data," ACM Trans. Database Syst., vol. 1, pp. 9-36, 1976.
[2] P. P.-S. Chen, "English sentence structure and entity-relationship

diagrams," Information Sciences, vol. 29, pp. 127-149, 5// 1983.
[3] V. C. Storey and R. C. Goldstein, "A methodology for creating user

views in database design," ACM Trans. Database Syst., vol. 13, pp. 305-
338, 1988.

[4] A. M. Tjoa and L. Berger, "Transformation of requirement specifications
expressed in natural language into an EER model," Proceeding of the
12th International Conference on ER-Approach, Airlington, Texas USA,
1994, pp. 206-217.

[5] F Meziane, "From English to formal specifications," PhD, Department
of Mathematics and Computer Science, University of Salford, 1994.

[6] F. Meziane, S. Vadera, "Obtaining E-R diagrams semi-automatically
from natural language specifications," presented at the Sixth
International Conference on Enterprise Information Systems (ICEIS
2004), Universidad Portucalense, Porto, Portugal, 2004.

[7] E. Buchholz, H. Cyriaks, A. Düsterhöft, H. Mehlan, and B. Thalheim,
"Applying a natural language dialogue tool for designing databases," in
Proceedings of the First International Workshop on Applications of
Natural Language to Databases. 1995.

[8] P. P.-S. Chen, "English, Chinese and ER diagrams, "Data & Knowledge
engineering, vol. 23, pp. 5-16, 1997.

[9] H. M. Harmain and R. Gaizauskas, "CM-Builder: a natural language-
based case tool for Object-Oriented analysis," Automated Software
Engg., vol. 10, pp. 157-181, 2003.

[10] N Omar ,P. Hanna, P. M. Kevitt, "Heuristics-based entity relationship
modelling through natural language processing," presented at the 15th
Irish Conference on Artificial Intelligence and Cognitive Science
(AICS’04), Castlebar, Ireland, 2004.

[11] L. A. E. Al-Safadi, "Natural language processing for conceptual
modeling," International Journal of Digital Content Technology and its
Applications, vol. 3, 2009.

[12] M. E. Elbendak, "Requirements-driven automatic generation of class
models," PhD, School of Computing, Engineering and Information
Sciences, Northumbria Univeristy, France, 2011.

[13] J. Slankas, "Implementing database access control policy from
unconstrained natural language text," presented at the Proceedings of the
2013 International Conference on Software Engineering, San Francisco,
CA, USA, 2013.

[14] C, D, Manning and etal, 2014.” The Stanford CoreNLP natural language
processing toolkit”, In Proceedings of 52nd Annual Meeting of the
Association for Computational Linguistics: System Demonstrations, pp.
55-60.

