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Abstract—In this paper, the formulation of a new group explicit 

method with a fourth order accuracy is described in solving the two 

dimensional Helmholtz equation. The formulation is based on the 

nine-point fourth order compact finite difference approximation 

formula. The complexity analysis of the developed scheme is also 

presented. Several numerical experiments were conducted to test the 

feasibility of the developed scheme. Comparisons with other existing 

schemes will be reported and discussed. Preliminary results indicate 

that this method is a viable alternative high accuracy solver to the 

Helmholtz equation. 

 

Keywords—Explicit group method, finite difference, Helmholtz 

equation, five-point formula, nine-point formula.  

I. INTRODUCTION 

 E consider the two dimensional Helmholtz equation of 

the form 

 

    ( )2 ,+ =+xx yy k uu u f x y , ( , )∈Ωx y        (1) 

 

where the solution domain (0,1)x(0,1)Ω =
 
with Dirichlet 

conditions defined at the boundary. The solution is u(x,y), k is 

known as a wave number, and the function f together with u 

are assumed to be sufficiently smooth and have necessary 

continuous partial derivatives. This equation governs some 

problems in physical phenomena such as water wave 

propagation and membrane vibration [4]. The solution domain 

is discretized uniformly in the x and y directions so that the 

mesh size is h=1/n, where , ix ih=   jy jh=

( ), 0,1,2, ,i j n= ⋯ . The notation iju is used to represent the 

computed solution ( , )i ju x y . Recently, several new point and 

group schemes derived from the standard and rotated five-

point stencils have been developed in solving this type of 

problem [1]-[3]. In [2], for example, a half-sweep point 

iterative method is derived in solving model problem (1) 

where this method is found to be have better convergence 

rates than the normal full-sweep iterative scheme due to the 

lesser computing complexity of the former. Group iterative 

schemes were formulated in [1] and [3] to solve the same 
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equation where these new methods were proven to have even 

better convergence rates than the point scheme in [2]. 

However, all these developed schemes are of second order 

accuracy.  

In this paper, a new group iterative scheme with a higher 

order accuracy will be developed in solving (1). This four-

point explicit group method is formulated by using the 

compact nine-point finite difference formula with fourth order 

accuracy. Section II will describe the derivation of the 

proposed scheme, followed by the complexity analysis of the 

scheme in Section III. Section IV will report some numerical 

experiments implemented on the proposed scheme. 

Concluding remarks are given in Section V.  

II. FORMULATION OF THE GROUP METHOD 

A. Explicit Group O(h
2
) 

The standard second order central difference can be written 

as  
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, 2
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If (1) is approximated by the standard five-point central 

difference scheme (2), the following is obtained 

 

 
2 2

1, 1, , 1 , 1

2

,,( 4)+ − + −+ + + + − =i j i j i j i j i j i ju u u u h fk h u .      (3) 

 

This scheme has a truncation error of O(h
2
). Based on this 

approximation, the second order explicit group scheme was 

derived by [1] as: 
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 (4) 

 

where )hk(p
22

4 −= . Akhir et al. [1] generate the iterations 

in groups of four until a certain convergence criteria is met. 

They found that this EG O(h
2
) is more superior in terms of 

execution timings than the standard five-point scheme (3) but 

with the same order of accuracy. 
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B. Explicit Group O(h
4
) 

To design a higher order scheme, the Taylor series 

expansion is used to obtain the following formulas: 

 

   
2 4

2 4 6 6

, ( )
12 360

δ = + + +x i j xx x x

h h
u u u u O h           (5) 

 

   
2 4

2 4 6 6

, ( )
12 360

δ = + + +y i j yy y y

h h
u u u u O h            (6)  

 

which can be re-arranged to become [5] 

 

    

1
2

2 2
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12
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 
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xx x x i j

h
u u                     (7) 

 

    

1
2

2 2

,1
12

δ δ
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 
yy y y i j

h
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By employing (7) and (8) into (1), and rearranging, we have 

the following 
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which is a fourth order compact approximation to (1). The 

computational molecule of this approximation is of the 

following form: 

 

 
i-1,j+1 i,j+1 i+1,j+1 

 i-1,j i,j i+1,j 

 i-1,j-1 i,j-1 i+1,j-1 

    

Fig. 1 Computational molecule of approximation (9) 
 

The compact nine-point iterative scheme may be formulated 

based on (9) where iterations are generated on the points in the 

whole solution domain until convergence is achieved. To 

construct the proposed explicit group scheme, we apply (9) to 

groups of four points in the solution domain which will result 

in the following (4x4) system of equations: 
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. The matrix at the 

left hand side of the system (10) can be inverted which 

transform the system into an explicit form: 
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( )( )2 22 1b p p q p= − − + , ( )21c q p= − + and 

( )( )( )22 1 1d p q p= + − + . 

 

The truncation error of this scheme is of O(h
4
).  
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Fig. 2 Grouping of points for the group method (n=13) 
 

All the points in the solution domain are divided in groups 

of four as shown in Fig. 2 for the case n = 13. Using (11), 

iterations on these groups of points are generated until a 

certain convergence criteria is met. In summary, we describe 

the fourth order explicit group method as follows: 

1. Divide the solution domain into groups of four points as 

shown in Fig. 2 (for the case n=13). 

2. Iterate on the points  in each group using (11) with 

preferred smoother (e.g. Multigrid, Successive 

OverRelaxation, etc)  

3. Check the convergence. If the solutions converge, 

terminate the iterations. Otherwise, repeat step 2. 

III. COMPLEXITY ANALYSIS 

Assume that the solution domain is discretized with integer 

n, then the number of internal mesh points is given by m
2
 

where m=n-1. If n is even, then there will be ungrouped points 

near the upper/right boundaries. These type of points will be 

smoothed using (9). Table I lists the number of points for the 

internal mesh points for the proposed explicit group method as 

well as for the existing second order explicit group method 

due to [1], the nine-point compact and the five-point method. 

The computational complexity of the algorithm is based on the 

number of arithmetic operations performed at each iteration, 

i.e. the operation involving addition/subtraction (�/�) and 

multiplication/division (�/�) performed in each iteration, 

excluding the convergence test. The execution time required to 

perform an arithmetic operation is assumed to be the same or 

almost the same. All the points in the solution domain are 

involved in the iterative process, i.e. ��. However, for the 

group method, it will require �� � 1	� interior points and 

�2� � 1	 points near the upper/right boundary if n is even.   

TABLE I 

NUMBER OF POINTS INVOLVED IN THE ITERATIONS 

Types of 
 points 

EG O(h2) EG O(h4) 

Compact 

Nine-Point 

Scheme 

Standard 

Five Point 

Scheme 

Iterative 

grouped 
points 

2

4
2

m 
×  

 
 

2

4
2

m 
× 

 
 - - 

Iterative 

ungrouped 
points 

2
2 4

2

m
m

 
− ×  

 
 

2
2 4

2

m
m

 
− × 

 
 - - 

Total internal 

points 
m2 m2 m2              m2 

 

The number of arithmetic operations required for each 

iteration for the point and group methods in terms of m are 

recorded in Table II. Note that, ceiling function is defined as 

��
 � min�� � �|� � ��, e.g. �4.9
 � 5, ��4.9
 � �4, and 

floor function is defined as ��� � ����� � �|�  ��, e.g. 

�4.9� � 4, ��4.9� � �5. 
 

TABLE II 
ARITHMETIC OPERATIONS OF THE METHODS UNDER STUDY 

Method 
Per Iteration 

+/- /× ÷  
Standard 

Five 

Point 

4m2 m2 

EG 
O(h2) 

2 2

24 4 11
2 2

m m
m

    × − × + ×         

 
2 2

2 4 5
2 2

m m
m

    − × + ×         

 

Compact 
Nine 

Point 

8m2 2m2 

EG 
O(h4) 

    × − × + ×         

2 2

28 4 23
2 2

m m
m  

    × − × + ×         

2 2

22 4 9
2 2

m m
m  

IV. NUMERICAL EXPERIMENTS 

To test the feasibility of the proposed method, we conduct 

numerical experiments in solving the following model 

problem [4]: 

 

 ( ) ( ) ( )2 2 22 sin sinxx yyu u k u k x yπ π π+ + = −     (12) 

 

where the solution domain is (0,1)x(0,1)Ω =  with Dirichlet 

conditions defined at the boundary satisfying the exact 

solution ( ) ( )( , ) sin sinu x y x yπ π= .  All the experiments are 

conducted using the programming tool C++ on HP Mini 210-

1000 with Windows 7 Starter Edition, processor type is Intel® 

Atom
TM
 CPU N450 @ 1.66GHz 1.67GHz, with installed 

memory (RAM) of 1GB and 32-bit Operating System type.            

Throughout this experiment, all the algorithms are 

implemented using different grid sizes of 8, 16, 32, 64 and 

128, with the values of k randomly chosen. For the iteration 

process, the multigrid technique was used as the smoother. 

Several parameters were measured, i.e. the execution times (in 

seconds), the number of iterations (Iter), the maximum 

absolute errors over the discrete grid, and the estimated order 

of accuracy. The maximum errors are taken as
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( 1) ( )
, ,
k k
i j i jmax u u ε+ − < , where the tolerance 

1310ε −= . The 

estimated order of accuracy for each scheme can be computed 

for different grid size. Consider two mesh sizes H∆ and h∆ on 
HΩ and hΩ respectively. We denote the maximum absolute 

errors of these two grids as 
HError and 

hError respectively. 

Suppose the order of accuracy is A, then [5] 
 

     
( )
( )
∆

∆

A

A

H H

hh

Error

Error
= .          (13)  

 

So the order of accuracy can be estimated as 

 

     
∆

∆

log

log

H

h

H

h

Error

ErrorA = .           (14) 

 

For comparison purposes, we also run the programs for the 

existing five-point iterative scheme (3), nine-point iterative 

scheme (9) and the second order explicit group iterative 

scheme due to [1] (4). Table III displays the performances of 

the implemented numerical schemes.  
 

TABLE III 
PERFORMANCE COMPARISON BETWEEN METHODS 

Methods n Iter  Time (secs) Max error 

Order of 

Accuracy 

(A) 

Second 

Order 

(Standard 
Five 

Point) 

8 70 0.02058 1.6295715e-02 - 

16 198 0.17208 4.0403450e-03 2.0 

32 582 1.67167 1.0080067e-03 2.0 

64 1795 21.045181 2.5187200e-04 2.0 

128 5739 289.70744 6.2959899e-05 2.0 

Second 

Order EG 
[1]  

8 51 0.01427 1.6295715e-02 - 

16 130 0.09486 4.0403450e-03 2.0 

32 365 0.99144 1.0080067e-03 2.0 

64 1093 11.64828 2.5187200e-04 2.0 

128 3432 161.12459 6.2959899e-05 2.0 

Compact 

Fourth 

Order 
(Nine 

Point) 

8 63 0.02142 8.2061725e-05 - 

16 175 0.19606 5.1660378e-06 4.0 

32 509 2.04716 3.2344042e-07 4.0 

64 1557 26.91834 2.0223900e-08 4.0 

128 4948 343.47874 1.2644070e-09 4.0 

Fourth 

Order EG  

8 57 0.02056 8.2061725e-05 - 

16 129 0.12877 5.1660378e-06 4.0 

32 352 1.27219 3.2344040e-07 4.0 

64 1040 15.28502 2.0223875e-08 4.0 

128 3242 209.53039 1.26432209e-09 4.0 

 

The number of iterations for both five-point and compact 

nine-point iterative methods are almost the same, but the 

execution times for the compact nine-point stencil become 

longer because there are more points involved in the 

computational molecule, and also full weighted restriction 

operator is used during the multigrid smoother process for the 

this scheme, compared to the half weighted restriction 

operator used for the standard five-point stencil. However, the 

nine-point scheme gives fourth order approximation to the 

solutions compared to five-point scheme. 
 

 

Fig. 3 Maximum errors for EG O(h2) and EG O(h4) for different 

mesh sizes 

 

Amongst the group methods, the newly developed EG 

O(h
4
) produces more accurate solutions compared to the 

existing second order accurate solutions of EG O(h
2
) when the 

mesh is finer as shown in Fig. 3. But the complexity of EGO4 

is larger than EG02 such that it requires slightly more CPU 

times than the latter. However the differences in timings are 

not very large as the grid sizes increase. It can be observed 

that EGO2 requires about 77% of the timings required by 

EGO4. Between the pointwise and the group methods, the 

group methods are more superior in terms of computing effort 

where they require only almost half of the execution times 

compared to that of their point iterative counterparts as shown 

in Fig. 4.  
 

 

Fig. 4 Execution timings (in secs) for the compact nine-point (CNP) 

the explicit group O(h4) (EGO4), the standard five-point (SFP) and 

the second order explicit group O(h2) (EGO2) 

 

Tables IV and V tabulate the total computing efforts 

between the pointwise and the group methods in terms of 

operation counts. These values were computed by combining 

the number of operations in Table II with the number of 

iterations obtained in the experiments by each scheme. From 
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the experimental results, we can clearly see that the 

experimental timings of the iterative methods are in agreement 

with the complexity analysis. 
 

TABLE IV 

COMPUTING EFFORTS FOR STANDARD FIVE-POINT AND EXPLICIT GROUP OF 

ORDER 2 [1] 

n 

Methods 

Standard Five Point EG O(h2) [1] 

Iter Operation count Iter Operation count 

8 70 20580 51 10659 

16 198 267300 130 120770 

32 582 3355812 365 1425325 

64 1795 42746130 1093 17489093 

128 5739 555385986 3432 222287208 

 

TABLE V 
COMPUTING EFFORTS FOR COMPACT NINE-POINT AND EXPLICIT GROUP OF 

ORDER 4 

n 

Methods 

Compact Nine Point EG O(h4) 

Iter Operation count Iter Operation count 

8 63 30870 57 23826 

16 175 393750 129 239682 

32 509 4891490 352 2749120 

64 1557 61797330 1040 33282080 

128 4948 798062920 3242 419962196 

V. CONCLUSION 

In this work, we have developed an alternative fourth order 

numerical scheme using a specific group construction in 

solving the two dimensional Helmholtz equation. The 

originality of this method lies in the selection of the grouping 

strategy which led to an explicit nature of the approximation 

formula. Numerical results show that the new method is able 

to solve the Helmholtz equation with better accuracy 

compared to the second order group method introduced in [1] 

without adding too much computing costs. The new scheme 

also requires lesser computing times than its point iterative 

counterpart, i.e. the compact nine-point scheme, which is due 

to the former's lower computational complexity. For future 

work, we foresee that this group method can also be extended 

to solve time dependent partial differential equations such as 

the 2D diffusion or convection-diffusion equations. 
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