
International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:1, 2015

60


Abstract—The paper follows a discourse on computer-assisted

language learning. We examine problems of foreign language
teaching and learning and introduce a metamodel that can be used to
define learning models of language grammar structures in order to
support teacher/student interaction. Special attention is paid to the
concept of a virtual language lab. Our approach to language
education assumes to encourage learners to experiment with a
language and to learn by discovering patterns of grammatically
correct structures created and managed by a language expert.

Keywords—Computer-assisted instruction, Language learning,
Natural language grammar models, HCI.

I. INTRODUCTION

OMPUTING environments affect learning process in a
wide range of disciplines from humanities to technical

sciences. As people get exposed to computer and software
technology that surrounds us in everyday life, the term
“computer-assisted” sounds like a dissonance. Let’s take an
area of computer-assisted language learning (CALL) as an
example. In [1] the authors sarcastically note that in contrast to
computer-assisted learning, “we do not refer to ‘ballpoint pen-
assisted writing’ or ‘car-assisted traveling’”, and that the
common definitions of CALL merely state the use of
computers as the most important trait of this phenomenon.
Despite all dramatic changes in computer facilities since the
time when the basic CALL concepts were established , Beatty
still concedes that current CALL is “an amorphous or
unstructured discipline, constantly evolving both in terms of
pedagogy and technological advances in hardware and
software” (italics ours) [2].

The development of computer-based learning environments
is intended to improve the following characteristics of the
language learning process:
 Learning Performance: A process of delivering new

knowledge and skills should reduce the time learners
spend and facilitate access to educational resources.

 Learning Efficiency: Knowledge and skills acquired by
learners should be long-lasting. Learners should be able to
focus on topics that are especially important for them.

 Accessibility: Learners should be able to access new
materials and interactive instruments that might be

Evgeny Pyshkin is with St. Petersburg State Polytechnical University, 21

Polytechnicheskaya st., St. Petersburg, 195251 Russia (phone: +7-812-297-
4218; fax: +7-812-297-6780; e-mail: pyshkin@ icc.spbstu.ru).

Maxim Mozgovoy is with the University of Aizu, Tsuruga, Ikki-machi,
Aizu-Wakamatsu, Fukushima, 965-8580 Japan (phone: +81-242-37-2664, e-
mail: mozgovoy@u-aizu.ac.jp).

Vladislav Volkov was with St. Petersburg State Polytechnical University
as a master degree student (vladislav.volkov@yadumay.ru).

unavailable or hardly available without computer
technology.

 Flexibility: Learners should be able to access learning
tools in any time and from any location.

 Organization: Teachers should be able to distribute study
materials easier; distance learning techniques should be
available to enforce communication with language experts
and other learners.

 Motivation: As a result of aforementioned advantages
learners become better motivated to continue their studies
and to be deeper involved into the process.

The present role of computer technologies in education is
mainly focused on extending the boundaries of the classical
learning process: computers should become integrated and (in
a sense) invisible components of a learning system.

The maturity of consumer technologies affected strongly the
CALL development especially in ways of communication
activities implementation:
 Technological innovations encourage teachers and

learners to communicate in the ways never available
before.

 In addition to (or often instead of) specialized CALL
software like tutorials, games, simulators or problem
solvers, CALL uses general consumer communication
tools and applications (which are not kind of teaching
software).

 Authentic materials (created by native speakers) are easier
accessible via computer communication: to check the
phrase correctness learners rather use Google instead of
language tutorials or dictionaries.

Garrett concluded that the new demands on language
education constitute a powerful set of reasons to rethink
grammar CALL [3]. Despite the fact that one of primary goals
of language learning is to improve learners' communicative
competence, learning grammar is still an essential part of
language apprehension. In written language, learning a
language grammar is one of areas where a typical student
activity is limited to following inflexible learning tutorials,
while having little or no ways to experiment with the language
in a similar way as students do in natural and technical
sciences [4]. We know many examples of virtual labs
implemented for the academic courses in physics [5], [6],
chemistry [7]-[9], medicine [10], [11], control systems [12]-
[14], etc. There are many reasons to use such sorts of labs
instead of using real equipment: virtual labs require less space,
they can be easily installed or deployed, often they can be
accessed remotely, they are safe in regards to user health and
equipment integrity, they can be easily reconfigured, etc. In
case of language learning, we can consider any system that

Models and Metamodels for Computer-Assisted
Natural Language Grammar Learning

Evgeny Pyshkin, Maxim Mozgovoy, Vladislav Volkov

C

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:1, 2015

61

supports independent student activities with machine-provided
feedback as a similar “virtual lab” that can encourage freer
experimentation with language elements and partially
substitute teachers.

II. RELATED WORK

Virtual labs can also support problem-based learning (PBL).
Within this educational philosophy, instead of doing artificial
exercises, students are encouraged to work on real subject
domain problems. Interestingly, one of the first PBL
implementations was in medicine education: students worked
on problems from the domain of real clinical experience and
tried to find proper knowledge to solve practical tasks [15]. In
[16] the authors cite the example of the assisted lung
ventilation control system: the students had to design the
system by using modeling tools, and experimented with real
medical equipment where the control system has been
embedded. Thus, PBL was proposed as one of ways to bridge
the gap between learning environments and real-life projects.
We believe that for a case of language learning one of reasons
to improve CALL technology is to bridge the similar gap
between classroom language study and real-life
communication.

Let’s reconsider an obvious idea to visualize basic language
grammar constructions in a “teachable” way. In language
tutorials such visual models are mostly “static”: learners are
unable to use them interactively. Why not to provide learners
with a possibility to manipulate such constructions (in order to
do exercises or to experiment with them freely)? We think that
visual grammar-based constructions simplify learning process
for beginners. To decrease complexity of exercises, it is
possible to use certain techniques of producing easy-to-read
materials [17]. It is also advisable to base learner-oriented
grammar constructions on restricted dictionary, simplified in
order to educate people with preliminary low literacy. As
noted by Robin, in language teaching the best solutions aren’t
those that implement some methods better, but those that
conduct the learning process in a learner’s own style [18].

One of the possible approaches to create a “virtual language
lab” is explored in the experimental system WordBricks
described in our earlier works [1], [4]. WordBricks is a virtual
language playground inspired by Scratch programming
environment [19]. The Scratch approach combines several
important concepts that simplify teaching programming. They
include visual flowchart-style code representation, event-
based and multithreaded execution model, and, what is the
most important in our case, the absence of error messages
[20]. We can draw an analogy with LEGO bricks: individual
parts can be connected only in a restricted number of possible
ways: all possible combinations of brick linking can be easily
found with trial and error (see Fig. 1).

WordBricks (see Fig. 2) follows the same idea: while the
users are free to experiment with any language structures, the
environment makes it impossible to create ungrammatical
language constructions. Furthermore, open (but directed in the
right way) experiments are possible without traditional
grammar checking technologies [4].

Fig. 1 Scratch visual elements

Fig. 2 WordBrick: elements and structures

While being quite a simple instrument, WordBricks still has

to address a number of important problems, relevant to many
CALL systems. Perhaps, the simplest variation of a “virtual
language lab” is represented with spell- and grammar-
checking software. A student can type literally any sentences
and check whether they are considered grammatical. In
practice, it turns out that general-purpose programs, such as
the built-in MS Word’s grammar checker, are not designed for
CALL: they miss many mistakes and do not provide a
comprehensive feedback. Specialized tools, such as Robo-
Sensei [21], have to limit possible user inputs to certain known
cases in order to provide precise explanations to students. So
conventional grammar checking instruments are still unable to
reliably identify the errors in the texts written by the
beginners, and their feedback generation capabilities are not
sufficient for students. The WordBricks projects started as an
attempt to answer the following question: what kind of
valuable functionality can be reliably implemented with the
current state-of-the art technologies? Since natural language
processing methods are not reliable enough (this is especially
true for ungrammatical sentences, created by students), they
had to be abandoned. This means that the students have to be
forced to create grammatically correct phrases from the very
beginning. Scratch environment clearly demonstrates the
viability of this approach in programming: the possibility to
avoid syntax errors helps novice programmers to concentrate
on code design. However, we believe that another important

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:1, 2015

62

aspect of such visual programming is underestimated: by
looking at shapes and connectors, the students understand the
inner structure of code.

While the syntax of computer programs is often
intentionally designed to be simple, natural language
constructions are more challenging to analyze, and thus their
understanding needs to be supported with learning aids. The
views on teaching grammar structures in the classroom differ,
but still certain simplified schemes and explanations are
almost universally used in language learning. So, in case of
WordBricks, there are two major advantages of using shaped
Scratch-like bricks: 1) the system does not need to rely on
natural language processing; 2) the students are exposed to the
visual representation of sentence structure, which presumably
contributes to their mental model of language.

The analysis of existing computerized language learning
environments (like PLATO project [22] or Athena Language
Learning Project [23]) leads us to the belief that the goal of
creating a CALL system is twofold: first, to support learning
process, and second, to gather research data necessary for
further improvements of language learning concepts, and for
the design of future language learning tools. In the context of
supporting the language grammar learning process, we
examine visual models that we consider relevant and useful
both to overcome difficulties that novices have while learning
languages and to implement learning environments in order to
have a possibility to get feedback from students and teachers
after experimenting with them.

III. STRUCTURES FOR MODELING LANGUAGE SENTENCES

Language grammar is a study of how words combine to
form sentences and what structural relationships in a language
are. When language grammar constructions are explained in
school, typically no formal models of syntax like constituency
or dependency grammars are used. Instead, some typical
structures for different phrases are demonstrated. This
approach agrees with the constructivist views on language
education, and partially inherits the way children learn their
first language using almost no direct grammar rules, but
deducing them implicitly during the learning process [24].

Conventional school practices are similar to the use of naïve
pedagogical grammars (as noted as far as in 1991 by Fum et
al. [25]). Such grammars comprise the knowledge derived
from textbooks and teacher experience. We believe that
computer technologies can enrich this process by allowing
students to experiment with words and structures. We believe
that computer assisted language learning tools are aimed to
provide an environment where the learners are building their
own mental models of the language they learn step by step. In
many disciplines related to languages (including software
engineering and programming), students’ capability to create a
clear mental model of a studied concept (e.g. of a natural or a
programming language) has crucial importance. As mentioned
by Milne and Rowe for the case of programming, the absence
of such a mental model is considered as one of usual
difficulties in learning programming [26]. As well as for the
case of software engineering, in natural language education

visualization of data and control structures is one of the known
ways to overcome such difficulties.

We propose the concept of a learning system aimed to
support basic scenarios of grammar teaching and learning by
using visual modeling of language grammar structures. We
pay special attention to deal with teacher’s and learner’s views
that differ. As a language expert, a teacher can create new
models representing grammar constructions, and edit the
models taken from the knowledge base. Then the models are
used to create annotated examples and problems for students.
Here are the examples of typical study problems:
 Having the structure definition, construct examples by

using dictionary words (they can be organized in groups
such as objects, actions, properties, and so on).

 Construct proper sentences by using most words from the
bag of words with or without explicit reference to a
grammar pattern.

 Select the correct forms for missing words in the given
sentence.

 Find grammar mistakes, and correct the sentence.

A. Teacher’s Perspective: Metamodel, Model,
Implementation, and Examples

While lexical categories may significantly differ in different
languages, there are many universal categories [27]. We tried
to express the common elements of grammar learning
constructions as Fig. 3 shows.

Fig. 3 Grammar construction metamodel

Starting out from phrase-structure grammars where a

sentence is analyzed into a linearly concatenated sequence of
constituents [28] we define a structure that refers to a
grammar construction to be learnt. The structure includes
containers that in turn include groups and elements.
Containers can be separate but related sentences:

{English} Sorry, I’m late. Have you been waiting long?
(Using Present perfect in the second sentence (second
container) is conditioned by the situation introduced in the
first one (first container).

Containers can be the parts of a complex sentence:
{English} Unless you work harder, you aren’t going to pass

the exam.
Elements may be subject of modifications (verb forms,

genre conditioned terminations, etc.). There may be
dependencies between structural elements (in Fig. 3 we used
the visual formalism similar to higraph blobs to illustrate this

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:1, 2015

63

fact), like in the following examples in French:
{French} Les belles perles noires, elle les lui ai montrées.
Dependency note and explanation note are necessary

elements of the concept: hints, annotations, explanations
contribute significantly even to learn language vocabulary
[29].

Connectors (punctuation or word connectors) are used to
connect containers. Sometimes a container (as well as an
element) fulfils a function (for example, an inversion signal
for the following container). Groups are necessary to include
phrasal components like noun phrases, verb phrases, adjective
phrases, and so on. Based on the metamodel, a teacher is
encouraged to construct language-related model by
introducing language-specific entities similar to the general
schema shown in Fig. 4.

Fig. 4 Constructing grammar-driven examples

Fig. 5 shows an example of a model to manage German

language grammar constructions for complex sentences with a
subordinate clause.

Fig. 5 German language construction example

Here we do not show all possible language-specific model

entities, but only some selection, which is enough to illustrate
the idea. Note that in this example the subordinate clause
(“Nebensatz”) fulfils a function of inversion signal for the
main sentence (“Hauptsatz”). The sample sentence serves as
an implementation of the models with using words from the
dictionary.

Teacher’s side view enables manipulation with language-
specific model entitles, for example:
 For English Language: Containers: clause, conditional

clause, relative clause …; Groups: noun phrase (NP), verb
phrase (VP), determiner phrase (DP), propositional phrase
(PP), adjective phrase (AdjP), adverbial phrase (AdvP),
infinitive phrase (InfP); Elements: noun, verb, pronoun,
adverb, preposition; Connectors: interjection, conjunction,
question words…;

 For German language: Containers: Hauptsatz,
Nebensatz, Relativesatz, Infinitivsatz,…; Groups:
Angabe, Obligatorische ergãnzung, Unbetonte obl.
ergãnzung, Prãpositionalergãnzung; Elements: Subjekt,
Verb, Pronomen, Reflexivepronomen, …; Connectors:
Fragewort, Konjunktor, Subjunktor, …;

 For Japanese language: Elements: Noun, Verb, i-
adjective, na-adjective, phrasal elements (see Fig. 6);
Modifiers: verb te-form, verb na-form, verb nai-form, i-
adjective negation, na-adjective negation, … .

At the initial stages of language learning it is difficult for
learners to operate with all lexical categories. So we use
simplified classification of dictionary words as they exposed
to a learner. Such restricted classification makes easier
applying the same approach to the languages with different
grammar and lexical structure. This list currently includes
objects, actions, determiners, properties, indications and
connections, and will be extended in the future. However,
these categories are sufficient for arranging experiments with
relatively complex grammar structures. Fig. 6 illustrates this
idea with an example of creating basic Japanese structures.

Fig. 6 Japanese language construction example

Let us propose the hypothesis that a more detailed

categorization is required only for advanced learners, who
need different functionality from virtual language labs.

B. Learner’s Perspective: Model, Implementation and
Experiments

Teachers create patterns. Learners use patterns explicitly or
implicitly. As far as in 1965 McConlogue and Simmons
reported the construction of a pattern-based English syntax
parser that was able to show 77% accuracy after experience
with 300 sentences [30]. Learners are expected to follow the
similar process, i.e. to learn how to recognize grammar
structures after being exposed to example phrases and
patterns.

Basic learning scenarios can be supported by an explicitly
exposed pattern or by a hidden pattern. In the first case, a
learner should put required words into the correct positions by
using correct modifiers to follow the exposed pattern. In the
second case, a learner has no hints about the sentence structure
and is encouraged to guess what the phrase could be.

Note that in many situations a user may construct a sentence
that differs from the teacher’s one but fits the grammar

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:1, 2015

64

structure (see Fig. 7). The bag of words may contain words
defined as a part of an exercise pattern (that still leaves spaces
for some creativity). However, it can be also an output of
some special component that automatically selects words from
the dictionary. If there is an available implementation of the
language ontology (e.g. WordNet), this approach can be used
in combination with other tools to improve words
classification and to automate bag of words generation for
certain exercises. A similar approach is used in the
implementation of the WordNet-based web search assistant
[31].

Fig. 7 Different sentences with the same structure

Fig. 8 Learner's mistakes

We introduced such elements as dependency notes which

are used to explain how one part of the grammar construction
depends on another part. They help to provide hints on
possible mistakes unrelated to the sentence structure as Fig. 8
shows. While the outlined above experiments and exercises do
not require traditional grammar checking technologies, they
can be used in combination. Representing sentences with
known grammar formalisms may be useful to analyze
mistakes unrelated to teaching patterns, or to automate hints of
using alternative words or phrases.

C. The Case of Programming Languages

While the proposed structure and organization are aimed
mostly at natural language learning, similar techniques can be
used to support programming languages learning. Indeed,
programming language structures are more formal and
restricted, but as mentioned in [32], modern programming
languages are as rich and expressive as natural languages, and
can be modeled using models similar to those used in natural
language processing.

IV. PROTOTYPING

We created a prototype application that implements some of
the models introduced in the previous sections. Our prototype
is focused on such aspect of learning process as
teacher/learner interaction. Existing learning environments
often ignore that teachers and learners act on different levels

of language structures. Thus, we extend a virtual language lab
concept in order to provide different usage modes for a
language expert, a teacher, and a learner. The shapes of the
grammar elements are created and configured by an expert.
Metamodel constructions are created and managed by an
expert. Patterns to learn are created by a teacher and then used
by a learner. Fig. 9 illustrates this idea.

Fig. 9 Learning environment use cases

Prototype components are developed in correspondence

with three levels of user interactions. Meta-element editor is
developed to support creating new meta-elements (like
objects, actions, determiners, etc.) to be used for grammar
structure constructions. Grammar rule editor is used to
construct rules and rule chains in the form of visual grammar
structures connecting meta-elements and dictionary elements.
Learner panel allows learners to construct sentences with
grammar and dictionary elements, following grammar rules
defined by a teacher. Learners deal with concrete
implementations of meta-elements in form of words classified
with respect to their grammar role.

Let us note that the current prototype puts the problems of
representing and analysis of language grammars on the back
burner to the benefits of supporting teacher – software –
learner interaction based on visual editors of language
constructions.

A. Modeling Meta-Element Shapes

In order to support constructing visual representations of the
language grammar rules, basic elements have to be defined.
Meta-elements are entities defined by an expert who decides
which properties are used to differentiate them from each
other. Currently, such properties include: entity name (object,
action, subject, property, etc.), its geometry and color, list of
corresponding word types, connector types, and user-defined
properties. Meta-elements created at this stage are used by a

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:1, 2015

65

te
im
w
sh
gr

co
th

se
w
de
fo
lim
no
co
le
C
ge

acher for con
mplement met

while experime
hows an exam
rammar prope

Fig. 10 Ex

B. Constructi

A visual r
onstructed by
he basic shape

Fig. 11 Const

Each visual

equence of m
where all conne
escription, an
or the genre,
mit correct co
ot only define
ontain informa
arners wheth
onnection pr
enre, number o

nstructing visu
a-elements ar
enting with th
mple of con

erties of meta-

xamples of met

ing Grammar

epresentation
 establishing
s as shown in

ructing visual g
el

grammar rule
meta-elements

ections have t
nd linked met

person, and
ombinations of
e a possibility
ation used du

her their mani
roperties allow
or person, ten

ual grammar
re intended to
he language co
nfiguring shap
elements.

a-element view

r Rules

of the gra
associative c
Fig. 11.

grammar rules b
lements

e is considere
(generally, a

their own attri
ta-element pro
tense concord
f elements. Ev

y to connect e
uring learning
ipulations are
w managing

nse or case con

rules. Elemen
be used by a
onstructions.
pes, connecto

ws and propertie

ammar struct
connections b

by connecting m

ed to be a con
a semantic ne
ibutes, such as
operties (resp
dance). Assoc
very associatio
elements, it al

stage to expl
e admissible

such proper
ncordance.

nts that
student
Fig. 10

ors and

es

ture is
between

meta-

nnected
etwork),
s name,

ponsible
ciations
on does
lso may
lain the
or not.

rties as

use
wi
lim
Th
no
no
illu

ass
ord
an
pa

wi
ter
cla
Ad
cu
me
tra
rel
tha

lea
int
mo
mo
tea
int
ch
W
ele
gra
we
of
tra
sen
lin

C. Playing wi

Currently we
er follows ex
ith the langu
mited by the s
he idea is sim
ot be able to c
otified why
ustrates this id

Note that le
sociations. A
der to check w

nd interpreted
atterns.

Language lea
ith the current
rm “language
assroom equ
dvancing the

urrent understa
ere digitaliza
aditional tech
lated data to
at are hard to i
A concept of

arning model
telligent tutor
odel, a learne
odel [24]. In o
acher/learner i
teractive incre

hallenge in th
ordBricks is
ements and t
ammatically c
ell-researched
f sentence r
aditional form
ntences: there

nks can be pot

ith the Langua

e support lear
xercises prepar
uage freely. T
hapes and gra

milar to WordB
create illegal
a certain co
dea with a sim

Fig. 12 Learn

arners do no
Associations a
whether the wo

correctly acc

V. CON

arning techniq
t computer tec
lab” is appli

uipment, but
idea of a l

anding of CA
ation of lea
hniques of st
the computer
implement wi
f virtual langu
that advances
ring system,
er model, a tu
our research w
interactions an
emental learni
he design of
the trade-off
he potential
correct) const

d topic in ling
representation

malisms can on
e are no visua
entially establ

age

rner scenarios
red by a teac
The freedom
ammar rules d
Bricks: the le
constructions

onstruction is
mple example.

ner’s experimen

ot work expl
re used at th
ords or phrase
cording to th

NCLUSION

ques form a sy
chnology. To
ed not only to

also to a
language virtu

ALL: it should
arning proce
toring and m
r. It should cr
ithout comput
uage lab can
s the tradition
having four

utor model, a
we have highli
nd have drawn
ing process. N
f visual cons
between simp
to create com
tructions. Sen
uistics, and a

n were dev
nly show the
al elements sh
lished betwee

s of two type
cher; 2) a user

of experime
defined by a te
arners either

s, or they sho
s invalid. F

nts

icitly with e
he internal le
es may be con

he existing gr

ymbiotic relati
day we see h
o physical lan

learning co
ual lab refin

d not be limite
ss by trans

managing lan
reate new use
ter technologie

be considere
al architecture
models: a d

and a user in
ighted the asp
n models supp

Naturally, the b
structors sim
plicity of the
mplex (ideall
ntence structu
a number of th
veloped. Ho
structure of e

howing what k
n the given w

s: 1) a
r plays
ents is
eacher.
should

ould be
ig. 12

element
evel in
nnected
ammar

ionship
ow the
nguage
oncept.
nes the
ed to a
ferring

nguage-
e cases
es.
ed as a
e of an
domain
nterface
pects of
porting
biggest

milar to
visual

ly, any
ure is a
heories

owever,
xisting
kind of

words.

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:1, 2015

66

Following Meyer’s DIAMO classification of software
engineering we are at the “describe” stage [33]. Our tools did
not undergo an extensive classroom evaluation yet, so it is
difficult to say whether full exposure to sentence structure and
grammar attributes of the individual words actually improve
learning. One may argue that the knowledge of parts of speech
or word-word relationships in a sentence is not required to
master foreign language, but this topic requires detailed
discussion.

In 2002, Hubbard conducted a survey, revealing that even
CALL experts are not convinced in the effectiveness of
computer-supported language education [34]. Specialized
educational software is still perceived by teachers as yielding
only marginal improvements. Perhaps, before planning new
contributions to CALL, we should answer the following
question: what kind of systems would make the largest impact
on learning comparing to the traditional classroom practices?
We believe that computer systems should help to develop “the
feel of language” in the learners’ minds by exposing them to
numerous examples and patterns, and by providing them with
a possibility to create and test their own ideas of feasible
language constructions. Such mix of handcrafted examples
and open experimentation has a long tradition in science
education, but in language learning similar experience is
available only during private teacher-learner interaction. We
hope that computer-supported virtual languages labs will help
learners to perform at least simple language experiments at
their own pace, even when the private teacher is not an option.

ACKNOWLEDGMENT

We thank Matvey Pyshkin for his successful experiments
with the Scratch programming environment that he did when
he was about 12 years old, thus proving that it is possible to
manage relatively complex program flow structures without
any primary knowledge about language syntactic rules.

REFERENCES
[1] Efimov R., Mozgovoy M., Brine J. 2014. CALL for Open Experiments.

In Proceedings of International Conference on Computer Supported
Education (CSEDU 2014, Barcelona, Spain, April, 1–3, 2014),
http://www.csedu.org/Abstracts/ 2014/CSEDU_2014_Abstracts.htm.

[2] Beatty, K. 2010. Teaching and Researching Computer-assisted
Language Learning. 2nd ed. Pearson Education.

[3] Garrett, N. 2009. Computer-assisted language learning trends and issues
revisited: integrating innovation. The Modern Language Journal 93
(Dec. 2009), 719–740. DOI= 10.1111/j.1540-4781.2009.00969.x.

[4] Mozgovoy, M., and Efimov, R. 2013. Wordbricks: a virtual language lab
inspired by scratch environment and dependency grammars. Human-
centric Computing and Information Sciences 3, 1 (2013), 1–9.
DOI=10.1186/2192-1962-3-5.

[5] KET’s Virtual Physics Labs, http://virtuallabs.ket.org/physics/overview/.
Accessed: June, 30, 2014.

[6] UCLA ePhysics, http://ephysics.physics.ucla.edu/. Accessed: June, 30,
2014.

[7] Virtlab: A virtual laboratory: Teaching and learning chemistry can be
fun! http://www.virtlab.com/main.aspx. Accessed: June, 29, 2014.

[8] ChemCollective: Online resources for teaching and learning chemistry,
http://www.chemcollective.org. Accessed: June, 29, 2014.

[9] Chemist: Virtual chem. lab, http://thixlab.com/. Accessed: June, 29,
2014.

[10] Serious games for healthcare market, http://breakawayltd.com/serious-
games/solutions/healthcare/. Accessed: June, 28, 2014.

[11] Indiana University Virtual Anatomy Lab, http://www.indiana.edu/
~anat215/virtuallab/index.html. Accessed: June, 30, 2014.

[12] Simulink: simulation and model-based design,
http://www.mathworks.com/products/simulink/. Accessed: June, 28,
2014.

[13] ContLab Automatic Control Laboratory, http://www.contlab.eu/en/.
Accessed: June, 30, 2014.

[14] PIDlab PID control laboratory, http://www.pidlab.com/en/. Accessed:
June, 30, 2014.

[15] Gallagher, S. A. 1997. Problem-based learning: where did it come from,
what does it do, and where is it going? Journal for the Education of the
Gifted 20, 4 (Sum 1997), 332–362.

[16] Cabezas, D., Vassiliev, A., and Pyshkin E. Assisted lung ventilation
control system as a human centered application: The project and its
educational impact on the course of embedded systems. In J.J. (Jong
Hyuk) Park et al. (eds.), Ubiquitous Computing Application and
Wireless Sensor, Lecture Notes in Electrical Engineering, 331, Springer
Science+ Business Media Dordrecht, 2015.

[17] Nietzio, A., Scheer, B. and Bühler C. 2012. How long is a short
sentence? – A linguistic approach to definition and validation of rules
for easy-to-read material. In K. Miesenberger et al. (Eds.): Computers
Helping People with Special Needs, ICCHP 2012, Part II (Linz, Austria,
July 11–13, 2012), 369–376, LNCS 7383, Springer Berlin Heidelberg.
DOI= 10.1007/978-3-642-31534-3_55.

[18] Robin, R. 2007. Commentary: learner-based listening and technological
authencity. Language Learning & Technology 11, 1 (Feb. 2007), 109–
115.

[19] Maloney, J., Resnick, M., Rusk, N., Silverman, B., and Eastmond, E.
2010. The scratch programming language and environment. Trans.
Comput. Educ. 10, 4 (Nov. 2010), 16:1-16:15. DOI=
10.1145/1868358.1868363.

[20] Malan D.J. Scratch for budding computer scientists (Online) URL:
http://cs.harvard.edu/malan/scratch/. Accessed: June, 27, 2014.

[21] Nagata N. 2009. Robo-Sensei’s NLP-based error detection and feedback
generation. Calico Journal, 26(3), 562-579.

[22] Levy, M. 1997. Computer-assisted language learning: Context and
conceptualization. Oxford University Press, 1997.

[23] Murray J.H., Morgenstern D., Furstenberg G. 1989. The Athena
Language Learning Project: design issues for the next generation of
computer-based language learning tools. Modern Technology in Foreign
Language Education (1989), 97-118.

[24] Joshi, A. and Sasikumar, M. 2009. A constructivist approach to teaching
sentences in Indian language. In International Workshop on Technology
for Education (Bangalore, Aug. 2009), 75–80.

[25] Fum, D., Pani, B. and Tasso, C. 1991. Teaching the English tense:
integrating naive and formal grammars in an intelligent tutor for foreign
language teaching. In Proceedings of the Fifth Conference on European
Chapter of the Association for Computational Linguistics, (Stroudsburg,
PA, USA, 1991), 149–154, EACL ’91, Association for Computational
Linguistics. DOI= 10.3115/977180.977206.

[26] Milne, I. and Rowe, G. 2002. Difficulties in learning and teaching
programming views of students and tutors. Education and Information
Technologies 7, 1 (Mar. 2002), 55–66, Kluwer Academic Publishers
Hingham, MA, USA. DOI= 10.1023/A:1015362608943.

[27] Petrov, S., Dipanjan D. and McDonald, R. 2012. A universal part-of-
speech tagset. In Proceedings of the 8th International Conference on
Language Resources and Evaluation (LREC '12).

[28] Lees, R.B. 1957. Syntactic Structures. Languages, 3(3), part 1, 375-408.
[29] Chun, D. 2006. CALL technologies for L2 reading. Calling on CALL:

From Theory and Research to New Directions in Foreign Language
Teaching, Ed. by L. Ducate, N. Arnold, CALICO, 69–98 (2006).

[30] Mcconlogue, K. 1965. Analyzing English syntax with a pattern-learning
parser. Commun. ACM 8, 11 (Nov. 1965), 687–698, ACM, NY, USA.

[31] Pyshkin, E. and Kuznetsov, A. 2010. Approaches for web search user
interfaces. Journal of Convergence 1, 1 (2010).

[32] Hindle, A., Barr, E. T., Su, Z., Gabel, M. and Devanbu, P. 2012. On the
naturalness of software. In Proceedings of the 34th International
Conference on Software Engineering, (Piscataway, NJ, USA, 2012),
837–847, ICSE ’12, IEEE Press.

[33] Meyer, B. 2009. Touch of Class. Learning to Programm Well with
Objects and Contracts. Springer Verlag.

[34] Hubbard, P. 2002. Survey of unanswered questions in Computer
Assisted Language Learning, Stanford University,
http://www.stanford.edu/~efs/callsurvey/index.html.

