
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:10, 2014

1897

Abstract—This paper describes a logical method to enhance

security on the grid computing to restrict the misuse of the grid
resources. This method is an economic and efficient one to avoid the
usage of the special devices. The security issues, techniques and
solutions needed to provide a secure grid computing environment are
described. A well defined process for security management among
the resource accesses and key holding algorithm is also proposed. In
this method, the identity management, access control and
authorization and authentication are effectively handled.

Keywords—Grid security, Irregular binary series, Key holding

mechanism, Resource identity, Secure resource access.

I. INTRODUCTION

N general, a grid can provide a consistent way to balance
the loads on a wider federation of resources applying to

CPU, storage, and other types of resources that may be
available on a grid [1]. Authentication and Access Control is a
major issue in grid security for resource usages. In the grid
environment, if a node (GNi) has a secure file S, all the other
nodes in the grid can access the secure file and the attack is
highly possible [1]. Also if the resource S has to limit for a
particular user, it will be a tedious job to hold the key of the
limited users. Ontology and key servers are introduced to do
the job. The proposed architecture for a secure resource
handling is a logical method to handle the secure resources to
avoid the attacks. To handle the resources, a new identity
management system is introduced. A secure file access control
protocol through the middleware of grid environment is used.
The Grid service providers need to make sure that the resource
cannot be accidentally accessed by another user or a hacker.
The right level of security is necessary to use a resource
provider’s offerings. A standard secure grid architecture is
introduced to make the resources to be private for the users. In
a grid, the member machines are configured to execute
programs rather than just move data which make an unsecured
grid potentially fertile ground for viruses and Trojan horse
programs. It is important to understand exactly which
components of the grid must be rigorously secured for the
aforesaid reason. Furthermore, it is necessary to understand
the issues involved in authenticating users and providing

M.Victor Jose is with the Computer Science and Engineering Department,

Noorul Islam Centre for Higher Education, Kumaracoil, Tamil Nadu, India
(Mob: +919487112584; Fax: +914651257266; e-mail:
victorjose@yahoo.com).

V. Seenivasagam is with the Computer Science and Engineering
Department, National Engineering College, Kovilpatti, Tamil Nadu, India
(Mob: +919442622502; Fax: +914632232749; e-mail:
yespee1094@yahoo.com).

proper authorization for specific operations. Managing a large
group of computing is a primary task in the grid environment
as well as the secure resource handling [2]. In the proposed
architecture, all the above problems are analyzed and security
mechanism is implemented using Gridsim Toolkit 5.2 [3].

II. MATERIALS AND METHODS

Secure resource sharing has been enhanced using different
types of key authentication protocols such as Ontology based,
Database based, and Kerberos based [4]-[7], [13]. Reference
[6] proposed encryption algorithm is to make an authenticator.
Here, grid nodes are classified into supervisor and execute
nodes. The authenticator is used to create, execute information
database in an execute grid node and remote user information
database in a supervisor grid node. User in the execute grid
node sends commands to the supervisor grid node to process
an operation. If the supervisor verifies and finds it to be
correct, it will return ok message to the execute grid node.
Users in the execute grid nodes can continue the process
through supervisors. In this method, user-id and password are
only used to produce authentication that is insufficient to
overcome all types of attacks. A novel Authentication
Architecture for Grid Security (AAGS) consists of three
levels, 0-level node, for root key generation, 1-level node, for
sub key generation, and 2-level node, which provides a
reliable session connection using trusted link protocol [14].
The AAGS is complex and inconvenient for implementation.
The TCP inline authentication is used to enhance network
security in grid [15]. In this method, the authentication
information is transferred within the TCP three-way-
handshake to distinguish the authentication information from
application data. The TCP three-way-handshake has been
verified for connection depending on the user’s the proven
identity. This method leads to dynamic operation in firewall.
The TCP handshake has been verified before it comes to the
final decision. The Identity provided by the user is maintained
and stored that is vulnerable for attacks. A unique batch
authentication protocol for vehicle-to-grid that reduces
authentication delay and less communication traffic compared
with the one-by-one authentication scheme has been
developed [16]. All parties share a common trust point to have
their certificates signed in the scheme which appends the
message concatenation in a special format to encrypt or
decrypt the message using a public key and a private key
respectively. The trust point is vulnerable for attackers.
Encryption and decryption are time consuming processes.
Reference [8] provides biometric authentication which
depends on the password and user-id along with the biometric

Enhancing Security in Resource Sharing Using Key
Holding Mechanism

M. Victor Jose, V. Seenivasagam

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:10, 2014

1898

data and the geographic position of the user. The same data is
used by authorization to reduce the cost and time as well. This
scheme optimizes the entry level security and prevents
malicious attacks. This method needs special devices which
restrict the usage of resource sharing. In general for a grid,
user authentication is not sufficient, since a user may get-off
and get-on at any time. There is also a possibility that a user
may publish user name and password to other uses. The
proposed technique identifies the user by a special mechanism
of the middleware. The method is fast and does not require
special devices for a secure resource sharing.

III. PROPOSED WORK

Security requirements within the grid environment are
driven by the need to support scalable, dynamic and
distributed virtual organizations [9], [10]. The proposed model
consists of three levels such as secure resource accesses, key
management and user identity. The first level is managed by
Grid Secure Resource Access Protocol (GSRAP) to eliminate
the attacks. The inner core ‘Key Management’ authenticates
the user using user name and password that is managed by Re-
generation of Irregular Binary Series key holding algorithm
(RIBS). The last level is a pure system oriented verification of
the user by the unique id of the grid user managed by Grid
Resource Identity Protocol (GRIP).

A. GSRAP Registration Mechanism

The GSRAP is a real-time grid platform protocol used to
handle the secure resource access in the grid environment. If
the users of the grid know that the resource is a protected one,
the continuous attacks will be highly possible even by a
trusted system. For example if a client on the grid wishes to
protect a resource for some limited users, the grid has to face a
difficulty which can be resolved using concepts like ontology,
Kerberos, etc. In the security issue, the cyclic attack is a major
problem, as it will make the file to Denial of Service. If a
resource wants to be secured then, the resource administrator
should register the resource to the middleware. This involves:
 During registration the resource administrator should

submit the private key to the middleware.
 The middleware will encrypt the resource by its private

key and give an Access Key File (AKF) for access the
resource.

 Similarly the members of the resource should also register
with the middleware and added into the AKF.

The resource will be encrypted by the asymmetric key
encryption method by the middleware called public key
cryptography. In public key cryptography, an asymmetric key
pair (a public key and a private key) is used. Normally, the
public key is present in the digital certificate issued by the
certificate authority. One key (public/private) encrypts the
data and the other key decrypts the data. A message encoded
with the public key can only be decoded with the private key.
The corresponding private keys are secured by the owner and
never revealed to the public.

B. GSRAP Resource Access Mechanism

Once the secure registration process is completed by the
members with the middleware through the resource
administrator then the next step is resource access. If any of
the grid users wishes to use the secure resource, then the
GSRAP handles the resource accessing system [11], [12]. The
following steps are followed.
Step 1. The user has to select the resource.
Step 2. If it is protected, the GSRAP gives an Access Request

key (AcReq) to the requester.
Step 3. The AcReq should be submitted to the middleware.
Step 4. The middleware processes it and authenticates the user

with the AKF.
Step 5. If authentication is successful, it will check the unique

user identity with the access key file. If it is ok, it will
give a permission key to the resource and an access key
to the resource requester to access the resource.

Step 6. The requester will submit the access key to the
GSRAP. Then the GSRAP will permit the resource to
access.

IV. RE-GENERATION OF IRREGULAR BINARY SERIES KEY

HOLDING ALGORITHM

The high dynamic nature of a grid computing makes the
update of group key(s) a challenging problem. Every
participating node would like to offer its resources to be used
by other nodes. However, the sharing must be in a controllable
and fine-tuned manner. To solve the critical security problems
that set obstacle for further deployment and applications of
grid computing, this paper presents a mathematical model of a
key holding algorithm for an effective communication/sharing
of resources in the grid environment. The resource security
and non-dependability of other nodes security are focused in
this methodology. First, the Unique User Identity (UUID) is
presented and followed by Key Cycling mechanism and the
User Management is discussed then. This technology could
help promoting grid computing to a new era, in which secure
resource services offered on the grid are enabled. It is assumed
that every valid user/machine in the system is assigned with a
Permanent Secret identification key, denoted by PSID. When
a user or an organization registers to the grid via the
middleware, several certificates need to be issued. The host
certificate authenticates the machine involved in the grid. The
service certificate authenticates the services offered to the
grid. The user certificate authenticates the use of grid services.
In this registration process, the permanent secret key can be
embedded into the certificates issued to the member.

A. Key Management and Unique User Identity

Each resource in the grid space is identified by a UUID.
This UUID is an internal map of the PSID. This service takes
place inside the middleware i.e., the UUID is mapped inside
the middleware which in turn will take the PSID from each
domain and builds mapping table that is represented in Fig. 1.
For the mathematical calculation purpose, the UUID is
simplified into decimal formats within the range of one to
hundred (1-100). To overcome the UUID exceeding from

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:10, 2014

1899

hundred, a new digit Pi will be included in it and the
numbering will start from one. So, the mapping of the
resources can be defined as

 Resource = Pi.UUIDi (1)

The resources are grouped by the middleware according to

the limit in each part Pi. This can be stated as

 Pi = {UUID1, UUID2, UUID3, …UUIDn} (2)

The Resources (R) in the grid space (Gi) can be termed as

R=∑Ri (3)

and the mapping table parts can be represented as follows

P =
1, if R 100

R
1, if R 100 (4)

In (4), if the Resources (R) is less than or equal to 100, the

number parts (P) for the resource mapping is assigned to 1 and
if the R is greater than 100, then P will be formulized and
assigned. According to the value of the P, the resource
mapping table parts will be created.

Fig. 1 Resource mapping table with middleware

B. Key Cycling Algorithm and Sin-NOT Series

This is a mathematical method of key generation named
‘Regeneration of Irregular Sin-NOT Series (RISS)’ method,
the Sin-NOT series is Sin (90) =1, Sin (0) =0.

The output of the series is a binary value; these values are
taken for the processing by the RISS algorithm. A sample
series is shown Fig. 2. The resources are mapped in the sin-
NOT series. If the resource exists according to the middleware
map, it will be represented as one, and if there is no resource,
it will be represented as zero. So, according to the existence of
the resources, the Sin-NOT series can be formed and the RISS
algorithm generates the digest values. From Fig. 2, the sin-
NOT resource series maps resources UUID as 1, 4, 6, 10 and
Mapping table part as 1. This series is used in the RISS
algorithm to process the key generation. For a secure file, a
group or a limited number of users will be allowed by the

resource administrator. As the first step user will be given the
username and password to authenticate them. This method is
introduced in order to overcome the drawbacks of key-servers,
ontology concepts and biometric authentication. This includes
resource and key management and key regenerative digest
methodology.

Fig. 2 Irregular sin-NOT series

C. Resource and Key Management

In the middleware, the RISS algorithm and the GRIP plays
primary role to manage the resources. The final form of the
key can be managed by the secure resource administrator and
it can be used by the secure resource. The key can only be
read by the middleware, even though the administrator has
authenticated with the middleware. If the resource is added or
deleted by the administrator, the key file will be re-defined by
the middleware and a new key file will be generated for the
secure resource. During redefining of the key, the sin-NOT
series will be redefined and a new digest value be generated
for the existing resource users which will not affect the UUID.

D. Key Syntax

The key is the final part of the RISS algorithm. It is divided
into several parts according to the part in (4) representing the
number of the resource mapping tables as well as the number
of key parts. Each part is capable of holding hundred users
within it. Finally in the key, it holds only the revisable hash
values of the RISS algorithm or the extraction values of the
RISS procedure.

Syntax: <P1, P2, P3… Pn>
<P1 (reversible hash), P2 (reversible hash), P3 (reversible

hash), …,Pn(reversible hash)>
Each part is separated by a comma and it represents the end

of the part.

V. GENERALIZATION OF KEY HOLDING ALGORITHM

An ordinary message digest does not regenerate the series
again. However, this method regenerates the series. The
representation of output in the form of a single string of digits
is created using a formula called a two-way hash function. The
sin-NOT series is processed with the mathematical method
and the readable output is generated. From the output, the
series is generated and the resources are verified which is an
electronic authentication. The sin-NOT series is a binary
formation which is extracted as binary number i.e., the series
consists of the values 0 or 1 in an irregular way. The binary
number is converted into decimal numeral system. In Fig. 2,
irregular sin-NOT series 1 to 10 is represented in binary form
1001010001. Similarly, a part in P in the middleware will
have hundred UUIDs. One key file represents one hundred

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:10, 2014

1900

resources. These UUIDs will be hashed and the digest value
will be stored in the key file. The sin-NOT series binary
number is converted to decimal at each level. Let 1 be the
first digit of the sin-NOT series, 2 be the second digit of the
sin-NOT series and so on. Therefore initially 1= 20,

Then 1= 1 + 2[next digit varies from 2 to n]

The summation of this series is like the Fibonacci series.

Each location is given its decimal equivalent value. The
Sin(90) value of the digit is summed with the previous digit
starting at 20, and evaluating it as "1". Increment the exponent
by one for each power. When the amount of elements in the
list is equal to the amount of digits in the binary number, it
needs to be skipped. For example the number, 10011011, has
eight digits. So the list to eight elements would look like: 128,
64, 32, 16, 8, 4, 2, and 1.

Finally 1 will consist of the full summation of the sin-NOT
series with base ten values.

 1= 1+2sin(90)i (5)

Example 1: 25+ 24+23+22+21+20

1= 1+21=1+2=3, 1= 1+22=3+4=7
1= 1+23=7+8=15, 1= 1+25=31+32=63

The above are the base ten equivalents of the sin-NOT

series. From these values, the RISS algorithm process gets
started. For the re-generation of the sin-NOT series, again the
RISS will take input values from the base ten summation
values.

fs = 1 (first sum), ls = 63 (last sum)

fls = 64 (first and last sum), ts = 120 (total sum)

The variable ts can be termed as follows,

 ts ∑ 2sin 90 in
i 0 (6)

For the re-generative process, the following formula is used

to check the sin-NOT series.
Initial difference (df):

 df= ts – fls (7)

SVi = T ; ; f ,
F ;f f ,O h (8)

Equation (8) is used to re-generate the sin-NOT series

again. From this, the middleware can verify whether the UUID
of the resource exists in the series or not.

A. Re-generative Process

Initially some base ten values are taken from the series for
the re-generative process. From the values, the first value i.e.
20 and the last value 2n values are summed together and kept
in a variable fls (first and last summation). Then the total
summation is calculated as per (8). Initially, to start the re-

generation process, the first and last summation (fls) is
subtracted from the total summation (ts). From the second
step, the value for the fls is calculated using:

 fls = 2sin(90)i (9)

After calculating the fls value, (7) and (8) are evaluated. If

(8) returns 1 or TRUE, the 2sin (90)i location is marked as the
sin-NOT series value else if the equation returns 0 or FALSE,
value it is marked as 0 (ZERO). This process is repeated until
ts reaches zero (ts=0). By this way, the series gets regenerated
and the UUID of the resources are cross checked with the
middleware mapping table.

B. UUID vs. sin-NOT Series

In the above example 1, it is shown how the second location
of the sin-NOT series is verified. According to the RISS
algorithm, the extraction of the sin-NOT series base ten values
are as follows,

fs = 1 (first sum), ls = 63 (last sum)
fls = 64 (first and last sum), ts = 120 (total sum)
Using (7), df = ts-fls = 120 – 64 = 56
Using (8), if (df<ts) then SVi=TRUE
ts=ts-df
df=2sin(90)i

 else SVi=FALSE
Endif

Since the df is less than the ts value, SVi (series value of

location i) consists of binary 1 (ONE) so in the reverse order
the last location consist of ONE i.e. (25). Then, the target
location 2, i.e. to verify this location consisting of ONE or
ZERO, again the RISS process begins,

Now, fls = 2sin (90) = 24 =32, ts = df = 56
Using (7), df = ts-fls = 56-32=24
Using (8), df is less than ts
SVi=TRUE

By the above method, the series is continued to generate as

the original series. From this, the middleware can clearly map
the UUID with the series and the table.

VI. ALGORITHM FOR RISS

The RISS_Base_Ten algorithm is used to convert the binary
sin_NOT series to base ten values. The algorithm
RISS_Regeneration is used to regenerate the sin_NOT series
from the extracted values of the RISS_Base_Ten algorithm.

ALGORITM RISS_Base_Ten (sin_NOT_series)
Binary_Number[] sin_NOT_series;
Series_Length length().sin_NOT_series;
fs =0; // first sum, ls =0;// last sum
fls =0;//first and last sum, ts =0;//total sum
for(i=0;i<=Series_Length;i++)
{
 If(Binary_Number [i]==1) then
fs=2(power, (i-1));
If(Binary_Number [i]==n) then

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:10, 2014

1901

ls=2(power, (i-1));
If((i>1)and(i<n)) then
sum=sum+2(power, (i-1));
}
 ts=fs+ls+sum;
fls=fs+ls;
END

ALGORITM RISS_Regeneration(fs,ls,fls, ts, series_length)
Binary_Number [] NULL;
df =0;
for(i=0;i<=series_length;i++)
{
df=ts-fls;
if(fs ≠0) then
{
 if(df<fls)
{
Binary_Number [i]=1;
 ts=df;
}
else
{ Binary_Number [i]=0;
ts=ts;}
fls=2(power, (i-1));
}}
END

VII. RESULTS AND DISCUSSION

The simulation is made on the GridSim tool kit 5.2, which
are real machines connected through internet. The schedule
node and database server are also deployed on it. The
experimental environment consists of 15 distributed nodes that
serve as grid nodes, which are possible to connect 150
different users with different unique identities. The different
sizes of resources with authentication times and storage times
in the grid environment are shown in Figs. 3 and 4. From these
graphs, it is clear that authentication and storage performance
variation is small for different resources. The performance of
Secure Resource Sharing Protocol with different timelines and
different users are represented in Figs. 5 and 6.

Fig. 3 Authentication vs. Time

Fig. 4 Storage vs. Time

Fig. 5 Secure Resource Sharing vs. Time

Fig. 6 Secure Resource Sharing vs. Resources users

Fig. 7 shows the different resources processing time of
authentication and the UUID mapping. Processing time of
different resources is not varying much irrespective of source
size. This model is not using any special devices or complex
algorithms. Hence, the processing time is not having much
variation. Fig. 8 shows the reliability of secure resource
sharing. If Reliability is high, it will show that the resources
are not easily affected by denial of service. Therefore, the
model proposed here is more reliable for grid platform.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:10, 2014

1902

Fig. 7 Secure resource processing time

Fig. 8 Resources reliability

Fig. 9 shows the relative performance of various
authentication protocols such as Ontology based, Database
based and Kerberos based with secure resource sharing. From
this graph, it is clear that the proposed algorithm is fast and
performance variation is small for different number of
resources. This algorithm allows the identification of
resources effectively in a simple way.

Fig. 9 Secure resource sharing vs. resources performance

VIII. CONCLUSION

The various authentication protocols were simulated over
time and space with different configurations. It supports
different application models that can be mapped to resources
for the RISS process. The architecture and components of the

secure resource sharing mechanism have been discussed. In
addition, the average execution times on different resources
and middleware have been tested. This result shows that
secure resource sharing is fast and this can help to implement
real-time security on grids.

REFERENCES
[1] J. Yu, and R. Buyya, “A Taxonomy of Workflow Management Systems

for Grid Computing,” J. Grid Computing, vol.3, pp. 171-200, 2005.
[2] B.Allock,, J.Bester, and J.Bresnahan,, “Data management and transfer in

high performance computational grid environments, ” Parallel
Computing, vol. 28, pp. 749-771, 2002.

[3] R.Buyya, and M. Murshed, “GridSim: A toolkit for the modelling and
simulation of distributed resource management and scheduling for Grid
computing,” J. Concurrency and Computation: Practice and Experience,
vol. 14, pp. 1061-1074, 2002.

[4] R. Balachandar Amarnath, and Thamarai Selvi Somasundaram,”
Ontology-based Grid resource Management,” Software Practice and
Experience, vol. 39, pp. 1419–1438, 2009.

[5] I.Blanquer, V. Hernandez, D. Segrelles, and E. Torres, “Enhancing
Privacy and Authorization Control Scalability in the Grid through
Ontologies,” IEEE Transactions on information technology in
biomedicine, vol. 13, pp. 16-24, 2009.

[6] Tsang-Yean Lee, Huey-Ming Lee, Jin-Shieh Su, and Heng-Sheng Chen,
“Processing Authentication Based on Grid Environment,” Int. J.
Computers, vol. 1, pp. 59-63, 2007.

[7] Downnard Ian., “Public-key cryptography extensions into Kerberos,”
Potentials IEEE, vol.21, pp. 30 – 34, 2003.

[8] G.Jaspher Willsie, and E. Kirubakaran,, “Biometric Authentication and
Authorization System for Grid Security, ” Int. J. Hybrid Information
Tech., vol. 4, pp. 43-58, 2011.

[9] I.Foster, C.Kesselman, J.Nick, and S. Tuecke, “The physiology of the
grid: An open grid services architecture for distributed systems
integration,” Citesee, pp 1026-1028.2002.

[10] N.Zhang, L.Yao, A.Nenadic, J.Chin, C. Goble, A. Rector, D. Chadwick,
S. Otenko, and Q. Shi, “Achieving fine-grained access control in virtual
organizations,” Concurrency Computation. : Practice and Experience,
vol. 19, pp. 1333– 1352, 2007.

[11] A.Chakrabarti, A.Damodaran, and S.Sengupta, “Grid Computing
Security: A Taxonomy,” IEEE Security and Privacy, vol. 6, pp. 44-51,
2008.

[12] D.A. Menasce, and E. Casalicchio, “QoS in Grid Computing,” IEEE
Internet Computing, vol. 8 pp. 85-87, 2004.

[13] A.M. Pernas, and A.R. Dantas Mario, “Using ontology for description of
grid resources,” Proc. 19th Int. Symposium on High Performance
Computing Systems and Applications, 2005, pp 223–229.

[14] Mingyuan Yu, Ronghua Liang, Haibo Yang, and Yahong Hu, “A Novel
Authentication Architecture for Grid Security,” Proc. 4th IEEE Int. Con.
on Circuits and Systems for Communications, 2008, pp 95–99.

[15] Jan Wiebelitz, Christopher Kunz, Stefan Piger, and Christian Grimm,
“TCP-AuthN: TCP Inline Authentication to Enhance Network Security
in Grid Environments,” Proc. 8th IEEE Int. Symposium on Parallel and
Distributed Computing, 2009, pp 237–240.

[16] Huaqun, Guo, Yongdong Wu, Hongmei Chen, and Maode Ma, “A Batch
Authentication Protocol for V2G Communications,” Proc. 4th IEEE Int.
Con. on New Technologies, Mobility and Security, 2011, pp 1–5.

M.Victor Jose received his BE degree in Computer
Science and Engineering from Manonmaniam
Sundaranar University, Tamil Nadu, India in 1995 and
ME degree in the same descipline from Madurai Kamaraj
University, Tamil Nadu, India in Nov 1996. He is
currently pursuing his Ph.D degree at the Department of
Computer Science and Engineering, Anna University,

India. His research interests include Grid computing, Network security, Data
base security, and Multimedia wireless communications.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:10, 2014

1903

V.Seenivasagam is working as the Controller of
Examinations in National Engineering College (Autonomous),
Kovilpatti. He has obtained his B.E Degree in Computer
Engineering from Madurai Kamaraj University during the
year 1989, M.E and Ph.D degree in Computer Science &

Engineering from Manomaniam Sundaranar University in 1997 and 2009
respectively. Dr.V.Seenivasagam has 24 years of experience in teaching and
12 years of experience in research. He has published 16 papers in
International journals, 1 paper in National journal, 9 papers in International
conferences and 34 papers in National Conferences. He is the recognized
supervisor in Anna University of Technology Tirunelveli and Manonmaniam
Sundaranar University, Tirunelveli. At present 14 scholars are doing research
under his guideship. He has attended many Faculty Development Training
Programmes and chaired many international and national conferences and
symposiums. He has delivered guest lectures on different topics of Image
Processing at various Engineering and Arts Colleges. He has written books on
Computer Graphics, Software Engineering, Digital Computer Fundamentals
and Fundamentals of Computing and Programming. He is the reviewer for
reputed international journals such as International journal on Image and
Video Processing, International Journal of Pattern Recognition and Artificial
Intelligence, international journal on Association of Modeling Simulation
Enterprise and International Journal of Information Technology & Decision
Making. He is the member of Board of Studies in the faculty of Computer
Science and Engineering at Anna University of Technology, Tirunelveli. His
areas of specializations are Image Processing, Compiler Design and Soft
Computing,

