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Abstract—Quality control helps industries in improvements of its 

product quality and productivity. Statistical Process Control (SPC) is 

one of the tools to control the quality of products that turning practice 

in bringing a department of industrial engineering process under 

control. In this research, the process control of a turning 

manufactured at workshops machines. The varying measurements 

have been recorded for a number of samples of a rice polished 

cylinder obtained from a number of trials with the turning practice. 

SPC technique has been adopted by the process is finally brought 

under control and process capability is improved.  
 

Keywords—Rice polished cylinder, statistical process control, 

control charts, process capability. 

I. INTRODUCTION 

HE theoretical framework for accessing the capabilities of 

a process began with the development of the Cp index [1]. 

Process capability indices continue to be widely used tools for 

process engineers despite “a growing recognition that these 

tools are limited and, in particular, that standard capability 

indices are appropriate only with measurements that are 

independent and reasonably normally distributed” [2]. The 

popularity of process capability indices, along with the 

common understanding that in many cases these indices are 

flawed tools, has led continued research in this area. A recent 

summary of the state of theory and practice is presented [3]. 
The use of capability indices such as Cp, Cpk, and "Sigma" 

values are widespread in industry [4]. Therefore, the purpose 

of this paper is to generate the length of rice polished cylinder 

in different samples after turning was found to be out of 

tolerance limits asked by department of industrial engineering, 

faculty of engineering, the process capability found to be less 

than the standard value. This required the idea of SPC 

implementation and the techniques has been practiced using 

process capability (Cp). If the process is not in statistical 

control, we are unable to use reliably on our estimates for 
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spread and location. Hence, our formula is redundant. In order 

to assess whether or not a process is in statistical control, 

quality practitioners use control charts. The most frequently 

used form of control charts in operation [1]. In their basic 

form, these charts (e.g. X bar-R, X bar-S Chart) are sensitive to 

detecting relatively large shifts in the process [1]. SPC tools 

can be used by operators to monitor their part of production or 

service process for the purpose of making improvements [5]. 

For more information on these charts, the interested reader is 

referred to AIAG and Montgomery [6]. 

Quality may be defined as that characteristic which renders 

a product or service as having “fitness for purpose or use”. 

There are different reasons why a product may have 

unsatisfactory quality. Statistical methods play a central role in 

Quality improvement efforts and recognized as an efficient 

and powerful tool in dealing with the process control aspects 

[7]. 

A. Literature Review 

The use of statistical concepts in the field of quality 

emerged in the United States was the beginning of the 

nineteenth century. But its democratic use began only in the 

1930s. W. Edwards Deming, who applied SPC methods in the 

US during the Second World War, was the one responsible for 

introducing this concept in Japan after the war ended. These 

methods were not used in France until the 1970s. The 1980s 

saw the SPC methods being used frequently, due to the 

pressure from large clients like automobile manufacturers and 

aircraft manufacturers [7], [8]. Wright [9] discussed the 

cumulative distribution function of process capability indexes. 

The process-capability indices, including Cp, Cpk and Cpm, 

have been proposed in manufacturing industry to provide a 

quick indication of how a process has conformed to its 

specifications, which are preset by manufacturers and 

customers. 

SPC tools can be used by operators to monitor their part of 

production or service process for the purpose of making 

improvements [10]. Statistics is more applicable to measuring 

and controlling variation from common cause (random) than 

from special causes [11]. 

II. EXPERIMENTAL   PROCEDURE  

A. Method 

Process capability analysis is a technique applied in many 

stages of the product cycle. One should note that there are an 

infinite number of distributions which may show the familiar 
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bell-shaped curve, but there are not normally distributed. This 

is particularly important to remember when performing 

capability analysis. Therefore, these need to determine 

whether the underlying distribution can indeed be modeled 

well by a Normal distribution. If the Normal distribution 

assumption is not appropriate, yet capability indices are 

recorded, one may seriously misrepresent the true capability of 

a process. Consider the following simulation. Suppose the 

USL = length 670.15 and LSL = length 669.95 millimeters, 

and our target for this process is midway between analysis of 

the 125 observations. Firstly, considering the 

chartcontrolRandX  (1)-(7), the distribution is stable over 

the period of study. To illustrate the use of a process capability 

to estimate process capability, consider Fig. 1, which presents 

a process capability of the samples data of 25 samples. The 

samples data are shown in Table I, the 95 % confidence 

interval on Cp and Cpk.  
 

 

Fig. 1 Process capability 

B. Experimental Procedures 

Control charts are also known as Shewhart charts or 

process-behaviour charts. Variable control charts are used to 

study a process when characteristics is a measurement, for 

example, cycle time, processing time, waiting time, highest, 

area, temperature, cost or revenue [12]. 

Control charts detects special causes of variation, measures 

and monitors common causes of variation, helps to know 

when to look for problems and adjust or when to keep hands 

off and when to make a fundamental change [11]. 

Establish and carry out a plan to monitor, improve and 

assure the quality of the process, e.g., charting, maintenance, 

training and record keeping, in order to constantly and forever 

reduce variation [11]. 
 

 

 
 

 

 
 

 
 
 

 

TABLE I 

RICE POLISHED CYLINDER 25 SAMPLE DATA (LENGTH, MILLIMETERS,±0.10) 

No

. X1 X2 X3 X4 X5 X  
R 

1 670.07 670.04 670.05 670.08 670.07 - - 

2 670.06 670.07 670.05 670.05 670.04 - - 

3 670.05 670.07 670.05 670.06 670.05 - - 

4 670.03 670.04 670.05 670.06 670.04 - - 

5 670.01 670.08 670.06 670.03 670.02 - - 

6 670.05 670.01 670.07 670.02 670.04 - - 

7 670.07 669.97 670.05 670.07 669.97 - - 

8 670.03 670.04 670.08 670.05 670.07 - - 

9 670.06 670.02 670.04 670.05 670.07 - - 

10 670.02 670.05 670.04 670.06 670.02 - - 

11 670.05 670.04 670.04 670.07 670.06 - - 

12 670.06 670.06 670.07 670.02 669.98 - - 

13 670.06 670.07 670.05 670.03 670.00 - - 

14 670.05 670.00 670.04 670.07 670.00 - - 

15 670.00 669.98 669.99 670.05 670.06 - - 

16 670.02 670.00 670.01 670.04 670.05 - - 

17 670.05 670.07 670.04 670.06 670.01 - - 

18 670.06 670.05 670.08 670.04 670.03 - - 

19 670.05 670.06 670.04 670.06 670.06 - - 

20 670.02 670.03 670.04 670.07 670.05 - - 

21 670.03 670.05 670.00 670.05 670.06 - - 

22 670.04 670.02 670.03 670.05 670.01 - - 

23 669.99 669.98 670.05 670.07 669.97 - - 

24 670.02 670.01 670.06 670.03 670.05 - - 

25 670.08 670.05 670.05 670.05 670.05 - - 

 

Normally the values cluster about the ‘average value’. 
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where, n refers to number of data points (usually called the 

population), xi refers to the measured dimension of a 

component of a sample, and x refers to the average (usually 

called the population or process mean). 

The arithmetic average (mean) of ranges, 
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Process (or population) Standard Deviation, 
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where, d2 is the factor obtained from tables of constants used 

in constructing control charts [13]. 

Standard Deviation of the sample mean, 
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When all parts are measured, the standard deviation 

calculation becomes, 

LSL USL 

σ3− σ3+

X

Process spread = σ3±  

Performance spread acceptable 
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where, ( xxi − ) is the difference between an individual datum 

and the sample average. Often the process data is collected in 

subgroups. Let Xij, i=1,…, m and j = 1,…, n represent the 

process data collected from the j
th 

unit in the i
th
 subgroup. 

Here, n equals the total number of subgroups, and n equals the 

subgroup sample size. 
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Range charts are constructed immediately below the 

chartRx − , the range is the difference between the highest 

and lowest xi in that period (subgroup). 

 

Range, R = [Highest value – Lowest value] 
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where, A2, D3 and D4 is the factor obtained from tables of 

constants used in constructing control charts [13]. And UCL 

and LCL are upper and lower control limits. 

Process Capability Index (Cpk) is equal to the lower of CPU 

(upper process capability) and CPL (lower process capability). 

Cpk is a better measure of process capability than Cp or CR 

since Cpk takes into account the actual process center 

compared to the target [11]. Process capability index relates 

the engineering specification (usually determined by the 

customer) to the observed behavior of the process. The 

capability of a process is defined as the ratio of the distance 

from the process center to the nearest specification limit 

divided by a measure of the process variability. Some basic 

capability indices that have been widely used in the 

manufacturing industry include Cp, and Cpk, explicitly defined 

as follows by Statistical Process Control [14]. The concept of 

process capability was first introduced by Juran [1] which is 

the ratio of specification range (USL-LSL) to the process 

variation (6σ) and is known as “process capability” (Cp). It is 

designated as 
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Cp does not consider the location of mean (µ) which is 

captured by Cpk [15], [16] where, Cpk = Cp (1-k) and k is 

termed as the bias factor. For one-sided specification, Kane 

[16] proposed upper and lower capability indices as. 
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Chan et al. [17] proposed Cpm considering specification 

range, process variation and variation of mean from the target 

(target deviation) which is defined as 
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where σ  is estimates of the process deviation, µ  is estimate 

the process mean and M or T is the mid-point of the 

specification interval. 

The 95 % confidence interval on 
pkĈ  is designated as 

 

      
22

ˆ

9

1ˆ
2

−
+±=

n

C

n
zC

pk

pk
       (11) 

 

The estimates of the process deviation σ  is designated as 
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dR

dR
=σ  is an estimate derived using the subgroup ranges 

Ri, i=1,…,m.  

The parameter d2 is an adjustment factor needed to estimate 

the process standard deviation from the average sample range. 

Since d2 is also used in the derivation of control limits for 

chartcontrolRx − . It is tabulated in standard references on 

statistical process control, such as the QS-9000 [5], [6], [18]. 

Large values of Cpk and Cpm should correspond to a capable 

process that produces the vast majority of units within the 

specification limits. However, “(8), (9) is used when the mean 

of process data is departure from the median of specification 

limits” and, (10) is actually, an upper limit can also be had by 

replacing the minus sign with a plus above use z=1.645”, the 

capability requirement with a 95% confidence level, or 

equivalently, at the significance level α = 0.05 (11). The Cpk is 
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above the limit which USL and LSL are the upper and the 

lower specification limits, respectively, x  is the process 

mean, and σ is the process standard deviation (overall process 

variation). The index Cp measures the magnitude of the 

process variation relative to the specification tolerance. 

Therefore, it only reflects process potential. The index Cpk 

takes into account process variation as well as the location of 

the process mean, which is designed to monitor the 

performance of near-normal processes with symmetric 

tolerances. The index Cp is defined as the following, where M 

or T is the mid-point of the specification interval 

2

LSLUSL
M�T

+
== . The calculation formulae presented in 

Table I is right when the analyzed parameter is subject to a 

normal distribution or its distribution is close to the normal 

one. In such situations; there is obligatory the rule of three 

standard deviations. According to the range chartRx −  (see 

Table I), (i.e. within the range determined by a natural 

tolerance (1)-(7), all possible realizations of the process should 

be contained (Fig. 1). In this paper, we consider testing of the 

most popular capability analysis Cp, Cpm and Cpk using process 

capability. The index Cpk takes the mean of the process into 

consideration, but it can fail to distinguish between on-target 

processes and off-target processes, which is a yield-based 

index providing lower bounds on the process yield [18]. 

III. IMPLEMENTATION AND RESULTS 

A. Sample Size  

Because process capability indices are determined from 

estimates of standard deviation, they are affected by sample 

size (degrees of freedom). As expected, the stability of 

estimates of the standard deviation increases with sample size 

(n) of 5 provides a very stable estimate of process capability. 

Even when n is 25 there is still substantial uncertainty in the 

estimator of Cpk. The estimates are of 95% Confidence Bounds 

for Cpk (lower bound) and Ppk (two sided interval), assuming 

normality. The data was classified into 25 subgroups of five 

observations each by measuring the lengths of in each batch 

units. Table II gives the 125 recorded data observations.  

This type of capability study usually measures product 

functional performance, not the process itself. Process-

capability indices are powerful means of studying the process 

ability for manufacturing a product that meets specifications 

[19]. When the historical data is used and direct observation of 

the process is not possible, Montgomery refers to this as a 

product characterization study. “In a product characterization 

study that we can only estimate the distribution of the product 

quality characteristics; we can say nothing about the statistical 

stability of the process.” Histograms (or stem-and-leaf plots) 

require at 25 observations. If the data sequence is preserved, 

Mean Square of Successive Differences (MSSD) can be used 

to estimate the Short Term Standard Deviation (STSD). Or, an 

estimate of process standard deviation can be obtained from 

chartcontrolRandX . 

 

 

B. The Results 

The results of the preliminary analysis (the values of size 

parameters i.e. length Table II, the empirical distribution Fig. 

2 and especially the graphical test of normality Fig. 2 indicate 

that the analyzed parameter is not subject to a normal 

distribution. In connection with it Cpk capability analysis has 

been determined. Fig. 2 shows the corresponding RandX  

control chart and all points under control limits. 

Analysis: Here in the above observation record, we have a 

number of variable measurement outcomes for the number of 

rice polished cylinder on a Turning Machine. To analyze the 

process capability, the statistical quality control chart 

techniques can be implemented in the following way: 

The arithmetic average (mean) of range 
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where, A2 = 0.577, d2 = 2.326, D3=0.00 and D4=2.115 (from 

table of SPC constants, for N = 5) 
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Example; subgroup No. 1 and No. 25 

 

Range = [Highest value – Lowest value] 

 

No. 1= 670.08-670.04 = 0.04, No. 25 = 670.08-670.05 = 0.03 

  

Average X  (Process mean), 
.041.670

25

022.16751
mm

m

X
X === ∑  

 

The control limits are, 

 

2

2

670.041 (0.577)(0.0528) 670.0715 .

670.041

670.041 (0.577)(0.0528) 670.0105 .

X

X

X

UCL X A R mm

CL X

LCL X A R mm

= + = + =

= =

= − = − =

 

 

252321191715131197531

670.080

670.065

670.050

670.035

670.020

Sample

S
a
m
p
le
 M
e
a
n

__
X=670.04087

UC L=670.07183

LC L=670.00991

252321191715131197531

0.100

0.075

0.050

0.025

0.000

Sample

S
a
m
p
le
 R
a
n
g
e

_
R=0.0537

UC L=0.1135

LC L=0

Xbar-R Chart of C2, ..., C6

 

Fig. 2 X  and R chart for Rice Polished Cylinder 
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TABLE II 

 RICE POLISHED CYLINDER 25 SAMPLE DATA (LENGTH, MILLIMETERS, ±0.10)  

No. X1 X2 X3 X4 X5 X  R 

1 670.07 670.04 670.05 670.08 670.07 670.062 0.04 

2 670.06 670.07 670.05 670.05 670.04 670.054 0.03 

3 670.05 670.07 670.05 670.06 670.05 670.056 0.02 

4 670.03 670.04 670.05 670.06 670.04 670.044 0.03 

5 670.01 670.08 670.06 670.03 670.02 670.039 0.07 

6 670.05 670.01 670.07 670.02 670.04 670.037 0.06 

7 670.07 669.97 670.05 670.07 669.97 670.026 0.10 

8 670.03 670.04 670.08 670.05 670.07 670.054 0.05 

9 670.06 670.02 670.04 670.05 670.07 670.048 0.05 

10 670.02 670.05 670.04 670.06 670.02 670.037 0.02 

11 670.05 670.04 670.04 670.07 670.06 670.053 0.03 

12 670.06 670.06 670.07 670.02 669.98 670.037 0.10 

13 670.06 670.07 670.05 670.03 670.00 670.042 0.07 

14 670.05 670.00 670.04 670.07 670.00 670.031 0.07 

15 670.00 669.98 669.99 670.05 670.06 670.016 0.07 

16 670.02 670.00 670.01 670.04 670.05 670.024 0.05 

17 670.05 670.07 670.04 670.06 670.01 670.047 0.04 

18 670.06 670.05 670.08 670.04 670.03 670.051 0.03 

19 670.05 670.06 670.04 670.06 670.06 670.054 0.02 

20 670.02 670.03 670.04 670.07 670.05 670.041 0.03 

21 670.03 670.05 670.00 670.05 670.06 670.038 0.07 

22 670.04 670.02 670.03 670.05 670.01 670.030 0.06 

23 669.99 669.98 670.05 670.07 669.97 670.012 0.10 

24 670.02 670.01 670.06 670.03 670.05 670.034 0.05 

25 670.08 670.05 670.05 670.05 670.05 670.056 0.05 

 

As the X  - R charts indicate stability, even using all of the 

Western Electric rules [20]. We have some justification to use 

estimates of the overall process mean (σ) and the within 

subgroup (short-term) standard deviation (σwithin) from this 

course of study. Many practitioners mistrust the estimate of 

the overall standard deviation (σoverall) as their question 

whether this window of inspection could truly estimate all of 

the possible realizations of special causes in the long term [4].  

As we can observe from the X  -R charts, the lengths of all 

the components are out of the control limits; this means that 

process is capable of producing the lengths within 

specification limits. It is concluded that the process is now 

under control and capable of meeting the specific demand 

lengths of tolerances (±.0.10 millimeters). 

The capability analysis in Fig. 3 shows that with the USL = 

670.15 and LSL = 669.95 millimeters, long-term performances 

are also indicated, namely that approximately 0.00 parts per 

million (ppm) for within performance would be 

nonconforming if only common causes of variability were 

present in the system, and approximately 0.00 ppm in the 

long-term.  

Based on the data in Table I, we calculate the following 

quantities: 041.670=X , 0128342.0ˆ0139639.0ˆ == overallwithin and σσ  

(12), (13). Since, in this example, the subgroup size equals 

five, d2 = 2.326. Equations (8)-(12) yield Cp = 2.39, Cpk = 

min{2.61,2.17}=2.17, Cpm = 2.11, Pp = 2.60, Ppl = 2.36, Ppu = 

2.83, Ppk = 2.36. In this case, all the values are quite different, 

and, in fact, lie on different sides of the key cut off values 1.33 

and 1.67 given in QS-9000. Which capability index is better in 

this example. In (8)-(12) the measures Cp, Cpk, Cpm and 
pkĈ  

differ only in the estimate of the process standard deviation 

used in the denominator. As a result, to compare the seven 

capability measures we need to compare the two standard 

deviation estimates 
overallwithin and σσ ˆˆ . There is one important 

differences between 
overallwithin and σσ ˆˆ . Since the range-based 

estimate 
2/

ˆ
dR

σ is calculated based on subgroup ranges, it uses 

only the variability within each subgroup to estimate the 

process standard deviation. The sample standard deviation- 

based estimate 
overallwithin and σσ ˆˆ , on the other hand, combines 

all the data together, and thus used both the within and overall 

subgroup variability. The total variation in the turning process 

is the sum of the within and overall subgroup variability. As a 

result, 
overallwithin and σσ ˆˆ  estimate the total variation present in 

the process within 
2/

ˆ
dR

σ estimates only the within and overall 

subgroup variation. 
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Fig. 3 Graphical illustration of the Rice Polished cylinder data 

 

In connection with it Cp, Cpm, Cpk and 
pkĈ capability 

analysis have been determined according to adequate 

expression presented in (8), (12). The determined values X , 

R , 
withinσ  and 

overallσ  are used eight the computable method 

basing on knowledge of density function. The results are 

shown in Table III. 
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Fig. 4 Normal probability plot of the Rice Polished Cylinder data 

 

From the Normal probability plot graph in Fig. 4, the 

Normality test shows that we are unable to reject the null 

hypothesis, H0: data follow a Normal distribution vs. H1: data 

do not follow a Normal distribution, at the ≤ 0.05 significance 

level. This is due to the fact that the p-value test is 0.005, 

which is p-value less than 0.05 a frequently used level of 

significance for such a hypothesis test, as opposed to the more 

traditional 0.05 significance level. 

The value of Cpk index achieved in analysis is not 

unfortunately an evidence of meeting the samples expectations 

(the required minimal value of Cpk index determined by the 

rice polished cylinder was 2.17). 

Since, the value of process capability analysis, as required 

by the department, department of Industrial Engineering, 

Faculty of Engineering, RMUTL was greater than 2, and the 

process capability analysis which we obtained after the 

implementation of SPC techniques is 2.17 that is greater 

enough than 2. Therefore, then can say that the process is 

under control now and capable of producing all the 

components under the given specification limits with the very 

low normal distribution and closely central limits. 
 

TABLE III 

 RESULTS- CAPABILITY ANALYSIS  

overallσ  
withinσ  Cp Cpk Cpm 

pkĈ  

0.012834 0.0140 2.39 2.17 2.11 2.17±0.92 

IV. CONCLUSION 

The results of process capability study of the given 

workshop process reveals that, graphical values of parameters 

approaches very nearer to the magnitude of the analytical 

values and hence graphical approach could be treated as 

equivalent to analytical method. Graphical approach can be 

used to study the variability of workshop process. It is one of 

the tools to convey the results through which it is easy to make 

inference on the data. The approach helps a worker (Students) 

in the workshop can make the assessment about the process 

parameters. Thus, it also helps to process management and 

identifies opportunities for improvement quality and 

operational performance. The estimation of process capability 

is one of the basic tasks of the statistical process control 

(SPC). The values of Cp, Cpk indices are very precise 

information on a process potential relating to the client’s 

expectations. Correct determination of Cp, Cpk indices values 

by counting requires identification of a distribution size, at 

least as a general settlement whether it is a normal distribution 

or not. If it is a normal distribution, for the estimation of Cp, 

Cpk this can use a simple counting classic approach that is 

based on the rule of three standard deviations. If it is not a 

normal distribution, the application of a classic approach leads 

to wrong results. Statistical process control methods (SPC) 

and especially estimation of a process capability analysis show 

opportunities of practical application of statistics in aspect of 

the analysis of technological processes. Consequently, SPC 

must be applied widely and continuously to achieve quality 

improvements all manufacturer. 
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