
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:11, 2014

2011


Abstract—In this paper, we propose a new packing strategy to

find a free resource for run-time mapping of application tasks to
NoC-based Heterogeneous MPSoC. The proposed strategy minimizes
the task mapping time in addition to placing the communicating tasks
close to each other. To evaluate our approach, a comparative study is
carried out for a platform containing single task supported PEs.
Experiments show that our strategy provides better results when
compared to latest dynamic mapping strategies reported in the
literature.

Keywords—Multi-Processor Systems-on-Chip (MPSoCs),
Network-on-Chip (NoC), Heterogeneous architectures, Dynamic
mapping heuristics.

I. INTRODUCTION

HE complexity of applications need to transit from the
System on Chip (SoC) based on a single processor to

Multi-Processor on Chip (MPSoC) that contains multiple
processing elements (PEs) in the same chip. Effectively the
evolution of semiconductor technology permits to integrate a
several processor in the same chip. Typically, there are two
types of MPSoCs: homogenous and heterogeneous. A
homogeneous MPSoC contains identical PEs [22], [23],
whereas different types of PEs are integrated in a
heterogeneous MPSoC [24], [25]. MPSoCs provide increased
parallelism towards achieving high performance [21]. The
Network-on-Chip (NoC) has been introduced as a power
efficient and scalable interconnection to support
communication amongst the PEs [1], [2]. The actual and
futures embedded applications contain dynamic workload of
tasks or applications that need to be loaded into the system at
run-time, this need efficient dynamic mapping techniques [9]-
[11], [13], [15]-[17]. Such techniques find placement of tasks
on the MPSoC resources at run-time. The latest dynamic
mapping approaches try to place the communicating tasks on
nearest available PEs, i.e. close to each other in order to
reduce the communication overhead [26], [27], [18], [19], [3].

Benhaoua Mohammed Kamel is with the Department of Computer

Science, University of Oran, Oran, Algeria, BP 1524 El-Mnaouer and
University Lille 1, LIFL, CNRS, UMR 8022, F-59650 Villeneuve d’Ascq,
France (corresponding author phone: 00213794160366; e-mail: Mohammed-
Kamel.Benhaoua@lifl.fr).

Amit Kumar Singh is with Department of Computer Science, University of
York, UK (e-mail: amit.singh@york.ac.uk)

Benyamina Abou el Hassen is with Department of Computer Science,
University of Oran, Oran, Algeria, BP 1524 El-Mnaouer(e-mail:
benyamina.abouelhassen@univ-oran.dz).

Akash Kumar is with Department of Electrical and Computer Engineering,
National University of Singapore, Singapore (e-mail: akash@nus.edu.sg).

Pierre Boulet is with University Lille 1, LIFL, CNRS, UMR 8022, F-
59650 Villeneuve d’Ascq, France (e-mail: pierre.boulet@lifl.fr).

However, these approaches do not perform well when
applications contain large number of tasks. Further, the latest
works not focus in the minimization of time search of
mapping. Our contribution is to minimize a time mapping of
tasks at run-time. With a large number of tasks by application,
the time of search deveining is so important. A newly
Manhattan packing strategy is proposed that permits to
explore and place the application tasks faster than the latest
existing mapping strategies, resulting in optimized costs of
tasks mapping. The model used for the representation of
applications is the master-slave model. This type of model is
used to represent the applications which have parallel
communicating tasks. The heterogeneous MPSoC platform
considered is Mono-task each resource permit to execute only
one task. The platforms contain two types of PEs: Instruction
Set Processors (ISPs) and Reconfigurable Areas (RAs), which
execute software and hardware tasks respectively. The
physical platform contains 64 PEs arranged as an 8x8 mesh.
The platform is divided into nine virtual clusters which permit
us to launch nine applications in parallel. For the dynamic
mapping of tasks, state-of-the-art mapping techniques reduce
the communication costs by mapping the communicating tasks
on nearest available PEs [12], [18], [28], [29]. The latest
works use a packing strategy to realize this objective.
However, most of them don’t focus on minimization of search
(mapping) time. In our proposed Manhattan packing strategy,
we search not only to place the communicating tasks on
nearest available PEs but also to minimize a search time. The
Manhattan packing strategy show significant performance
improvements when compared to latest mapping approaches.

The rest of the paper is organized as follows. Section II
provides an overview of the related work. Section III describes
the model of considered MPSoC architecture. In Section IV,
the proposed Manhattan packing strategy it’s presented.
Experimental setup and the results are presented in Section V.
Section VI concludes the paper and provides future research
directions.

II. RELATED WORK

Most of the existing works reported in the literature to solve
the problem of mapping on MPSoC platform are static
mapping techniques [3]-[8]. However, static mapping is not
able to handle dynamic workload of tasks or applications that
need to be loaded into the MPSoC at run-time. Dynamic (run-
time) mapping techniques are required to handle the mapping
of such workloads into the platform resources. The latest
works reported in the literature handle the problem of run-time

Heuristic for Accelerating Run-Time Task Mapping
in NoC-Based Heterogeneous MPSoCs

M. K. Benhaoua, A. K. Singh, A. E. H. Benyamina, A. Kumar, P. Boulet

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:11, 2014

2012

mapping of applications tasks onto NoC-based MPSoCs while
optimizing for different performance metrics.

Mehran et al. [12] propose a Dynamic Spiral Mapping
(DSM) technique for task mapping during run-time. Faruque
et al. [20] propose a decentralized agent-based mapping
approach targeting large NoC-based heterogeneous MPSoCs
such as 32x64 systems. Carvalho et al. [14], [18] present
heuristics for dynamic task mapping in two phases. The first
phase finds placement of initial (starting) tasks of different
applications in the MPSoC architecture, whereas the second
phase uses different methods. In [18], the authors evaluate
dynamic mapping heuristics and compare them with static
mapping techniques such as simulated annealing and Taboo
search. Singh et al. [28], [3] target heterogeneous MPSoC
architecture containing software and hardware PEs. Their
mapping heuristics map the communicating tasks of an
application close to each other so as to minimize the
communication overhead in order to improve the overall
performance. In general, the works proposed in [14] and [18]
are extended in [28] and [3] by employing a packing strategy
that minimizes the communication overhead in NoC-based
MPSoC platform. The existing approaches encounter large
exploration time to find placement of tasks. The proposed
Manhattan strategy performs faster exploration with objectives
to place communicating tasks on nearest available PEs.
Mapping heuristics Nearest Neighbor (NN) and Best Neighbor
(BN) presented in [18] along with the packing strategy in [3]
are taken for evaluation and performance comparison with our
proposed Manhattan packing strategy.

III. HETEROGENEOUS MPSOC ARCHITECTURE

Fig. 1 shows the model of the heterogeneous MPSoC
architecture used in this work. The architecture contains a set
of different processing elements (PEs) which interact via a
communication network [1]. The PEs can be of varying types
such as instruction set processors (ISPs), reconfigurable logics
(reconfigurable area-RA), dedicated intellectual properties
(IPs), etc. Tasks to be executed onto the PEs are categorized as
software and hardware tasks, which normally implement
simple and compute intensive functions, respectively.
Software tasks execute in ISPs and hardware tasks execute in
RAs or dedicated IPs. ISPs execute software tasks efficiently.
Induction of RAs in the platform provides flexibility to
hardware at a similar level to the ISPs programmability.
However, higher reconfiguration overheads of RAs need to be
taken into account.

The communication network required to facilitate
communication amongst PEs is arranged in a 2D mesh
topology [14], as shown in Fig. 1. Network communication
protocol follows wormhole packet switching, handshake
control flow, input buffers and deterministic XY routing
algorithm. In XY routing, the packets are first transferred in
X-direction and then in Y-direction in order to transfer them
from the source PE to the destination PE. The inter-task
communication is supported by a message passing mechanism
similar to used in [26].

In the MPSoC architecture, one PE is used as the Manager
Processor (MP) that is responsible for task binding, task
placement (mapping), application task scheduling,
communication routing, resource control and reconfiguration.
Task binding is required before task mapping in case of
heterogeneous MPSoCs. For each task, the binding process
defines the PEs types onto which the task can be mapped and
executed. For example, software tasks will be mapped and
executed on ISPs, whereas hardware tasks on RAs and IPs.
Task placement step identifies the location of a PE in the
architecture in order to allocate a task. ApplicationTask
scheduling defines execution order of initials tasks of
applications on clusters. Communication routing defines the
mechanism to be used for routing data from one PE to another.
Resource control is maintained by updating the resources
status at run-time in order to provide the MP with accurate
information about the resource occupancy. The updated
resource information helps the MP to take better mapping
decision at run-time, which is based on the PEs and NoC links
usage at that time. The configuration overhead results are used
to simulate the configuration control process. The MP knows
only the initial tasks of the applications. The initial task of
each application is started by the MP and new communicating
tasks are loaded into the MPSoC platform at run-time from the
task memory when a communication to them is required and
they are not already mapped.

Fig. 1 Heterogeneous MPSoC Architecture

IV. PROPOSED MAPPING APPROACH

This section describes our proposed run-time mapping
approach. The proposed approach tries to minimize the search
time for finding free resource able to execute a given task in
order to optimize the task mapping process. The proposed
Manhattan packing strategy reduces global computational time
and energy consumption for dynamic mapping of tasks
significantly. We introduce definitions for representing the
application models, architecture model and mapping of
applications to the architecture. The initial tasks mapping
strategy is described to explain the concept of the clustering.
Finally, our Manhattan packing strategy for tasks placement is
elaborated.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:11, 2014

2013

A. Application Task Graph

An application task graph is represented as an acyclic
directed graph TG = (T,E), where T is set of all tasks of an
application and E is the set of all edges in the application. Fig.
2 (a) describes an application having initial, software and
hardware tasks along with the edges (E) connecting these
tasks. Fig. 2 (b) shows the master-slave pair (communicating
tasks). The starting task of an application is the initial task that
has no master. Edge set E contains all the edges along with the
communicating tasks connected by the edges (Fig. 2 (b)). To
transmit and receive messages by a task, deterministic XY
routing algorithm is used.

Fig. 2 Application task graph modeling and Master-Slave pair

B. NoC-Based Heterogeneous Mpsoc Architecture

A NoC-based heterogeneous MPSoC architecture is a
directed graph AG = (P, V), where P is the set of tiles and V
represents the physical channels between the tiles. Each tile
(in P) has following attributes: the tile identifier pid, the tile
address padd that is used to receive packets sent from some
other tile, the tile type ptype (hardware, software, initial). Each
physical channel keeps the channel width information in
packets and percentage usage of available bandwidth in order
to facilitate efficient transmission of data.

C. Mapping

The task mapping is represented as mpg(ti -> pi), where task
ti of an application is mapped onto tile pi in the MPSoC
architecture. The application mapping considers mapping of
all the application tasks onto different PEs in the architecture
while optimizing for some performance metrics. Multiple
applications mapping involves allocation of tasks from
different applications in parallel while performing
optimization for each of the application. This work considers
simultaneous mapping of multiple applications to the MPSoC
architecture.

D. Initial Tasks Mapping

The initial task mapping has a significant impact on the
performance of the run-time mapping. The initial tasks are
considered as software tasks and thus are mapped on software
resources (ISPs). The initials tasks of applications are placed
in a distributive way in the whole architecture. Towards this,
the architecture is partitioned into multiple distributed clusters
and the initial tasks are placed at the center of the clusters, as
shown in Fig. 3. Such placement of initial tasks of different
applications facilitates the mapping of tasks of each
application close to each other within a particular region

(cluster). This reduces communication costs as communicating
tasks of each application get mapped in close proximity. The
frontiers of clusters are virtual and thus the common regions
could be shared by the tasks of different applications. After the
initials tasks of each application are placed, communication
requests are sent to the communicating tasks in order to find
their placement. Next, we introduce the reference heuristics
and our approach to be used to find the placement of the tasks.

Fig. 3 Initial tasks placement for mapping 9 applications
simultaneously

E. Proposed Manhattan Packing Strategies

Before describing the proposed Manhattan packing
strategies, we demonstrate an example mapping by the PNN
strategy to highlight its limitations, which has been considered
as one of the reference mapping heuristic.

To map a requested task, firstly, the task is tried to be
mapped on the PEs around the node making the request at hop
distance of one. The PEs are searched in the sequence of left,
down, top and right, denoted as 1, 2, 3 and 4, respectively in
Fig. 4 (a).This way, first, left and down side PEs are searched
to find the placement. If neither left nor down side PE is able
to execute the task, then task is tried to be mapped on the top
or right side PE according to the above defined sequence. The
same strategy is followed from lower to higher hop distances
until a free supported PE is found. Each application follows
above defined strategy to map the requested tasks on the
MPSoC platform resources. The rest of the tasks get mapped
as shown in Fig. 4 (a). The limitations of the approach PNN
are observed when the number of tasks in the considered
application is large. Most of the existing and reference works
do not consider applications with large number of tasks. In
case of large number of tasks in the application, the PNN does
not perform well in terms of the mapping time. Additionally,
for the appropriate position of the hardware resource in the
platform, PNN incurs high mapping time as it has to search for
20 PEs before reaching the hardware PE, as shown in Fig. 4
(a). The searching sequence is mentioned as 1 to 20. The

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:11, 2014

2014

proposed approach reduces the mapping time for applications
with large number of tasks.

1. Manhattan Packing-Based Nearest Neighbor (MPNN)

To map a requested task, the MPNN firstly tries to find the
placement at hop distance of one in the similar manner as that
of PNN. The searching sequence for the PEs is denoted as 1,
2, 3 and 4 in Fig. 4 (b). For the second hop, the PEs are
searched in the sequence of Left, left-Down, Down, Right-
Down, Right, Top-Right, Top and Top-Left, denoted by
different numbers at two hop PEs starting from 5. The similar
search strategy is followed for higher hop distances as well.
To map a requested hardware task, the PNN strategy needs to
evaluate 20 (search number) PEs in order to find the hardware
PE that can support the task, as shown in Fig. 4 (a). In
contrast, our MPNN strategy needs to evaluate only 9 (search
number) PEs.

The MPNN heuristic has been introduced in Algorithm 3.
For mapping requested task, the algorithm takes the requested
Task, X&Y position (coordinate) of the PE that executes the
master task and platform size (NoC-limit) as input and
provides X-Y coordinate of the PE (X’ & Y’) that can execute
the task. A variable mapped is used to test whether the task
has been mapped or not, and is initially assigned as false. Hop
is use to determine distance between the master and requested
task PEs.

Fig. 4 Nearest Neighbor with packing strategies

The mapping for the task is searched from hop 1 to NoC-

limit and is stopped as soon as a free supported PE is found.
For hop=1, the MPNN evaluates PEs in the sequence of Left,
Down, Right and Top. For hop equals to 2 and onwards, the
evaluation sequence is Left, left-Down, Down, Right-Down,
Right, Top-Right, Top and Top-Left, as described in the
algorithm. For each evaluation, the MPNN calls search
function presented in Algorithm 2, i.e. similar search as that of
PNN is applied. This function tests whether the position of the
PE is within the NoC-limit and the PE can support the task.
The function returns position of the PE if 1) the PE is within
the NoC-limit, 2) the types of task and PE are the same and 3)
the PE is free. Additionally, the function assigns mapped to
true to indicate that a resource able to execute the requesting
task is found.

Input: NoC-limit, requestedTask, X, Y
Output: X’, Y’
1: mapped  False; hop  1;
2: while (hop<NoC-limit) and (mapped=false) do
4: search (requestedTask, X, Y-hop) //search Left
6 for (i=1; i<hop; i++) do //search Left Down
7: IF (mapped=false) then
8: search (requestedTask, X+i, Y-(hop-i));
9: end for
11: IF (mapped=false) then //search Down
12: search (requestedTask, X+hop, Y)
14: for (i=1; i<hop; i++) do //search Right Down
15: IF (mapped=false) then
16: search (requestedTask, X+(hop-i), Y+i)
17: end for
19: IF (mapped=false) then //search Right
20: search (requestedTask, X, Y+hop)
22: for (i=1; i<hop; i++) do //search Top Right
23: IF (mapped=false) then
24: search (requestedTask, X-i, Y+(hop-i))
25: end for
24: IF (mapped=false) then //search Top
25: search (requestedTask, X-hop, Y)
27: for (i=1; i<hop; i++) do //search Top Left
28 IF (mapped=false) then
29: search (requestedTask, X-(hop-i), Y-i)
30: end for
31: hop++;
32: end while

Fig. 5 MPNN Heuristic (Algorithm 3)

Input: requestedTask, NoC-limit, X, Y
Output: X’, Y’
1: if (0<=X<=NoC-limit) && (0<=Y< =NoC-limit)) then
2: if PE[X][Y].isfree&& (requestedTask.type = PE[X][Y].type) then
3: mappedtrue
4: X’ PE.X
5: Y’ PE.Y
6: end if
7: end if

Fig. 6 Search Algorithm (Algorithm 2)

2. Manhattan Packing-Based Best Neighbor (MPBN)

The search space of MPBN strategy is similar to MPNN. In
contrast to MPNN that maps the task on the first free
supported PE, the MPBN evaluates all the PEs at the same hop
distance and then selects the one imposing minimum path
load. If a free supported PE is found within the current hop
distance, then the evaluation for higher hops is discarded and
the algorithm gets terminated.

V.EXPERIMENTAL SET-UP AND THE RESULTS

For the implementation, we have used JAVA as high level
programming language, which has enabled us to quickly
compare various algorithms.

A. Experimental Set-Up

This section describes the experimental set up used. All the
applications are modeled as in Fig. 2 (a), with initial tasks,
hardware tasks and software tasks. The values present on the
edges represent the volume of data to be sent and received by
the master. The NoC is modeled as in Fig. 3 with initial tasks
supported PEs at the middle position in each cluster. We have
realized a heterogeneous platform that comprises 64

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:11, 2014

2015

processors: 12 hardware, 51 software, and one manager
processor. The manager is responsible for finding placement
of the applications’ tasks, task configuration, platform
resources update and communications routing. The platform
uses a Network-on-Chip (NoC) as a communication support,
which is responsible for data transfer between the tasks.
Manager processor knows only the initial tasks. When initial
tasks start their execution, the slave tasks are mapped
dynamically, according to the communication request.
Concerning the applications, we have used XML to describe
the application task graph. The processing time of tasks
depends on the type and capacity of processor. We can vary
several parameters through an input configuration file
(parameters file) that contain all the parameters such us
platform configurations, choice of dynamic mapping heuristic,
etc.

B. Experimental Results

Results obtained from our proposed Manhattan heuristics
MPNN and MPBN are compared with existing run-time
mapping heuristics PNN and PBN. Our heuristics show lower
mapping (search) time.

1. Case Study: Real-Life Applications

Total execution time comprises of mapping time (the time
to find the placement), configuration time, communication
time, computation time and waiting time when no resource is
free in the platform. The adaptation of packing strategy in the
mapping process facilitates mapping of communicating tasks
in close proximity and thereby reducing the communication
time. It has also been observed that the mapping time
contributing to total execution time gets reduced when
employing the Manhattan heuristics because the search space
to find the placement of a task is minimized. Fig. 7 shows the
total execution time taken for executing 10 applications
considered for scenarios 1 and 2 when different heuristics are
applied. A couple of observations can be made from the
figure. First, the proposed approaches MPNN and MPBN
reduce the execution time when compared to the PNN and
PBN, respectively. These observations show that our
approaches reduce the execution time with respect to existing
approaches even when existing routing approach XY is
employed. In scenario 1, our proposed approaches MPNN and
MPBN reduce the total execution time when compared with
PNN and PBN. In scenario 2, our proposed approaches MPNN
and MPBN reduces the total execution time when compared to
PNN and PBN. The reduction is more than the scenarios 1 as
application MPEG-4 contains 13 tasks and one of the masters
contains 7 slaves. The proposed approaches will provide better
results when the applications containing more number of tasks
and slaves per master are considered.

Fig. 7 Execution Time comparison of PNN and PBN with MPNN and
MPBN for scenario 1 and scenario 2

2. Performance Evaluation for Large Size Applications

We have evaluated the performance for large size
applications considered in Scenario 3. Four sets of
applications are considered, where each set contains 10
applications with 5, 10, 15 and 20 tasks. Fig. 8 shows the
execution times for four application sets considered in
Scenario 3. Observations can be made from Fig. 8, the
Manhattan approaches MPNN and MPBN show further
reduction. Second, the reduction in execution by our approach
over the existing approach increases as the number of tasks in
the considered applications is increased. This is due to the fact
that existing approaches encounter large search time to find
mappings for tasks, whereas our approach finds the mappings
in lesser time. The difference in search time by existing and
our approaches increases with the number of tasks in
considered applications. Therefore, our approach provides
more savings in total execution time for large size
applications. Fig. 9 shows energy consumption for four
application sets considered in Scenario 1. It can be observed
that the reduction in energy consumption by our approach over
the existing approach increases as the number of tasks in the
considered applications is increased. Thus, our approach
provides better savings for large size applications.

3. Search Number of Different Applications

We have computed the complexity of different heuristics in
terms of number of searches to be performed for mapping all
the tasks in an application set. It has already been
demonstrated that the number of searches by the proposed
Manhattan strategy is less than the existing strategies, for
example 9 vs. 20 as shown in Fig. 4. Table I shows the
number of searches by different heuristics for four application
sets, where each set contains 10 applications. Each application
in the four sets contains 5, 10, 15 and 20 tasks, respectively. A
couple of observations can be made from Table I. First, the
number of searches is greatly reduced by the Manhattan
strategies MPNN and MPBN when compared to PNN and
PBN, respectively. Second, the proposed Manhattan strategies
show higher reduction in the number of searches for
applications with large number of tasks. Thus, the Manhattan
strategies reduce the complexity and further reduction is
expected for applications with higher number of tasks. The
complexity comparison of different algorithms in terms of

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:11, 2014

2016

algorithm execution time has shown that our approaches have
reduced complexity.

Fig. 8 Execution Time of 10 applications for four applications sets
(Scenario 3), where each application contains 5, 10, 15 and 20 tasks

Fig. 9 Energy Consumption of 10 applications for four applications
sets (Scenario 3), where each application contains 5, 10, 15 and 20

tasks

TABLE I
 NUMBER OF SEARCHES FOR ALL THE TASKS IN DIFFERENT APPLICATION

SETS FOR SCENARIO 3 WHEN EMPLOYING EXISTING AND MANHATTAN

STRATEGIES
 Apps-5tasks Apps-10tasks Apps-15tasks Apps-20tasks

PNN
MPNN
PBN
MPBN

 1690 10370 16360 46650
 1540 7950 12470 43210
 2280 10800 17200 51130
 2260 9800 15130 48150

VI. CONCLUSION AND FUTURE DIRECTIONS

This paper presents a mapping approach that performs
mapping in two different phases. The first phase employs
newly proposed Manhattan-based mapping strategies that try
to map the application tasks in close proximity in order to
reduce the communication costs. The Manhattan strategy
reduces the mapping time for each task. The second phase
maps the communications between the tasks. To reduce the
communication costs, a multi-objective routing algorithm
(MORA) has been proposed to map the communications.
Experiments have shown that the proposed Manhattan-based
mapping strategies along with the MORA show significant
reduction in total execution time and energy consumption
when compared to existing approaches. In future, we plan to
consider embedded applications with growing complexity and
analyze execution of increasing number of applications at the
same time. We also plan to consider multi-task supported
software and hardware processors in the MPSoC, where each
processor will be able to support several tasks depending upon
the processor memory capacity. Additionally, task migration

to balance the loads on the processors will be considered.

REFERENCES
[1] L.Benini and G. D. Mecheli, “Networks on chips: a new SoC paradigm,”

Computer, vol. 35 , Issue: 1, pp. 70–78, 2002.
[2] D.Bertozzi and L.Benini, “A network-on-chip architecture for gigascale

systems-on-chip,” Circuits and Systems Magazine, IEEE, vol. 4 , Issue:
2, pp. 18–31, 2004.

[3] A.Singh, T.Srikanthan, A.Kumar, and W.Jigang, “Communication-
aware heuristics for run-time task mapping on NoC-based MPSoC
platforms,” Journal of Systems Architecture, vol. 56 , Issue: 7, pp. 242–
255, 2010.

[4] Y.Zhang and al, “Task scheduling and voltage selection for energy
minimization,” in Design Automation Conference, 2002. Proceedings.
39th, 2002.

[5] D.Shin and J.Kim, “Power-aware communication optimization for
networks-on-chips with voltage scalable links,” in Hardware/Software
Codesign and System Synthesis, 2004. CODES + ISSS 2004.
International Conference on, 2004.

[6] F.Vardi, S.Saeidi, and A.Khademzadeh, “Crinkle: A heuristic mapping
algorithm for network on chip,” IEICE Electronics Express, vol. 6 ,
Issue: 24, pp. 1737–1744, 2009.

[7] Carvalho and al., “Evaluation of static and dynamic task mapping
algorithms in NoC-based MPSoCs,” in 2009 12th Euromicro
Conference on Digital System Design, Architectures, Methods and
Tools, 2009.

[8] Smit and al., “Run-time mapping of applications to a heterogeneous
SoC,” in Design, Automation and Test in Europe Conference and
Exhibition, 2004. Proceedings, 2004.

[9] Holzenspies, “Mapping streaming applications on a reconfigurable
MPSoC platform at run-time,” in System-on-Chip, 2007 International
Symposium on, 2007.

[10] CL.Chou and R. Marculescu, “Incremental run-time application
mapping for homogeneous NoCs with multiple voltage levels,” in
Hardware/Software Codesign and System Synthesis (CODES+ISSS),
2007 5th IEEE/ACM/IFIP International Conference on, 2007.

[11] CL.Chou and R. Marculescu, “User-aware dynamic task allocation in
networks-on-chip,” in Design, Automation and Test in Europe, 2008.
DATE ’08, 2008.

[12] A. Mehran, A. Khademzadeh, S. Saeidi, “DSM: A heuristic dynamic
spiral mapping algorithm for network on chip,” IEICE Electronics, vol.
5 , Issue: 13, pp. 5–13, 2008.

[13] Marcelo, “Multi-task dynamic mapping onto NoC-based MPSoCs,” in
SBCCI ’11 Proceedings of the 24th symposium on Integrated circuitsand
systems design, 2011.

[14] E.Carvalho and F.Moraes, “Congestion-aware task mapping in
heterogeneous MPSoCs,” in System-on-Chip, 2008. SOC 2008.
International Symposium on, 2008.

[15] S.Wildermann, T.Ziermann, and J.Teichet, “Run time mapping of
adaptive applications onto homogeneous NoC-based reconfigurable
architectures,” in Field-Programmable Technology, 2009. FPT 2009.
International Conference on, 2009.

[16] Holzenspies, J.Hurink, J.Kuper, and G.Smit, “Run-time spatial mapping
of streaming applications to a heterogeneous multi-processor system-on-
chip (MPSOC),” in Design, Automation and Test in Europe, 2008.
DATE ’08, 2008.

[17] A.Schranzhofer, C.Jian-Jia, L.Santinelli, and L.Thiele, “Dynamic and
adaptive allocation of applications on MPSoC platforms,” in Design
Automation Conference (ASP-DAC), 2010 15th Asia and South Pacific,
2010.

[18] E.Carvalho, N.Calazans, and F.Moraes, Dynamic task mapping for
MPSoCsIEEE Design Test of Computers, vol. 27 , Issue: 5, pp. 26–35,
2010.

[19] A.K.Singh and al, “Eficient heuristics for minimizing communication
overhead in NoC-based heterogeneous MPSoC platforms,” in Rapid
System Prototyping, 2009. RSP ’09. IEEE/IFIP International
Symposium on, 2009.

[20] M.Faruque, R.Krist, and J.Henkel, “Adam: Run-time agent-based
distributed application mapping for on-chip communication,” in Design
Automation Conference, 2008. DAC 2008. 45th ACM/IEEE, 2008.

[21] A. Jerraya et al., Guest editors’ introduction: multiprocessor systems-on-
chips, Computer 38 (7) (2005) 36–40.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:11, 2014

2017

[22] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D.
Finan, P. Iyer, A. Singh, T. Jacob, S. Jain, S. Venkataraman, Y. Hoskote,
N. Borkar, An 80-tile 1.28tflops network-on-chip in 65nm cmos, in:
Solid-State Circuits Conference, 2007, pp. 98–589.

[23] D. Bertozzi, L. Benini, Xpipes: a network-on-chip architecture for
gigascale systems-on-chip, Circ. Syst. Mag. IEEE 4 (2) (2004) 18–31.

[24] L. Smit et al., Run-time mapping of applications to a heterogeneous
reconfigurable tiled system on chip architecture, in: FPT, 2004, pp. 421–
424.

[25] M. Kistler et al., Cell multiprocessor communication network: built for
speed, IEEE Micro 26 (3) (2006) 10–23.

[26] E. Carvalho, N. Calazans, F. Moraes, Heuristics for Dynamic Task
Mapping in NoC-based Heterogeneous MPSoCs, IEEE International
Workshop on Rapid system Prototyping (RSP), 2007, pp. 34–40.

[27] P.K Sahu and S.Chattopadhyay, A survey on application mapping
strategies for Network-on-Chip design, Journal of Systems Architecture:
the EUROMICRO Journal, Volume 59 Issue 1, January, 2013, pp 60-76.

[28] A.K. Singh, W. Jigang, A. Kumar, T. Srikanthan, Run-time mapping of
multiple communicating tasks on MPSoC platforms, Procedia Computer
Science, 2010, pp. 1019-1026.

[29] A.K. Singh, M. Shafique, A. Kumar, J. Henkel, Mapping on
multi/many-core systems: survey of current and emerging trends,
Proceedings of the 50th Annual Design Automation Conference (DAC),
2013, pp. 1-10.

Benhaoua Mohammed Kamel received the engineer degree in artificial
intelligence and a Magister degree in information security and networking
from Oran university computer science department, Algeria, in 2005 and
2009, respectively. He is currently working toward the Ph.D. degree from
Lille1 University, France and Oran University, Algeria. His research interests
include NoC-based MPSoC design, parallel processing, optimization, design
space exploration (DSE) and run-time mapping techniques for MPSoC.

Amit Kumar Singhreceived the B.Tech. degree in Electronics Engineering
from Indian School of Mines, Dhanbad, India, in 2006. Thereafter, he worked
with HCL Technologies, India for year and half. He joined Nanyang
Technological University (NTU), Singapore, in 2008 and worked at Centre for
High Performance Embedded Systems (CHiPES), School of Computer
Engineering, NTU, Singapore as a research student towards the completion of
his PhD till January 2012. From February 2012 to August 2014, he was
working with the Department of Electrical and Computer Engineering,
National University of Singapore (NUS) as a post-doctoral researcher. Since
September 2014, he has been working with Department of Computer Science,
University of York, UK. His research interests include 2D and 3D network-
on-chip (NoC) based multiprocessor systems-on-chip (MPSoC), design space
exploration (DSE) and run-time mapping techniques for MPSoC. He has
published over 30 papers in leading related international journals/conferences.

BenyaminaAbbou el hassen graduated from Department of Computer
Science, Faculty of Sciences, University of Oran, Algeria, where he received
PhD degree in computer science in 2008. He is currently professor of
computer science in the Univ. Es-senia ORAN, Sciences and Technologies,
Algeria. He is head of the LAPECI team. His research works include parallel
processing, optimization, design space exploration and Model Driven
Engineering with the special focus on real-time and embedded systems.

Akash Kumar received the B.Eng. degree in computer engineering from the
National University of Singapore (NUS), Singapore, in 2002. He received the
joint Master of Technological Design degree in embedded systems from NUS
and the Eindhoven University of Technology (TUe), Eindhoven, The
Netherlands, in 2004, and received the joint Ph.D. degree in electrical
engineering in the area of embedded systems from TUe and NUS, in 2009.
Since 2009, he has been with the Department of Electrical and Computer
Engineering, NUS. Currently, he is an Assistant Professor in the department.
His research interests include analysis, architectures, design methodologies,
and resource management of embedded multiprocessor systems. He has
published over 40 papers in leading international electronic design automation
journals and conferences.

Pierre Boulet was born in Lille, France, in 1970. He earned a DEA
d'Informatique Fondamentale (Mastersdegree) in 1993 and a PhD of computer
science in 1996 from the ÉcoleNormaleSupérieure de Lyon, France. He is
currently professor of computer science in the Univ. Lille 1, Sciences et
Technologies, France. His interests range from parallelism, compilation,
embedded system co-design to model driven engineering and synchronous
languages. He is currently investigating how to program time and energy
aware mobile applications on post-Moore architectures. He is deputy director
of the LIFL (computer science laboratory of Lille) and head of the DART
team. He is a member of the HiPEAC EU network of excellence, and of the
IEEE and ACM professional societies.

