
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:11, 2014

2011

 

 

 
Abstract—In this paper, we propose a new packing strategy to 

find a free resource for run-time mapping of application tasks to 
NoC-based Heterogeneous MPSoC. The proposed strategy minimizes 
the task mapping time in addition to placing the communicating tasks 
close to each other. To evaluate our approach, a comparative study is 
carried out for a platform containing single task supported PEs. 
Experiments show that our strategy provides better results when 
compared to latest dynamic mapping strategies reported in the 
literature. 
 

Keywords—Multi-Processor Systems-on-Chip (MPSoCs), 
Network-on-Chip (NoC), Heterogeneous architectures, Dynamic 
mapping heuristics. 

I. INTRODUCTION 

HE complexity of applications need to transit from the 
System on Chip (SoC) based on a single processor to 

Multi-Processor on Chip (MPSoC) that contains multiple 
processing elements (PEs) in the same chip. Effectively the 
evolution of semiconductor technology permits to integrate a 
several processor in the same chip. Typically, there are two 
types of MPSoCs: homogenous and heterogeneous. A 
homogeneous MPSoC contains identical PEs [22], [23], 
whereas different types of PEs are integrated in a 
heterogeneous MPSoC [24], [25]. MPSoCs provide increased 
parallelism towards achieving high performance [21]. The 
Network-on-Chip (NoC) has been introduced as a power 
efficient and scalable interconnection to support 
communication amongst the PEs [1], [2]. The actual and 
futures embedded applications contain dynamic workload of 
tasks or applications that need to be loaded into the system at 
run-time, this need efficient dynamic mapping techniques [9]- 
[11], [13], [15]-[17]. Such techniques find placement of tasks 
on the MPSoC resources at run-time. The latest dynamic 
mapping approaches try to place the communicating tasks on 
nearest available PEs, i.e. close to each other in order to 
reduce the communication overhead [26], [27], [18], [19], [3]. 
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However, these approaches do not perform well when 
applications contain large number of tasks. Further, the latest 
works not focus in the minimization of time search of 
mapping. Our contribution is to minimize a time mapping of 
tasks at run-time. With a large number of tasks by application, 
the time of search deveining is so important. A newly 
Manhattan packing strategy is proposed that permits to 
explore and place the application tasks faster than the latest 
existing mapping strategies, resulting in optimized costs of 
tasks mapping. The model used for the representation of 
applications is the master-slave model. This type of model is 
used to represent the applications which have parallel 
communicating tasks. The heterogeneous MPSoC platform 
considered is Mono-task each resource permit to execute only 
one task. The platforms contain two types of PEs: Instruction 
Set Processors (ISPs) and Reconfigurable Areas (RAs), which 
execute software and hardware tasks respectively. The 
physical platform contains 64 PEs arranged as an 8x8 mesh. 
The platform is divided into nine virtual clusters which permit 
us to launch nine applications in parallel. For the dynamic 
mapping of tasks, state-of-the-art mapping techniques reduce 
the communication costs by mapping the communicating tasks 
on nearest available PEs [12], [18], [28], [29]. The latest 
works use a packing strategy to realize this objective. 
However, most of them don’t focus on minimization of search 
(mapping) time. In our proposed Manhattan packing strategy, 
we search not only to place the communicating tasks on 
nearest available PEs but also to minimize a search time. The 
Manhattan packing strategy show significant performance 
improvements when compared to latest mapping approaches.  

The rest of the paper is organized as follows. Section II 
provides an overview of the related work. Section III describes 
the model of considered MPSoC architecture. In Section IV, 
the proposed Manhattan packing strategy it’s presented. 
Experimental setup and the results are presented in Section V. 
Section VI concludes the paper and provides future research 
directions. 

II. RELATED WORK 

Most of the existing works reported in the literature to solve 
the problem of mapping on MPSoC platform are static 
mapping techniques [3]-[8]. However, static mapping is not 
able to handle dynamic workload of tasks or applications that 
need to be loaded into the MPSoC at run-time. Dynamic (run-
time) mapping techniques are required to handle the mapping 
of such workloads into the platform resources. The latest 
works reported in the literature handle the problem of run-time 
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mapping of applications tasks onto NoC-based MPSoCs while 
optimizing for different performance metrics.  

Mehran et al. [12] propose a Dynamic Spiral Mapping 
(DSM) technique for task mapping during run-time. Faruque 
et al. [20] propose a decentralized agent-based mapping 
approach targeting large NoC-based heterogeneous MPSoCs 
such as 32x64 systems. Carvalho et al. [14], [18] present 
heuristics for dynamic task mapping in two phases. The first 
phase finds placement of initial (starting) tasks of different 
applications in the MPSoC architecture, whereas the second 
phase uses different methods. In [18], the authors evaluate 
dynamic mapping heuristics and compare them with static 
mapping techniques such as simulated annealing and Taboo 
search. Singh et al. [28], [3] target heterogeneous MPSoC 
architecture containing software and hardware PEs. Their 
mapping heuristics map the communicating tasks of an 
application close to each other so as to minimize the 
communication overhead in order to improve the overall 
performance. In general, the works proposed in [14] and [18] 
are extended in [28] and [3] by employing a packing strategy 
that minimizes the communication overhead in NoC-based 
MPSoC platform. The existing approaches encounter large 
exploration time to find placement of tasks. The proposed 
Manhattan strategy performs faster exploration with objectives 
to place communicating tasks on nearest available PEs. 
Mapping heuristics Nearest Neighbor (NN) and Best Neighbor 
(BN) presented in [18] along with the packing strategy in [3] 
are taken for evaluation and performance comparison with our 
proposed Manhattan packing strategy.  

III. HETEROGENEOUS MPSOC ARCHITECTURE 

Fig. 1 shows the model of the heterogeneous MPSoC 
architecture used in this work. The architecture contains a set 
of different processing elements (PEs) which interact via a 
communication network [1]. The PEs can be of varying types 
such as instruction set processors (ISPs), reconfigurable logics 
(reconfigurable area-RA), dedicated intellectual properties 
(IPs), etc. Tasks to be executed onto the PEs are categorized as 
software and hardware tasks, which normally implement 
simple and compute intensive functions, respectively. 
Software tasks execute in ISPs and hardware tasks execute in 
RAs or dedicated IPs. ISPs execute software tasks efficiently. 
Induction of RAs in the platform provides flexibility to 
hardware at a similar level to the ISPs programmability. 
However, higher reconfiguration overheads of RAs need to be 
taken into account.  

The communication network required to facilitate 
communication amongst PEs is arranged in a 2D mesh 
topology [14], as shown in Fig. 1. Network communication 
protocol follows wormhole packet switching, handshake 
control flow, input buffers and deterministic XY routing 
algorithm. In XY routing, the packets are first transferred in 
X-direction and then in Y-direction in order to transfer them 
from the source PE to the destination PE. The inter-task 
communication is supported by a message passing mechanism 
similar to used in [26]. 

In the MPSoC architecture, one PE is used as the Manager 
Processor (MP) that is responsible for task binding, task 
placement (mapping), application task scheduling, 
communication routing, resource control and reconfiguration. 
Task binding is required before task mapping in case of 
heterogeneous MPSoCs. For each task, the binding process 
defines the PEs types onto which the task can be mapped and 
executed. For example, software tasks will be mapped and 
executed on ISPs, whereas hardware tasks on RAs and IPs. 
Task placement step identifies the location of a PE in the 
architecture in order to allocate a task. ApplicationTask 
scheduling defines execution order of initials tasks of 
applications on clusters. Communication routing defines the 
mechanism to be used for routing data from one PE to another. 
Resource control is maintained by updating the resources 
status at run-time in order to provide the MP with accurate 
information about the resource occupancy. The updated 
resource information helps the MP to take better mapping 
decision at run-time, which is based on the PEs and NoC links 
usage at that time. The configuration overhead results are used 
to simulate the configuration control process. The MP knows 
only the initial tasks of the applications. The initial task of 
each application is started by the MP and new communicating 
tasks are loaded into the MPSoC platform at run-time from the 
task memory when a communication to them is required and 
they are not already mapped.  

 
Fig. 1 Heterogeneous MPSoC Architecture 

IV. PROPOSED MAPPING APPROACH 

This section describes our proposed run-time mapping 
approach. The proposed approach tries to minimize the search 
time for finding free resource able to execute a given task in 
order to optimize the task mapping process. The proposed 
Manhattan packing strategy reduces global computational time 
and energy consumption for dynamic mapping of tasks 
significantly. We introduce definitions for representing the 
application models, architecture model and mapping of 
applications to the architecture. The initial tasks mapping 
strategy is described to explain the concept of the clustering. 
Finally, our Manhattan packing strategy for tasks placement is 
elaborated. 
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A. Application Task Graph 

An application task graph is represented as an acyclic 
directed graph TG = (T,E), where T is set of all tasks of an 
application and E is the set of all edges in the application. Fig. 
2 (a) describes an application having initial, software and 
hardware tasks along with the edges (E) connecting these 
tasks. Fig. 2 (b) shows the master-slave pair (communicating 
tasks). The starting task of an application is the initial task that 
has no master. Edge set E contains all the edges along with the 
communicating tasks connected by the edges (Fig. 2 (b)). To 
transmit and receive messages by a task, deterministic XY 
routing algorithm is used.  

 

 

Fig. 2 Application task graph modeling and Master-Slave pair 

B. NoC-Based Heterogeneous Mpsoc Architecture 

A NoC-based heterogeneous MPSoC architecture is a 
directed graph AG = (P, V), where P is the set of tiles and V 
represents the physical channels between the tiles. Each tile 
(in P) has following attributes: the tile identifier pid, the tile 
address padd that is used to receive packets sent from some 
other tile, the tile type ptype (hardware, software, initial). Each 
physical channel keeps the channel width information in 
packets and percentage usage of available bandwidth in order 
to facilitate efficient transmission of data. 

C. Mapping 

The task mapping is represented as mpg(ti -> pi), where task 
ti of an application is mapped onto tile pi in the MPSoC 
architecture. The application mapping considers mapping of 
all the application tasks onto different PEs in the architecture 
while optimizing for some performance metrics. Multiple 
applications mapping involves allocation of tasks from 
different applications in parallel while performing 
optimization for each of the application. This work considers 
simultaneous mapping of multiple applications to the MPSoC 
architecture.  

D. Initial Tasks Mapping 

The initial task mapping has a significant impact on the 
performance of the run-time mapping. The initial tasks are 
considered as software tasks and thus are mapped on software 
resources (ISPs). The initials tasks of applications are placed 
in a distributive way in the whole architecture. Towards this, 
the architecture is partitioned into multiple distributed clusters 
and the initial tasks are placed at the center of the clusters, as 
shown in Fig. 3. Such placement of initial tasks of different 
applications facilitates the mapping of tasks of each 
application close to each other within a particular region 

(cluster). This reduces communication costs as communicating 
tasks of each application get mapped in close proximity. The 
frontiers of clusters are virtual and thus the common regions 
could be shared by the tasks of different applications. After the 
initials tasks of each application are placed, communication 
requests are sent to the communicating tasks in order to find 
their placement. Next, we introduce the reference heuristics 
and our approach to be used to find the placement of the tasks. 
 

 

Fig. 3 Initial tasks placement for mapping 9 applications 
simultaneously 

E. Proposed Manhattan Packing Strategies 

Before describing the proposed Manhattan packing 
strategies, we demonstrate an example mapping by the PNN 
strategy to highlight its limitations, which has been considered 
as one of the reference mapping heuristic.  

To map a requested task, firstly, the task is tried to be 
mapped on the PEs around the node making the request at hop 
distance of one. The PEs are searched in the sequence of left, 
down, top and right, denoted as 1, 2, 3 and 4, respectively in 
Fig. 4 (a).This way, first, left and down side PEs are searched 
to find the placement. If neither left nor down side PE is able 
to execute the task, then task is tried to be mapped on the top 
or right side PE according to the above defined sequence. The 
same strategy is followed from lower to higher hop distances 
until a free supported PE is found. Each application follows 
above defined strategy to map the requested tasks on the 
MPSoC platform resources. The rest of the tasks get mapped 
as shown in Fig. 4 (a). The limitations of the approach PNN 
are observed when the number of tasks in the considered 
application is large. Most of the existing and reference works 
do not consider applications with large number of tasks. In 
case of large number of tasks in the application, the PNN does 
not perform well in terms of the mapping time. Additionally, 
for the appropriate position of the hardware resource in the 
platform, PNN incurs high mapping time as it has to search for 
20 PEs before reaching the hardware PE, as shown in Fig. 4 
(a). The searching sequence is mentioned as 1 to 20. The 
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proposed approach reduces the mapping time for applications 
with large number of tasks.  

1. Manhattan Packing-Based Nearest Neighbor (MPNN) 

To map a requested task, the MPNN firstly tries to find the 
placement at hop distance of one in the similar manner as that 
of PNN. The searching sequence for the PEs is denoted as 1, 
2, 3 and 4 in Fig. 4 (b). For the second hop, the PEs are 
searched in the sequence of Left, left-Down, Down, Right-
Down, Right, Top-Right, Top and Top-Left, denoted by 
different numbers at two hop PEs starting from 5. The similar 
search strategy is followed for higher hop distances as well. 
To map a requested hardware task, the PNN strategy needs to 
evaluate 20 (search number) PEs in order to find the hardware 
PE that can support the task, as shown in Fig. 4 (a). In 
contrast, our MPNN strategy needs to evaluate only 9 (search 
number) PEs. 

The MPNN heuristic has been introduced in Algorithm 3. 
For mapping requested task, the algorithm takes the requested 
Task, X&Y position (coordinate) of the PE that executes the 
master task and platform size (NoC-limit) as input and 
provides X-Y coordinate of the PE (X’ & Y’) that can execute 
the task. A variable mapped is used to test whether the task 
has been mapped or not, and is initially assigned as false. Hop 
is use to determine distance between the master and requested 
task PEs. 

 

 

Fig. 4 Nearest Neighbor with packing strategies 
 
The mapping for the task is searched from hop 1 to NoC-

limit and is stopped as soon as a free supported PE is found. 
For hop=1, the MPNN evaluates PEs in the sequence of Left, 
Down, Right and Top. For hop equals to 2 and onwards, the 
evaluation sequence is Left, left-Down, Down, Right-Down, 
Right, Top-Right, Top and Top-Left, as described in the 
algorithm. For each evaluation, the MPNN calls search 
function presented in Algorithm 2, i.e. similar search as that of 
PNN is applied. This function tests whether the position of the 
PE is within the NoC-limit and the PE can support the task. 
The function returns position of the PE if 1) the PE is within 
the NoC-limit, 2) the types of task and PE are the same and 3) 
the PE is free. Additionally, the function assigns mapped to 
true to indicate that a resource able to execute the requesting 
task is found.  

 

Input: NoC-limit, requestedTask, X, Y  
Output: X’, Y’ 
1: mapped  False; hop  1; 
2:  while (hop<NoC-limit) and (mapped=false) do 
4:         search (requestedTask, X, Y-hop) //search Left    
6          for (i=1; i<hop; i++) do //search Left Down 
7:            IF (mapped=false) then    
8:            search (requestedTask, X+i, Y-(hop-i)); 
9:         end for 
11:       IF (mapped=false) then //search Down    
12:          search (requestedTask, X+hop, Y)   
14:       for (i=1; i<hop; i++) do //search Right Down 
15:          IF (mapped=false) then 
16:             search (requestedTask, X+(hop-i), Y+i) 
17:       end for 
19:       IF (mapped=false) then //search Right         
20:            search (requestedTask, X, Y+hop)          
22:        for (i=1; i<hop; i++) do //search Top Right 
23:           IF (mapped=false) then                     
24:              search (requestedTask, X-i, Y+(hop-i))  
25:        end for 
24:        IF (mapped=false) then //search Top                           
25:            search (requestedTask, X-hop, Y)                          
27:        for (i=1; i<hop; i++) do //search Top Left 
28             IF (mapped=false) then                                     
29:              search (requestedTask, X-(hop-i), Y-i)           
30:        end for 
31:  hop++;                    
32: end while 

Fig. 5 MPNN Heuristic (Algorithm 3) 
 

Input: requestedTask, NoC-limit, X, Y  
Output: X’, Y’ 
1: if (0<=X<=NoC-limit) && (0<=Y< =NoC-limit)) then  
2:   if PE[X][Y].isfree&& (requestedTask.type = PE[X][Y].type) then 
3:                  mappedtrue 
4:                  X’ PE.X 
5:                  Y’ PE.Y               
6:     end if 
7:  end if 

Fig. 6 Search Algorithm (Algorithm 2) 

2. Manhattan Packing-Based Best Neighbor (MPBN) 

The search space of MPBN strategy is similar to MPNN. In 
contrast to MPNN that maps the task on the first free 
supported PE, the MPBN evaluates all the PEs at the same hop 
distance and then selects the one imposing minimum path 
load. If a free supported PE is found within the current hop 
distance, then the evaluation for higher hops is discarded and 
the algorithm gets terminated.  

V.EXPERIMENTAL SET-UP AND THE RESULTS 

For the implementation, we have used JAVA as high level 
programming language, which has enabled us to quickly 
compare various algorithms. 

A. Experimental Set-Up 

This section describes the experimental set up used. All the 
applications are modeled as in Fig. 2 (a), with initial tasks, 
hardware tasks and software tasks. The values present on the 
edges represent the volume of data to be sent and received by 
the master. The NoC is modeled as in Fig. 3 with initial tasks 
supported PEs at the middle position in each cluster. We have 
realized a heterogeneous platform that comprises 64 
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processors: 12 hardware, 51 software, and one manager 
processor. The manager is responsible for finding placement 
of the applications’ tasks, task configuration, platform 
resources update and communications routing. The platform 
uses a Network-on-Chip (NoC) as a communication support, 
which is responsible for data transfer between the tasks. 
Manager processor knows only the initial tasks. When initial 
tasks start their execution, the slave tasks are mapped 
dynamically, according to the communication request. 
Concerning the applications, we have used XML to describe 
the application task graph. The processing time of tasks 
depends on the type and capacity of processor. We can vary 
several parameters through an input configuration file 
(parameters file) that contain all the parameters such us 
platform configurations, choice of dynamic mapping heuristic, 
etc. 

B. Experimental Results 

Results obtained from our proposed Manhattan heuristics 
MPNN and MPBN are compared with existing run-time 
mapping heuristics PNN and PBN. Our heuristics show lower 
mapping (search) time. 

1. Case Study: Real-Life Applications 

Total execution time comprises of mapping time (the time 
to find the placement), configuration time, communication 
time, computation time and waiting time when no resource is 
free in the platform. The adaptation of packing strategy in the 
mapping process facilitates mapping of communicating tasks 
in close proximity and thereby reducing the communication 
time. It has also been observed that the mapping time 
contributing to total execution time gets reduced when 
employing the Manhattan heuristics because the search space 
to find the placement of a task is minimized. Fig. 7 shows the 
total execution time taken for executing 10 applications 
considered for scenarios 1 and 2 when different heuristics are 
applied. A couple of observations can be made from the 
figure. First, the proposed approaches MPNN and MPBN 
reduce the execution time when compared to the PNN and 
PBN, respectively. These observations show that our 
approaches reduce the execution time with respect to existing 
approaches even when existing routing approach XY is 
employed. In scenario 1, our proposed approaches MPNN and 
MPBN reduce the total execution time when compared with 
PNN and PBN. In scenario 2, our proposed approaches MPNN 
and MPBN reduces the total execution time when compared to 
PNN and PBN. The reduction is more than the scenarios 1 as 
application MPEG-4 contains 13 tasks and one of the masters 
contains 7 slaves. The proposed approaches will provide better 
results when the applications containing more number of tasks 
and slaves per master are considered. 
 

 

Fig. 7 Execution Time comparison of PNN and PBN with MPNN and 
MPBN for scenario 1 and scenario 2 

2. Performance Evaluation for Large Size Applications 

We have evaluated the performance for large size 
applications considered in Scenario 3. Four sets of 
applications are considered, where each set contains 10 
applications with 5, 10, 15 and 20 tasks. Fig. 8 shows the 
execution times for four application sets considered in 
Scenario 3. Observations can be made from Fig. 8, the 
Manhattan approaches MPNN and MPBN show further 
reduction. Second, the reduction in execution by our approach 
over the existing approach increases as the number of tasks in 
the considered applications is increased. This is due to the fact 
that existing approaches encounter large search time to find 
mappings for tasks, whereas our approach finds the mappings 
in lesser time. The difference in search time by existing and 
our approaches increases with the number of tasks in 
considered applications. Therefore, our approach provides 
more savings in total execution time for large size 
applications. Fig. 9 shows energy consumption for four 
application sets considered in Scenario 1. It can be observed 
that the reduction in energy consumption by our approach over 
the existing approach increases as the number of tasks in the 
considered applications is increased. Thus, our approach 
provides better savings for large size applications. 

3. Search Number of Different Applications 

We have computed the complexity of different heuristics in 
terms of number of searches to be performed for mapping all 
the tasks in an application set. It has already been 
demonstrated that the number of searches by the proposed 
Manhattan strategy is less than the existing strategies, for 
example 9 vs. 20 as shown in Fig. 4. Table I shows the 
number of searches by different heuristics for four application 
sets, where each set contains 10 applications. Each application 
in the four sets contains 5, 10, 15 and 20 tasks, respectively. A 
couple of observations can be made from Table I. First, the 
number of searches is greatly reduced by the Manhattan 
strategies MPNN and MPBN when compared to PNN and 
PBN, respectively. Second, the proposed Manhattan strategies 
show higher reduction in the number of searches for 
applications with large number of tasks. Thus, the Manhattan 
strategies reduce the complexity and further reduction is 
expected for applications with higher number of tasks. The 
complexity comparison of different algorithms in terms of 
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algorithm execution time has shown that our approaches have 
reduced complexity. 

 

Fig. 8 Execution Time of 10 applications for four applications sets 
(Scenario 3), where each application contains 5, 10, 15 and 20 tasks 

 

 

Fig. 9 Energy Consumption of 10 applications for four applications 
sets (Scenario 3), where each application contains 5, 10, 15 and 20 

tasks 
 

TABLE I 
 NUMBER OF SEARCHES FOR ALL THE TASKS IN DIFFERENT APPLICATION 

SETS FOR SCENARIO 3 WHEN EMPLOYING EXISTING AND MANHATTAN 

STRATEGIES 
 Apps-5tasks       Apps-10tasks     Apps-15tasks  Apps-20tasks 

PNN 
MPNN 
PBN 
MPBN 

     1690                 10370               16360                46650 
     1540                  7950                12470                43210 
     2280                 10800               17200                51130 
     2260                  9800                15130                48150      

VI. CONCLUSION AND FUTURE DIRECTIONS 

This paper presents a mapping approach that performs 
mapping in two different phases. The first phase employs 
newly proposed Manhattan-based mapping strategies that try 
to map the application tasks in close proximity in order to 
reduce the communication costs. The Manhattan strategy 
reduces the mapping time for each task. The second phase 
maps the communications between the tasks. To reduce the 
communication costs, a multi-objective routing algorithm 
(MORA) has been proposed to map the communications. 
Experiments have shown that the proposed Manhattan-based 
mapping strategies along with the MORA show significant 
reduction in total execution time and energy consumption 
when compared to existing approaches. In future, we plan to 
consider embedded applications with growing complexity and 
analyze execution of increasing number of applications at the 
same time. We also plan to consider multi-task supported 
software and hardware processors in the MPSoC, where each 
processor will be able to support several tasks depending upon 
the processor memory capacity. Additionally, task migration 

to balance the loads on the processors will be considered. 
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