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Analysis of the Secondary Stationary Flow Around
an Oscillating Circular Cylinder

Artem Nuriev, Olga Zaitseva

Abstract—This paper is devoted to the study of a viscous
incompressible flow around a circular cylinder performing harmonic
oscillations, especially the steady streaming phenomenon. The
research methodology is based on the asymptotic explanation method
combined with the computational bifurcation analysis. The research
approach develops Schlichting and Wang decomposition method.
Present studies allow to identify several regimes of the secondary
streaming with different flow structures. The results of the research
are in good agreement with experimental and numerical simulation
data.
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I. INTRODUCTION

THE problem of a viscous incompressible flow around a
circular cylinder performing harmonic oscillations is a

well known classical fluid mechanics problem. Although it has
a long history of research, first studies was made by Stokes [1]
in 1851, it still retains the theoretical and practical relevance
today. Marine and civil engineering, aerospace engineering,
robotics - these are just some of the areas in which the problem
has a practical application (see [2]–[6]). From a theoretical
point of view the study of complex physical mechanisms of
vortex formation, structural features of the flow, the analysis
of the integral characteristics (such as the hydrodynamic
forces acting on the cylinder), the questions of stability and
bifurcations of solutions are of the great interest.

Analysing the recent works devoted to the study of the
problem, one can distinguish the following perspective areas of
research: structure of the flow regimes around the oscillating
circular cylinder and phenomenon of a steady streaming. These
areas formed the research field of the current work.

The present research is based on the asymptotic explanation
method combined with the computational bifurcation analysis.
The investigations is carried out in the region of small
amplitude and high-frequency oscillations of the cylinder.
This approach develops Schlichting-Wang [7], [8] asymptotic
expansions method in unsteady Stokes boundary layer and
in the outer region. The complex flow model is considered,
in which the secondary stationary flow (steady streaming) in
the outer region is governed by the full system of Navier-
Stokes equations. To solve this problem a computational
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bifurcation analysis is used. Analysis is performed according
to the classical approach (that was presented for example
in [9]) for the analysis of one-parameter non-linear systems.
Bifurcation analysis allows to identify several regimes of
secondary streaming.

II. GOVERNING EQUATIONS

Let’s consider a flow around a circular cylinder of the radius
R performing small amplitude, high-frequency harmonic
oscillations with the velocity

u0 = U0 cos(ωt),

where U0, ω – the velocity amplitude and the oscillation
frequency, respectively.

We write the governing equations in the moving polar
coordinate system (r, θ) associated with the cylinder.
Normalizing the spatial coordinates, time and velocity by
R, ω−1, U0 respectively, we get the dimensionless stream-
function formulation of the governing system in the following
form:

∂

∂t
Δψ +

γε

r

∂(ψ,Δψ)

∂(r, θ)
− ε2Δ2ψ = 0 (1)

∂ (ψ, φ)

∂ (r, θ)
=

[
∂ψ

∂r

∂φ

∂θ
− ∂ψ

∂θ

∂φ

∂r

]
Control parameters of the problem are defined as

ε =
d2st
R2

, γ =
U0dst
ν

, dst =

√
ν

ω
,

where ν – kinematic viscosity of fluid, dst – the thickness of
the Stokes unsteady boundary layer. Under the conditions that
the values of dst and ν are small enough, we can assume that
ε is a small number and γ has a value of order unity.

On the surface of the cylinder, we use the no-slip boundary
conditions:

r = 1 : ψ =
∂ψ

∂r
= 0 (2)

At infinity the boundary conditions correspond to an
oscillating irrotational flow:

r → ∞ : ψ = r sin θ cos t+ o(r) (3)

The order of term o(r) in (3) will be refined in the next section.
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III. ASYMPTOTIC REPRESENTATION

We use the approach of Schlichting and Wang [7], [8]
decomposing the solution into oscillating ψ̃ and stationary ψ
parts:

ψ=ψ̃+ψ.

Substituting this decomposition to the governing system, we
get the equations describing stationary and oscillatory flows:

∂

∂t
Δψ̃+

γε

r

⎡⎣∂
(
ψ,Δψ̃

)
∂ (r, θ)

+
∂
(
ψ̃,Δψ

)
∂ (r, θ)

⎤⎦+ (4)

γε

r

⎡⎣∂
(
ψ̃,Δψ̃

)
∂ (r, θ)

⎤⎦
u

=ε2Δ2ψ̃,

γε

r

[
∂
(
ψ,Δψ

)
∂ (r, θ)

]
+
γε

r

⎡⎣∂
(
ψ̃,Δψ̃

)
∂ (r, θ)

⎤⎦
s

=ε2Δ2ψ. (5)

Here subscripts ”u” and ”s” denote the unsteady part and
the steady part of the product, respectively. To solve the
problem we use the method of asymptotic expansions. We
represent oscillatory and stationary components in the form
of expansions in outer and inner regions.

In the outer region (r∼ 1) we expand the stream function
as a power series, in the small parameter ε:

ψ̃=Ψ̃0 (r, θ, t)+εΨ̃1 (r, θ, t)+ε2Ψ̃2 (r, θ, t)+ . . .

ψ= εΨ1 (r, θ) + ε2Ψ2 (r, θ) + . . .
(6)

Internal expansion is constructed in the unsteady boundary
layer (r∼ε). Introducing the boundary layer coordinate

η=
r−1

ε

we write a formal internal expansion in the form:

ψ̃=εψ̃0 (η, θ, t)+ε2ψ̃1 (η, θ, t)+ε3ψ̃2 (η, θ, t)+ . . . ,

ψ= ε2ψ1 (η, θ) +ε3ψ2 (η, θ)+ . . . .
(7)

If we substitute (6) and (7) into (4) and equate coefficients of
powers of ε, we get the number of subproblems for expansion
terms.

The priority of subproblems solving is determined by the
matching conditions:

ψ̃0

∣∣∣
η→∞

∼ Ψ̃1

∣∣∣
r→1

+ η
∂Ψ̃0

∂r

∣∣∣∣∣
r→1

ψ̃1

∣∣∣
η→∞

∼ Ψ̃2

∣∣∣
r→1

+ η
∂Ψ̃1

∂r

∣∣∣∣∣
r→1

+
η2

2

∂2Ψ̃0

∂r2

∣∣∣∣∣
r→1

(8)
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∣∣
η→∞ ∼ Ψ̄2

∣∣
r→1

+ η
∂Ψ̄1

∂r

∣∣∣∣
r→1

ψ̄2

∣∣
η→∞ ∼ Ψ̄3

∣∣
r→1

+ η
∂Ψ̄2

∂r

∣∣∣∣
r→1

+
η2

2

∂2Ψ̄1

∂r2

∣∣∣∣
r→1

The resulting asymptotic expansion scheme is shown in Fig.
1.

Let us discuss the behaviour of Ψ̃k and Ψk at infinity. In

Fig. 1. Asymptotic expansion scheme

The original condition requires damping of all components
of the velocity at infinity except the one that corresponds to
the stream-function Ψ = r sin θ cos t. It does not exclude the
existence (when r → ∞) of a potential circulation flow with
Ψ = a(t) ln r. However, it is necessary to take into account
that this flow will have the infinite kinetic energy. Infinite
variation of the kinetic energy in a finite time is impossible.
Therefore, the existence for the oscillatory terms of expansion
the circulating flow at infinity should be prohibited, thus we
have

r → ∞ : Ψ̃0 = r sin θ cos t+O(1), Ψ̃k = O(1), k > 1

In contrast, for emerging endlessly stationary components Ψ,
an infinite kinetic energy, i.e. the circulation flow at infinity
of the form Ψ = a ln r is permissible.

IV. STEADY STREAMING

The low-order terms of the expansion can be found
analytically (their expressions are presented in [8]). The first
term that is responsible for the nonlinear behaviour of the
flow is Ψ̄1. This term is representing the steady streaming
around the cylinder. We rewrite the governing equations for
Ψ̄1 in terms of the stream-function (ψ = Ψ̄1/γ) and vorticity
ω = −Δψ as

Res
r

(
∂ψ

∂θ

∂ω

∂r
− ∂ψ

∂r

∂ω

∂θ

)
= Δω, (9)

Δψ = −ω. (10)

Hear Res = γ2 is analogue of the Reynolds number for
a stationary secondary flow. The boundary conditions on
the cylinder surface are determined by matching with the
analytical solution in the boundary layer, at infinity we use
the damping conditions:

r = 1 : ψ = 0,
∂ψ

∂r
=

3

2
sin 2θ. (11)

r → ∞ :
∂

∂r
r
∂ψ

∂r
= 0,

∂ω

∂r
= 0. (12)

To solve this problem a computational bifurcation analysis is
used.

V. BIFURCATION ANALYSIS

The secondary streaming problem is solved in the range [0,
200] of Reynolds numbers. We descritize the problem with
the second order of accuracy in the limited area z ∈ [0, 3.4]
(it is corresponding the physical area r ∈ [1, 30] ) divided into
n = 256× 256 grid cells. Coordinate transformation z = ln r
leads to concentration of the grid nodes around the cylinder
in the physical domain (see Fig. 2).fact we must determine the order of term o(r) in (3).
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Fig. 2. The structure of the computational grid in the vicinity of the cylinder.

For the solution of the descritized problem we use a classical
BA approach for the study of one-parameter nonlinear systems
(see [9]). The main components of the analysis are:

1) Localization problem. Construction of solutions
belonging to different branches. To solve this problem
FPN (Fixed point – Newton) homotopy method is used.

2) Continuation problem. Tracking the evolution of the
solution branches with the Reynolds number variation.
Basic elements of the continuation method:

• Predictor — method of tangents.
• Corrector — Moore-Penrose method.
• Step size correction according the Reynolds number.

3) Identification of the bifurcation points for the final
branches stratification. Localization of bifurcation points
is carried out as the solution of the spectral problem.

More detailed description of the solution techniques can be
found in the work [14].

VI. RESULTS

In the studied range three different solution branches of the
problem were found. In Fig. 3 the projection of the bifurcation
diagram of the phase-parametric space on the K − Res plane
is shown, where K is the kinetic energy:

K =
1

2

∫
Ω

((
∂ψ

∂r

)2

+

(
∂ψ

∂θ

)2
)

drdθ.

Solid lines are solution branches, markers are bifurcation
points.

The lowest line on a diagram corresponds to the main
solution. It is unique for Reynolds numbers less than 16.
For Res > 16 after the first fold bifurcation two additional
solutions appear. The second fold bifurcation was localized at
Res ≈ 87, thus for the larger Reynolds numbers there are five
different solutions of the problem.

The characteristic flow patterns for each solution branch
is shown in Fig. 4. The regime of the first type has two
symmetries: it is symmetric about the y-axis and pi-periodic
about the θ angle. The second type regime is symmetric about
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Fig. 3. The bifurcation diagram of the phase-parametric space

Fig. 4. Stream function for Res = 150.

the y-axis, but not pi-periodic. The last one is pi-periodic, but
not symmetric about the y-axis.

These regimes structures are in good agreement with one
observed in experimental and direct numerical simulation
studies [10]–[13].
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