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 
Abstract—Economic Dispatch (ED) is one of the most 

challenging problems of power system since it is difficult to determine 
the optimum generation scheduling to meet the particular load demand 
with the minimum fuel costs while all constraints are satisfied. The 
objective of the Economic Dispatch Problems (EDPs) of electric 
power generation is to schedule the committed generating units 
outputs so as to meet the required load demand at minimum operating 
cost while satisfying all units and system equality and inequality 
constraints. In this paper, an efficient and practical steady-state genetic 
algorithm (SSGAs) has been proposed for solving the economic 
dispatch problem. The objective is to minimize the total generation 
fuel cost and keep the power flows within the security limits. To 
achieve that, the present work is developed to determine the optimal 
location and size of capacitors in transmission power system where, 
the Participation Factor Algorithm and the Steady State Genetic 
Algorithm are proposed to select the best locations for the capacitors 
and determine the optimal size for them. 

 
Keywords—Economic Dispatch, Lagrange, Capacitors 

Placement, Losses Reduction, Genetic Algorithm.  

I. INTRODUCTION 

URING the last decade, the electrical power market 
became more and more liberal and highly competitive. 

The main goal is to generate of a given amount of electricity at 
the lowest possible cost. This need proper planning, operation 
and control of such large complicated systems [1]. 

The economic dispatch (ED) problem is one of the 
optimization problems in power system operation. The 
objective of ED problem is to schedule the optimal combination 
of outputs of all generating units and to minimize the operating 
cost while satisfying the load demand and system equality and 
inequality constraints. Improvements in scheduling of the unit 
power outputs can lead to significant cost savings [2], [3]. 

As power demand increases and since the fuel cost of the 
power generation is exorbitant, reducing the operation costs of 
power systems becomes an important topic. The main goal of 
Economic Dispatch (ED) in power systems is to distribute the 
total required generation between the generation units 
economically, while the equality and inequality constraints are 
satisfied. There are different algorithms to kind rate of optimum 
product for each power generation unit.  

Conventional algorithms such as lambda iteration, gradient 
method, and Newton method can solve the ED problems [4]. 
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The Energy Management System or (EMS) as we know it 
today had its origin in the need for electric utility companies to 
operate their generators as economically as possible. To operate 
the system as economically as possible requires that the 
characteristics of all generating units be available so that the 
most efficient units could be dispatched properly along with the 
less efficient [5]. In addition, there is a requirement that the 
on/off scheduling of generators units be done in an efficient 
manner as well. The scheduling of generators with limited fuel 
or water supplies is incorporated in energy management 
systems. This allows operators to further reduce the cost of 
operation by taking advantage of cheaper fuels or hydropower. 

II. INEQUALITY CONSTRAINTS 

Practical optimization problems contain inequality as well as 
equality constraints. The optimization problem can be started 
as: 
A. Minimize the Cost Function 
 

(1) 1 2( , ,..., )nF x x x  
 
B. Subject to the Equality Constraints 
 

(2) 1 2( , ,..., ) 0, 1, 2,...,i ng x x x i m   
 
C. Inequality Constraints 
 

(3) 1 2( , ,..., ) 0, 1,2,...,j nh x x x j p   

 
The Lagrange Multiplier is extended to include the 

inequality constraints by introducing the m-dimensional vector 
μ of undetermined quantities [6]. 

III. ECONOMIC DISPATCH INCLUDING LOSSES 

The active power transmission losses may amount to 20 to 
30% of the total load demand, ideally, the exact power flow 
equations should be used to obtain the active power 
transmission losses in the system, however, and the electric 
power system engineer may OPF for expressing the losses in 
terms of power generations only [7].  

One common practice for including the effect of 
transmission losses is to express the total transmission loss as a 
quadratic function of the generator power outputs in one of the 
following forms: 
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A. Simple Form 
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B. Kron’s Loss Formula 
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Bij are called the loss coefficients, which are assumed to be 

constant for a base range of loads, and reasonable accuracy is 
expected when actual operating conditions are close to the base 
case conditions used to compute the coefficients. The economic 
dispatch problem is to minimize the overall generation cost, C, 
which is a function of plant constrained by: 
C. The Generation Equals the Total Load Demand Plus 

Transmission Losses. 
D. Each Plant Output is Within the Upper and Lower 

Generation Limits Inequality Constraints. 
Mathematically:  
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The resulting optimization equation becomes: 
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The minimum of the unconstrained function is found when: 
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When generator limits are not violated:  
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where 

iPF is known as the penalty factor of plant i and is given 

by: 
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The effect of transmission losses introduces a penalty factor 

that depends on the location of the plant. 
E. The Minimum Cost Is Obtained When the Incremental 

Cost of Each Plant Multiplied by Its Penalty Factor Is the 
Same for All Plants. 

The incremental transmission loss is obtained from Kron’s 
loss formula as, 
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By setting the fuel cost equal to 1 $/MBTU, can be 

rewritten as: 
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Substituting (19) and (20) in (16), yields: 
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Rearranging (21) as: 
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Extending (22) for all plants results in the following linear 

equations (in matrix form), 
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where to find the optimal dispatch:  
F. The simultaneous linear equations in (23) are solved for an 

estimated value of the solution will be pi
(1), i=1,N . 

G. Then the iterative process is continued using the gradient 
method for the (N+1) system equations formed by (7) and 
(23). 
 

(24) E P D   
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To find the optimal dispatch for in estimated value of (1)  , 
the simultaneous linear equation given by (24) is solved. In 

MATLAB use the command E
P

D
 . 

Then the iterative process is continued using the gradient 
method. To do this, from (22), Pi at the Kth iteration is 
expressed as: 
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Substituting for Pi from (25) in (7) results in  
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or 
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Expanding the left –hand side of the above equation in the 

Taylor series about an operation point ( )K  and neglecting the 
higher – order terms result in 
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where  
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and therefore, 
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The process is continued until ( )KP  is less than a specified 
accuracy, and a specified accuracy =0.0001. If an approximate 
loss formula expressed by  
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is used, Bij=0, B00=0, and solution of the simultaneous 
equation given by (26) reduced to the following simple 
expression 
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In addition, (30) is reduced to 
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IV. OUTLINE OF THE BASIC STEADY-STATE GENETIC 

ALGORITHM 

Start: Generate random population of n chromosomes 
(suitable solutions for the problem).  
1. Fitness : Evaluate the fitness f(x) of each chromosome x in 

the population  
2. New population : Create a new population by repeating 

following steps until the new population is complete:  
a. Selection: Select two parent chromosomes from a 

population according to their fitness (the better fitness, the 
bigger chance to be selected).  

b. Crossover: With a crossover probability cross over the 
parents to form a new offspring (children). If no crossover 
is performed, an offspring is an exact copy of parents [8].  

c. Mutation: With a mutation probability mutates a new 
offspring at each locus (position in chromosome).  

d. Accepting: Place a new offspring in a new population. 
3. Replace: Use new generated population for a further run of 

algorithm  
4. Test: If the end condition is satisfied, stop, and return the 

best solution in current population.  
5. Loop: Go to step 2. 

V. THE CAPACITOR PLACEMENT 

The capacitor placement problem comprises two terms; first 
term represents the cost of capacitor placement, which has two 
components: 
1. Fixed installation cost. 
2. Purchase cost. 

The second term represents the total cost of energy loss. The 
energy loss is obtained by summing up the power losses for 
each load level multiplied by the duration of the load level. In 
practice, capacitors banks of standard discrete capacitance are 
ground. Hence, capacitor size is the discrete variables [9]. The 
cost of capacitor placement at location k with sizing 0

KU  is: 
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where CK is the cost of one bank of capacitor or is a fixed 

capacitor to be installed. 0( )f
K KC U  KC represents the cost 

associated with the capacitor installation at location k.]. For 
each load level, let the real power loss in the system be

 ii
iloss UXP ,, , then the total cost of energy loss can be written 

as: 
 

 ii
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i
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1

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where iT  is the duration for load level i and constant eK is the 

energy cost per unit. Let CN  possible location to place 

capacitors and tN  different loads levels. Let C represent the 

set of fixed capacitors,  
Let ],......2,1[ tt Nn   and ],.....2,1[ Cc Nn  , then the 

general capacitor placement problem is formulated as follows: 
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where  0
KK UC  is the annual cost of capacitor at location K 

with size KU . 

In this work we have developed the equation formulated of 
the general capacitor placement to find the annual cost by 
dividing the cost of capacitor by 10 by assuming that the 
capacitor lasts 10 years at least. These assumptions assist in 
minimizing the energy cost and the total cost of the system by 
the ability of an addition of the many of capacitors to the 
system. 

0U  is the sizing vector whose components are multiples of 

the standards size of one bank . iU is the control setting vector 
at load level i. 

VI. COMPUTING OF EIGENVALUES AND EIGENVECTORS 

The modal analysis mainly depends on the power-flow 
Jacobian matrix.  
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By letting P  = 0 in (30): 
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Substituting (40) in (41): yields 
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RJ  is the reduced Jacobian matrix of the system. 

Equation (43) can be written as: 
 

(43) QJV R  1||  
 

The matrix RJ  represents the linearzed relationship 

between the incremental changes in bus voltage ( V ) and bus 

reactive power injection ( Q ). It’s well known that, the 

system voltage is affected by both real and reactive power 
variations. In order to focus the study of the reactive demand 
and supply problem of the system as well as minimize 
computational effort by reducing dimensions of the Jacobian 
matrix J the real power ( 0P  ) and angle part from the 
system in (38) are eliminated. The eigenvalues and 
eigenvectors of the reduced order Jacobian matrix RJ are used 

for the voltage stability characteristics analysis. Voltage 
instability can be detected by identifying modes of the 
eigenvalues matrix RJ . The magnitude of the eigenvalues 

provides a relative measure of proximity to instability. The 
eigenvectors on the other hand present information related to 
the mechanism of loss of voltage stability. Eigenvalue analysis 
of RJ results in the following: 

 

 
where 
 = right eigenvector matrix of RJ  

 =left eigenvector matrix of RJ  

 =diagonal eigenvalue matrix of RJ  

Equation (44) can be written as: 
 

 
where 1 . Substituting (43) in (45) gives 
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where i  is the thi  eigenvalue, i  is the of thi  column right 

eigenvector and i  is the thi  row left eigenvector of matrix 

(44) RJ  

(45)    11
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RJ  Each eigenvalue i  and corresponding right and left 

eigenvectors i  and i , define the thi mode of he system. 

The thi modal reactive power variation is defined as: 
 

 

where iK  is a scale factor to normalize vector iQ so that 

 

 

where ji the thj element of i .The corresponding thi

modal voltage variation is: 
 

 
Equation (49) can be summarized as follows: 

1. If 0i  , the thi modal voltage will collapse because any 

change in that modal reactive power will cause infinite 
modal voltage variation. 

2. If 0i  , the thi  modal voltage and thi  reactive power 

variation are along the same direction, indicating that the 
system is voltage stable. 

3. If 0i  , the thi  modal voltage and the thi  reactive 

power variation are along the opposite directions, 
indicating that the system is voltage unstable. 

If i and i represent the right-hand and left-hand 

eigenvectors, respectively, for the eigenvalue i of the matrix

RJ , then the participation factor measuring the participation of 

the thK bus in thi mode is defined as 
 

 
Note that for all the small eigenvalues, bus participation 

factors determine the area close to voltage instability. Equation 

(50) implies that kiP shows the participation kiP  of the thi  

eigenvalue to the sensitivity at bus k. The node or bus k with 
highest value is the most contributing factor in determining the 

sensitivity at thi mode. Therefore, the bus participation factor 
determines the area close to voltage instability provided by the 

smallest eigenvalue of RJ . 

VII. THE DISCUSSION OF THE PROPOSED SYSTEM  

We will test case in the proposed system: The case of 22-bus 
bars with 10 generators. It is aimed in this research to reduce 
the total generation cost of power system using optimum 
economic dispatch by placing some capacitors on the bus bars 
of power system to reduce the losses of power and this will lead 

to reduce the total cost. To select the optimal locations and sizes 
of the capacitors, we will use the Participation Factor to get the 
best locations in the bus bars of power system. And we will use 
the Genetic Algorithm steady state to get the best sizes for these 
capacitors. In this section we will present how we will get the 
best total cost and compare with the previous cost that will get it 
before the adding of capacitors. So we will present the 
procedures that will fellow them to get the cost of system: 
1- Compute the Newton-Raphson method. 
2- Compute the losses of power system. 
3- Determine the economic dispatch before compensation 

using Lagrange multiplier method. 
4- Compute the Participation Factor to detect the optimal 

locations in the power system. 
5- Apply the Genetic Algorithm to select the best sizes for the 

capacitors that will place in the selected locations (in the 
previous procedure). 

6- Compute the optimum economic dispatch to get the total 
cost, and compare with the previous cost. 

A 10- generator case with 22 bus bars is taken to illustrate the 
proposed algorithm to solve the economic dispatch problem. 

As in the previous section the same procedures will be 
computed to get the reduced total cost. 

To reduce the total cost, the method of Participation factor is 
performed by computing the Jacobian Matrix reduction JR to 
analyze the stability of the voltage. This can be made by 
computing the eigenvalues and eigenvectors for JR matrix, 
where the values of eigenvalues give a proximate for the 
voltage instability at the load level, and from this we can 
determine the Participation Factor for the buses of the system , 
and the buses that have the minimum eigenvalues are selected 
and large PF(participation factor) values are used to inject the 
capacitors in the buses. 

Fig. 1 presents the load level participation factor. Tables I, II 
present the results of eigenvalues for the selected buses and the 
Participation factor for these buses: 

 

 

Fig. 1 The Load Level Participation Factor for the Eigenvalues 
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TABLE I 
THE EIGENVALUES OF THE SELECTED BUSES 

Location Eigenvalue 

2 247.071 

6 288.752 

8 224.783 

9 105.238 

10 87.196 

11 77.561 

13 51.724 

15 23.209 

16 17.698 

17 5.614 

19 4.597 

22 4.642 

 
TABLE II 

THE PARTICIPATION FACTOR FOR THE SELECTED BUS  
Bus No. Participation Factor 

2 0.0025 

6 0.1344 

8 0.0025 

9 0.1344 

10 0.0836 

11 0.0374 

13 0.0836 

15 0.1514 

16 0.1623 

17 0.1500 

19 0.0374 

22 0.3115 

 
From the results of the participation factor, the 10 candidate 

locations in the system are selected for placing the capacitors 
(see Table III). 

After the best candidate buses are obtained, the next step is to 
get the optimal sizes for the capacitors to place them in these 
buses; this is done by using the Steady State Genetic Algorithm 
(SSGA). And to achieve this target, we need to building an 
initial population and getting the fitness function and 
determined the number of generations. At initial, random 
populations are selected and the encoding of the chromosomes 
of the population use integer values (because each chromosome 
will present the number of capacitors that will be injected to 
system). Each of chromosome is added to the buses data array 
to the field of Qsht (which present the field of capacitors) and 
compute the power losses for the system. 

The value of power losses will be multiplied by the cost of 
energy and will be added to the price of capacitors and their 
maintenance to give the fitness function. So, to get the 
minimum total cost we must get the best chromosome that has 
the minimum fitness function. 

 
FitFun= the cost of capacitor+ the power losses*energy cost 

+ the maintenance (fixed installment cost Energy cost (Ke) = 
60$/ MW.h The cost of capacitor 

  
a- Fixed installment cost = 1000$. 
b- Purchase = 3500$/bank. 

Table III presents the location of candidate capacitors and 
their optimal sizes which are obtained from the SSGA and 
Table IV presents the final results to get the reduced total 
generation costs: 

 
TABLE III 

THE FIXED CAPACITORS PLACEMENT AND THEIR SIZES  
Optimal locations Optimal Size of Capacitors 

(bus No.) (MVAR) 

6 6 

9 7 

10 15 

11 2 

13 9 

15 5 

16 13 

17 6 

19 11 

22 1 

 
TABLE IV 

THE OPTIMAL DISPATCH OF GENERATION  
Optimal Dispatch of Generation 

187.5000 

139.0000 

400.0000 

279.1755 

345.2646 

268.2019 

125.4000 

279.0975 

300.0000 

268.1165 

VIII. CONCLUSIONS 

The following conclusions are derived from this work: 
 The power flow method, together with the system losses 

and the economic dispatch methods can be used to obtain 
the optimal dispatch of generation. To get this target will 
need reducing the losses of system by reducing the loss 
coefficients. The dispatch method produces a variable 
named dpslack. This is the difference (absolute value) 
between the scheduled slack generation determined from 
the coordination equation, and the slack generation, 
obtained from the power flow solution. A power flow 
solution obtained with new scheduling of generation 
results in a new loss coefficient, which can be used to solve 
the coordination equation again. The process continues 
until dpslack is within a specified tolerance, but it is seen 
that the dpslack value must not be very small because this 
will increase the iterative and this will lead to increase the 
cost (it is found that the best value for dpslack is at 0.1). 

 The Participation Factor and Steady State Genetic 
algorithm are used to determine the candidate buses and 
the number of reactive power gives the accuracy and the 
enhancement to the work because the first stage 
(participation factor stage) simultaneously contributes to 
narrowing down the search domain for the second stage 
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(GA optimization), as well as ensures those buses that are 
sensitive to voltage problems considered for reactive 
power compensation. 

 The use of SSGA gives more accurate results than the 
simple genetic algorithm SGA because the SGA replaces 
the entire parent population with the children. And in 
elitism the fittest individuals pass unchanged from the 
parent population to the children while the SSGA replaces 
few individuals, and it provides a set of solutions rather 
than only one solution. 

Finally, from the computational results, the following can be 
observed: 
1. The total generation cost for the initial operation condition 

is reduced by using the total generation cost with optimal 
dispatch of generation and genetic algorithms. 

2. MVAR of generators is reduced by using injection 
capacitors. 

3. The solution methodology is based on an optimization 
technique chosen by genetic algorithms to minimize the 
objective function while the load constraints and 
operational constraints like the voltage profile at different 
load levels are satisfied. 

4. SSGA, which is based on the laws of natural selection and 
survival of the fittest, has been used successfully to reduce 
power loss considering balanced condition, because SSGA 
reaches quickly the region of optimal solutions and its 
accuracy for one reason: SSGA avoids local minima by 
searching in several regions.  
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