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 
Abstract—This study focuses on the cooling of a photovoltaic 

panel (PV). Indeed, the cooling improves the conversion capacity of 
this one and maintains, under extreme conditions of air temperature, 
the panel temperature at an appreciable level which avoids the 
altering. To do this, a fan provides forced circulation of air. Because 
the fan is supplied by the panel, it is necessary to determine the 
optimum operating point that unites efficiency of the PV with the 
consumption of the fan. For this matter, numerical simulations are 
performed at varying mass flow rates of air, under two extreme air 
temperatures (50°C, 25°C) and a fixed solar radiation (1000W.m2) in 
a case of no wind. 
 

Keywords—Energy conversion, efficiency, balance energy, solar 
cell. 

I. INTRODUCTION 

ANY studies focuses on the cooled photovoltaic panels. 
Indeed, the efficiency of such systems is highlighted for 

hybrid systems as the solar photovoltaic thermal (PV/T), for 
which the energy consumption required for the air or water 
circulators are negligible [1]–[3]. To overcome the use of fan 
circulator, other systems use the cooling by natural circulation 
of air [4], [5]. 

The objective of this work is precisely to show that it is 
possible to cool the PV by forced air. However, an optimum 
air flow is necessary for a good balance between electric 
energy generated by the PV and the power consumed by air 
pump. 

Moreover, the upper face of PV is exposed to the external 
environment where the exchanges take place by natural 
convection. While, on the underside, the heat exchange by 
forced convection is ensured by the air flow induced by the 
fan.  

Furthermore, the glass and the silicon layer are the seat of 
an internal heat source resulting from a heat balance of short 
and long wave radiations. Numerical simulations are then 
performed for the case of a monocrystalline PV (0.22m× 
0.29m×0.025m). The efficiency of the cooling system is 
compared to the non-cooled one in a case of no wind. 

II. A ONE DIODE MODEL 

There are several mathematical models that describes the 
operations and the behavior of the photovoltaic generator, the 
most famous and classical of them is the one-diode model [6], 
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[7] which involves: a current generator generated by the 
illumination, reverse saturation current of the diode associated 
to the p-n junction and two resistors (series and shunt) for the 
models that describes the operations and the behavior of the 
photovoltaic generator, the most famous and classical of them 
is the one-diode model [6], [7] which involves: a current 
generator generated by the illumination, reverse saturation 
current of the diode associated to the p-n junction and two 
resistors (series and shunt) losses. This model is shown in   
Fig. 1. 

 

 

Fig. 1 Equivalent circuit of solar cell (1-diode model) 
 
The analytical formulation of this model is expressed as 

follow:  
 















 

 1
IRV

expIII s
0L a

       (1) 

 
A solution of the above equation requires to known five 

parameters: the light current IL, the diode reverse saturation 
current I0, the series resistance Rs, the shunt resistance Rsh, and 
a curve fitting parameter a, which are highly related to the 
intensity of solar radiation and the temperature of the solar 
panel. These parameters are obtained indirectly using 
measurements of the current and voltage characteristics of a 
module at reference conditions (1000 W m-2 incident 
radiation and 25°C ambient air temperature) [8], with the 
shunt resistance taken as infinity [9]. Under other conditions, 
it operates the following correlations to evaluate them: 
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where 

ccrefL, II             (5) 

 

3
I

Tμ
εNVTμ

refL,

refP,ccI,

srefoc,refP,ocV,
ref




a

       (6) 

and 
14

ccI, KA10.1μ   : Temperature coefficient of the short circuit 
current. 

1
ocv, KV  0804.0μ  : Temperature coefficient of the open 

circuit voltage. 

ev 12.1 : The band gap energy. 

36Ns   : Cells number in series. 
 In addition, the open circuit voltage Vco is expressed by the 

following relationship [9]: 
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k : Boltzmann’s constant (J K-1) 
Moreover, the power generated by the solar cell is: 
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The maximum electrical power at MPP (Pm) of a module is 

given by: 

optoptm IVP          (10) 
 

where Vopt and Iopt are respectively the optimum voltage and 
current. 

To evaluate them, it is necessary to solve the following 
equations: 
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The energy efficiency of the solar cell is then defined by: 
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and the absolute efficiency of the installation is: 
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While the relative efficiency of the installation is expressed 
by: 

o
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where Pfan is the power of the fan and ηo is the efficiency of the 
PV without cooling system. 

III. THERMAL MODEL 

A. Heat Balance without Cooling Process 

A part of short wave solar radiation (RG) actives the PV and 
raises its temperature, while the rest is discharged through 
long wave radiation and convective heat flux to the ambient 
air. In the case of no wind, the heat exchanges occur by 
natural convection on the flat plate of the PV panel. 

The heat balance performed at the panel surface (S) can be 
written as: 

 

  0PSR rCG       (15) 

 
where 

C  : the convective heat flux expressed by Newton's law as 
follows: 
 

 airPC TTSh         (16) 

 
The heat transfer coefficient h is correlated, for the case of a 

horizontal flat plate under conditions of natural convection, by 
the following relationship [10]: 
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Pr  : Net radiation of long wave radiations 

exchanged between the surface of the PV and the sky. 
The temperature of the sky is evaluated by the following 

relation [11]:  
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TABLE I 

MATERIAL PROPERTIES OF PV [12] 
Symbol Quantity Glass Silicium 

ρ (kg  m-3) Density 3000 2330 

λ (W  m-1  °C-1) Thermal conductivity 2 130 

Cp (J  kg-1  °C-1) Heat capacity 500 677 

e (mm) Thickness 3 0.3 
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