
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:10, 2014

1821

Abstract—Sudoku is a logic-based combinatorial puzzle game

which people in different ages enjoy playing it. The challenging and
addictive nature of this game has made it a ubiquitous game. Most
magazines, newspapers, puzzle books, etc. publish lots of Sudoku
puzzles every day. These puzzles often come in different levels of
difficulty so that all people, from beginner to expert, can play the
game and enjoy it. Generating puzzles with different levels of
difficulty is a major concern of Sudoku designers. There are several
works in the literature which propose ways of generating puzzles
having a desirable level of difficulty. In this paper, we propose a
method based on constraint satisfaction problems to evaluate the
difficulty of the Sudoku puzzles. Then we propose a hill climbing
method to generate puzzles with different levels of difficulty.
Whereas other methods are usually capable of generating puzzles
with only few number of difficulty levels, our method can be used to
generate puzzles with arbitrary number of different difficulty levels.
We test our method by generating puzzles with different levels of
difficulty and having a group of 15 people solve all the puzzles and
recording the time they spend for each puzzle.

Keywords—Constraint satisfaction problem, generating Sudoku
puzzles, hill climbing.

I. INTRODUCTION

UDOKU is a logical game which has attracted both young
and old people. Having a very challenging and addictive

nature, it has spread wildly all over the world. The word
Sudoku is short for Su-ji wa dokushin ni kagiru which means
"the numbers must be single". This name indicates the nature
of the game, in which numbers should be placed in appropriate
places in a grid.

The first Sudoku was published in a puzzle magazine in
USA, 1979 [1]. The objective of the game is to take a 9×9 grid
and fill in the open spots with numbers from 1 to 9 so that
each column and each row of the grid contains each of the
numbers only once. Furthermore, each of the nine 3×3 sub-
grids that together compose the total 9×9 grid (also called
boxes, blocks, regions, and sub-squares) must contain all of
the digits from 1 to 9 only once.

A Sudoku has at least 17 pre-defined numbers but normally
there are 22 to 30. The difficulty level is mainly determined by
the amount of empty cells. For instance, in a beginner puzzle
several numbers will be given. In more advanced puzzles, only
a few numbers are given. But this is not the only factor for
determining the level of difficulty. There are also other factors

Bahare Fatemi and Nazanin Mehrasa are with the Computer engineering

and IT Department, Amirkabir University of Technology, Iran (e-mail:
b.fatemi@aut.ac.ir, nazanin.mehrasa@aut.ac.ir)

Seyed Mehran Kazemi is with the Computer Science Department,
University of British Columbia (e-mail: smkazemi@cs.ubc.ca).

such as the lowest bound of the given cells in each row and
column and applicable techniques by human logic thinking
which can affect the difficulty level of a Sudoku puzzle.

Fig. 1 is an example of a Sudoku puzzle. We can see in this
figure that 23 of the cells are initially containing a number.
The aim of the game is to fill the other cells so that they don’t
violate the conditions mentioned earlier. Fig. 2 represents the
solution to the Sudoku puzzle appearing in Fig. 1. We can see
in final solution that every row, column and sub-square
contains all the numbers from one to nine only once.

Several magazines, newspapers, puzzle books, etc. publish
a great number of Sudoku puzzles with different levels of
difficulty every day. The difficulty level of the puzzles can
help people in choosing a puzzle according to their level of
knowledge and skill in solving Sudoku. This ubiquity of the
game has raised the problem of generating lots of puzzles with
different levels of difficulty.

In this paper, we will examine the problem of generating
Sudoku puzzles with different levels of difficulty. We
introduce constraint satisfaction problems and then formulate
each puzzle as a constraint satisfaction problem and try to
solve it using the arc consistency with domain splitting. We
use the number of calls to the arc consistency function for
rating the difficulty level of the puzzles. We also introduce hill
climbing method and propose an algorithm based on it to
generate puzzles with different levels of difficulty. We test the
performance of our algorithm in generating puzzles with
different levels of difficulty by asking a group of people to
solve our puzzles and recording the time they spent on each
puzzle.

The rest of the paper is organized as follows: Section II is a
literature review of different methods of generating Sudoku
puzzles in the literature. Section III provides sufficient
background for readers to go through the detail of the paper.
Section IV of the paper represents how we formulate each
Sudoku puzzle as a constraint satisfaction problem, how we
solve it, and how we rate the difficulty level of puzzles. In
Section V, we explain our hill climbing method for generating
puzzles with different levels of difficulty. Section VI is
devoted to evaluation of our method. Finally, Section VII
concludes the paper and points out some future works.

Bahare Fatemi, Seyed Mehran Kazemi, Nazanin Mehrasa

Rating and Generating Sudoku Puzzles Based On
Constraint Satisfaction Problems

S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:10, 2014

1822

Fig. 1 An example of a Sudoku puzzle

II. LITERATURE REVIEW

There are several methods in the literature proposed for
generating Sudoku puzzles with different levels of difficulty.
Most of these methods rely on an algorithm for solving Sudoku
puzzle. Solving the generalized Sudoku problem is NP-
complete, as has been shown in [2]. Therefore, we cannot hope
to find an algorithm with polynomial time for all puzzles,
unless P = NP [3]. This means that there will be possibly many
instances that cannot be solved without one kind of search also
being necessary [4]. Consequently, Sudoku designers try to
propose an algorithm based on stochastic local search or other
optimization methods for solving the Sudoku puzzles and they
consider the time spent by this algorithm for solving a given
puzzle to be indicative of its difficulty level. For instance, one
of these methods [5] solves puzzles using genetic algorithms, a
computer-based optimization method which uses the
Darwinian evolution of nature as an inspiration and models the
world accordingly. In this method, a genetic algorithm
formulation is proposed to solve Sudoku puzzles. Since
different puzzles need different amount of time and different
number of generations to be solved using this method, these
criteria have been considered as the measure for difficulty level
for each Sudoku. The genetic algorithm proposed in [5] for
solving Sudoku puzzles has been improved later by Kazemi
and Fatemi [6], offering a possibly better alternative for
generating puzzles with different levels of difficulty using
genetic algorithm.

The work in [7] is another example which frames the
Sudoku puzzle as a search problem and uses the expected
search time to determine the difficulty level of each puzzle.

Another method [8] for generating Sudoku puzzles deals
with the problem as an inverse problem. It starts with a
completed Sudoku board and applies inverse methods to
construct a puzzle with a small set of pre-defined cells, such
that it has only a unique solution.

Fig. 2 The solution to the Sudoku puzzle in Fig. 1

Using dig-hole strategy on a valid grid [9] is another famous

method for generating Sudoku puzzles. There are two major
steps in this method. The first step is to create a valid grid
using the Las Vegas algorithm and the second step is erasing
some of the digits by using special operations. (To see other
methods for generating Sudoku puzzles see [10]).

Most of previous methods for generating Sudoku puzzles are
designed to generate puzzles with only a few different levels of
difficulty.

In this paper, we try to propose a different way of generating
Sudoku puzzles, in which we address the problem of
generating puzzles with manifold different levels of difficulty.
First of all, we propose a way of measuring the difficulty level
of each puzzle by formulating it as a Constraint Satisfaction
Problem (CSP) and solving it by arc consistency and domain
splitting. Using this method, we can categorize puzzles into our
desirable number of difficulty levels. Then we propose a hill
climbing algorithm for generating puzzles. Given the desired
level of difficulty, this method can produce a puzzle in that
level of difficulty. We test our model by generate four puzzles
with four levels of difficulty and have a group of 15 people
solve all four puzzles. These people have different ages and
different academic backgrounds, but all of them have solved
plenty of Sudoku puzzles before. They also have different
strategies for solving a puzzle. We record the time they spend
for solving each Sudoku puzzle to evaluate our method.

III. BACKGROUND

In this section, we provide sufficient information about
constraint satisfaction problems and hill climbing which a
reader needs to know to read the rest of the paper.

A. Constraint Satisfaction Problem

A Constraint Satisfaction Problem (CSP) [11] is defined as a
set of variables, the domain of possible values for each
variable, and a set of constraints between one or more

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:10, 2014

1823

variables. The solution to a CSP is an assignment of values to
all variables from their domain which satisfying all constraints.

There are several methods proposed for solving CSPs. The
method which we will use in this paper is based on arc
consistency and domain splitting. Consistency techniques try to
reduce the search space by removing the values that cannot
appear in a solution. Domain splitting tries to decompose the
problem into smaller problems and searches within each sub-
problem to find a solution.

To solve a CSP using arc consistency with domain splitting,
first of all a constraint network is generated. For building a
constraint network, we draw an oval for each variable and a
rectangle for each constraint. There are arcs (undirected edges)
between variable nodes and constraint nodes whenever a given
variable is involved in a given constraint.

Then we try to make each arc consistent. An arc between a
variable x and a constraint r(x, y) is consistent if for each value
x* in domain of x, there is a value y* in domain of y so that
r(x*, y*) is satisfied. A network is arc consistent if all its arcs
are arc consistent. We can make an arc consistent by removing
those values from the domain of its associated variables which
violate the consistency.

When the network is arc consistent, if some of the variables
have more than one value left in their domain, we choose one
of these variables randomly and split its domain into two or
more disjoint groups. This is called domain splitting. Then we
have a number of smaller problems. We apply arc consistency
and domain splitting to each of them until we find a solution.

B. Hill Climbing Algorithm

Hill climbing [12] is a mathematical optimization technique
which belongs to the family of local search. It is used to
minimize the cost function or maximize the utility function
given for a problem. It is an iterative algorithm that starts with
an arbitrary solution to a problem and calculates the cost
(utility) function for the given solution. Then at each iteration,
it changes one element of the solution and calculates the cost
(utility) function again. If the change resulted in a decrease
(increase) in the cost (utility) function, the change is accepted
and otherwise it is undo-ed. This process continues until a
desirable solution to the problem is found or until it times out.

IV. RATING SUDOKU PUZZLES

In order to rate the difficulty level of each Sudoku puzzle,
we formulate it as a CSP and solve it by arc consistency with
domain splitting. We count the number of times arc
consistency function is called by each puzzle and use it as the
measure of difficulty. In the rest of the paper, we call this count
for each puzzle call count of the puzzle. Our aim is to
determine the value of call count for different levels of
difficulty and generate puzzles having a call count close to
values we determined for each level. To determine the
appropriate values of call counts for each level of difficulty, we
solve several puzzles in each level, record the number of calls
to the arc consistency function and take the average.

In modeling Sudoku as a CSP, we need to specify the
variables, domains of the variables and constraints between

variables. In our model of CSP, variables are the cells of the
Sudoku puzzle. We represent the set of variables as {x11,
x12,…, x19, x21, …, x99}. The domain of variables for having no
pre-defined values is {1,2,3,4,5,6,7,8,9}.

This means that a cell without a pre-defined value can take
all the values between 1 and 9 inclusive. For cells having a pre-
defined value, the domain is just their initial value. For
example if the puzzle designer has set the initial value of the
cell in the second row and third column to 5, then the domain
of x23is {5}.

There are three constraints for each of the cells. The first
constraint is that no cells in the same row can have the same
value. The second one is that no cells in the same column can
have the same value. Finally, the third constraint is that no cells
in the same sub-square can have the same value. Then we use
arc consistency with domain splitting to solve this consistency
network. Parts of the consistency network can be seen in Fig. 3.

Arc consistency is applied to the consistency network in Fig.
3 by choosing the arcs which are not consistent and removing
the values from its associated variable until the arc is
consistent. This process continues until no non-consistent arc
consists in the network.

In order to apply domain splitting to a consistent network,
we randomly choose a variable xij from the network which has
k > 1 values in its domain. Then we split the current node into
k nodes each having only one of the values in the domain of xij.
After that we run the arc consistency for each of these nodes.
This tree of nodes is generated using depth first search.
Splitting of nodes in a branch continues until we reach a node
in which all variables have only one variable in their domain or
one of the variables has a value in its domain. The former
indicates a solution is found and the latter indicates no solution
can be found.

A. Data Collection

In order to determine the number of splits required to solve
puzzles with different levels of difficulty, we collected 400
Sudoku puzzles from www.websudoku.com where 100 of them
were easy, 100 of them were medium, 100 of them were hard
and 100 of them were evil. Then for each of these puzzles, we
ran our algorithm 10 times and took the average call count of
the 10 runs for solving each puzzle. We observed some outliers
among each set of 100 call counts for each difficulty level. This
can be due to misclassification of puzzles by the website or
because of the reason that they included some of the puzzles in
more than one difficulty level. We removed the outliers using
the Inter-Quartile Range (IQR) method.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:10, 2014

1824

Fig. 3 Parts of the consistency network used in our CSP formulation
of Sudoku puzzles.

In this method, we calculate the IQR of the data as the

difference between the third and the first quartiles of the data.
First (third) quartile of a set of data points is the number which
25% (75%) of the data are less than that. Values beyond
[Median - 1.5 * IQR, Median + 1.5 * IQR] were considered as
outliers and removed. Median in this interval indicates the
number which 50% of the data are less than that. The
distribution of the data over the call count (after outlier
removal) is presented in Fig. 4. Finally, we calculated the
average of the call counts for the remaining data. These
average numbers of every level represent the average call count

of each difficulty level. These numbers are presented in Table
I.

V. GENERATING SUDOKU PUZZLES

The results of the previous section can help us generate
Sudoku puzzles with different levels of difficulty. As we can
see in Table I, different levels of difficulty have different
values of call count. The harder the puzzle, the more its call
count. We can use this fact to generate Sudoku puzzles with
arbitrary levels of difficulty. We only need a mechanism to
generate puzzles with call counts close to the call count value
that we desire.

Suppose we want to generate puzzles with 4 levels of
difficulty. We can consider the values in Table I as the call
counts for these levels and then try to generate tables having
call counts close to these numbers. If we need more than 4
difficulty levels, we can consider the mean of each two
consecutive number in Table I as a new call count for a
difficulty level. We can also consider the numbers beyond the
last number in Table I. This enables us to generate puzzles with
arbitrary different levels of difficulty.

TABLE I

AVERAGE CALL COUNTS OF FOUR DIFFICULTY LEVELS

Difficulty Easy Medium Hard Evil

Average 6.234043 29.2093 98.2093 527.4318

Fig. 4 The distribution of the call counts of the puzzles having a difficulty level of (a) easy, (b) medium, (c) hard, and (d) evil

We use hill climbing to generate new puzzles having a call

count close to the call count we need. In this method, first of
all, we generate an initial puzzle with some random numbers
inside it and calculate its cost function.

Then in each iteration, we randomly change one element of
this solution by adding, deleting, or changing a single number
and calculate the cost function again. After this, we check the
new value of the cost function for this new puzzle and compare

it to the previous one. If the cost is reduced, we accept the
second puzzle as the new solution and otherwise we undo the
change. We do this process until meeting the stopping
criterion.

The cost function for a given puzzle is infinity for puzzles
with none or more than one solutions. For other puzzles, the
cost is the absolute value of the current puzzle’s call count
minus the average call count of the given difficulty level. For

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:10, 2014

1825

example if we want to generate an easy puzzle and we want to
consider the values demonstrated in Table I, then the cost
function for a puzzle having a unique solution is the absolute
value of its call count minus 6.234043.

We stop the algorithm when we have puzzles with costs
close to zero. Depending on the level of accuracy we need and
the number of difficulty levels we have, we can define the
closeness of the cost function to zero.

VI. EVALUATION

In order to test our method we generated 4 puzzles with 4
different levels of difficulty. We used the call counts in Table I
as the average call counts of our puzzles. Then, we had agroup
of 15people having different ages and different levels of
education solve all four puzzles and we measured the amount
of time they spent for each of the puzzles. The age of the
people in this group was between 16 and 41 and they had
different levels of education from high school students to
graduate students and also non-student people from workers to
people having occupations requiring great skills of problem
solving. All these people had solved plenty of Sudoku puzzles
before and they were using different strategies for solving a
puzzle.

Results obtained from this study are demonstrated in Table
II. Each of the rows in this table represents the time in minutes
they spent for solving each of the puzzles having different
levels of difficulty. The last row represents the average time in
minutes that people spent on solving each of the puzzles.

We can see from the results in Table II that most people
spent more times for solving more difficult puzzles. There are
some exceptions where people did a better job for more
difficult puzzles which can be because of the strategy they
follow. It is possible that their strategy works better for a more
difficult puzzle than an easier puzzle. We can also see from
average times in the last column that people, on average, spent
more time on more difficult puzzles. This indicates that our
method has succeeded in generating puzzles with different
levels of difficulty.

VII. CONCLUSION

Sudoku puzzle is a popular game among all people having
different ages, occupations, levels of education, etc. and is
being played by many people every day. Lots of magazines,
newspapers, puzzle books, etc. publish Sudoku puzzles with
different levels of difficulty for interested people. Designing
such a huge number of Sudoku puzzles cannot be performed by
human labor. Computer programs are required to do this task.
Several methods have been proposed in the literature to
generate puzzles with different levels of difficulty.

TABLE II
TIMES SPENT BY PEOPLE FOR SOLVING OUR PUZZLES

 Easy Medium Hard Evil

1 16 12 25 30

2 21 36 67 50

3 14 30 80 68

4 15 24 30 68

5 8 22 26 55

6 10 33 24 38

7 22 6 23 35

8 11 20 20 45

9 6 8 12 21

10 6 8 9 12

11 40 45 unsuccessful unsuccessful

12 8 31 61 71

13 10 9 18 50

14 14 20 25 unsuccessful

15 20 18 30 unsuccessful

Average 14.73 21.47 32.14 45.25

In this paper, we proposed a method which formulated a

Sudoku puzzle as a constraint satisfaction problem and solved
it by arc consistency and domain splitting. Then we used the
number of calls to the arc consistency function as the difficulty
level of the puzzle. We used 400 different puzzles having 4
different levels of difficulty (100 in each level) to determine
how many calls to this function are required on average to
solve a puzzle in a given level of difficulty. We observed that
as the difficulty level of a puzzle increases, the number of calls
to the arc consistency function increases accordingly. We
called the number of calls to the arc consistency function for a
puzzle “call count” of the puzzle.

Then we used a hill climbing method which started with an
arbitrary puzzle and tried to add, delete or change its numbers
until getting a puzzle which had a call count close to the call
count we desires to get for the given difficulty level.

Using our method, we could generate puzzles with many
different levels of difficulty. In order to test our method, we
generated four puzzles with four different levels and had a
group of 15 people solve our puzzles. We recorded the time it
took for every person to solve each puzzle. We observed that as
the difficulty level of the puzzle generated by our method
increased, the average time people spent for solving it also
increased.

In future, we can generate more puzzles with more levels of
difficulty and ask people to solve our puzzles to test the power
of our method in generating more levels of difficulty.
Furthermore, we can use a stochastic local search other than
hill climbing which is more efficient and can generate a
desirable puzzle in a shorter amount of time.

REFERENCES
[1] R. Lewis, “Metaheuristics can solve sudoku puzzles,” Journal of

heuristics, vol. 13, no. 4, pp. 387–401, 2007.
[2] H. Poor, An Introduction to Signal Detection and Estimation. New York:

Springer-Verlag, 1985, ch. 4.
[3] Y. Takayuki and S. Takahiro, “Complexity and completeness of finding

another solution and its application to puzzles,” IEICE transactions on
fundamentals of electronics, communications and computer sciences,
vol. 86, no. 5, pp. 1052–1060, 2003.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:10, 2014

1826

[4] M. R. Garey and D. S. Johnson, Computers and intractability, vol. 174.
Freeman New York, 1979.

[5] T. Mantere and J. Koljonen, “Solving and rating Sudoku puzzles with
genetic algorithms,” in New Developments in Artificial Intelligence and
the Semantic Web, Proceedings of the 12th Finnish Artificial
Intelligence Conference STeP, pp. 86–92, 2006.

[6] S. M. Kazemi, B. Fatemi, “A retrievable genetic algorithm for efficient
solving of Sudoku puzzles,” International Journal of Computer,
Information Science and Engineering, Vol. 8, No. 5, 2014.

[7] K. N. Das, S. Bhatia, S. Puri, and K. Deep, “A retrievable GA for
solving Sudoku puzzles,” Citeseer, 2012.

[8] T. Boothby, L. Svec, and T. Zhang, “Generating sudoku puzzles as an
inverse problem,” Mathematical contest in modeling, 2008.

[9] C. Chang, Z. Fan, and Y. Sun, “A Difficulty Metric and Puzzle
Generator for Sudoku,” UMAPJournal, p. 305, 2007.

[10] Y. Xue, B. Jiang, Y. Li, G. Yan, and H. Sun, “Sudoku puzzles
generating: from easy to evil,” Mathematics in practice and theory, vol.
21, p. 000, 2009.

[11] D. L. Poole and A. K. Mackworth, Artificial Intelligence: foundations of
computational agents. Cambridge University Press, 2010.

[12] S. J. Russell, P. Norvig, J. F. Canny, J. M. Malik, and D. D. Edwards,
Artificial intelligence: a modern approach, vol. 74. Prentice hall
Englewood Cliffs, 1995.

