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Abstract—It is well known, that any interpolating polynomial
p (x, y) on the vector space Pn,m of two-variable polynomials with
degree less than n in terms of x and less than m in terms of y, has
various representations that depends on the basis of Pn,m that we
select i.e. monomial, Newton and Lagrange basis e.t.c.. The aim of
this short note is twofold : a) to present transformations between the
coordinates of the polynomial p (x, y) in the aforementioned basis
and b) to present transformations between these bases.

Keywords—Bivariate interpolation polynomial, Polynomial basis,
Transformations.

I. INTRODUCTION

INTERPOLATION is the problem of approximating a

function f with another function p more usable, when its

values at distinct points are known. When the function p is

a polynomial we call the method polynomial interpolation. In

case where the interpolating polynomial p (x) belongs to the

vector space Pn of single variable polynomials with degree

less than n, p (x) has various representations that depends

on the basis of Pn that we select i.e. monomial, Newton

and Lagrange basis e.t.c.. We can use coordinates relative

to a basis to reveal the relationships between various forms

of the interpolating polynomial. [1] shows how to change

the form of the interpolating polynomial by transforming

coordinates via a change of basis matrix. Moreover, [2] shows

the transformations between the basis functions which map

a specific representation to another. Additional work on this

topic, from the numerical point of view, someone can find in

[3], [4], [5]. In this short note, we are trying to extend the

results of [1] and [2] to the case of two-variable interpolating

polynomials with specific upper bounds in each variable.

II. REPRESENTATIONS OF THE INTERPOLATING

TWO-VARIABLE POLYNOMIAL

Although the one-variable interpolation always has a

solution for given distinct points, the multivariate interpolation

problem through arbitrary given points may or may not have a

solution when the number of unknown polynomial coefficients

agree with the number of points. An interpolation problem is

defined to be poised if it has a unique solution. Unlike the

one-variable interpolation problem, the Hermite, Lagrange and

Newton-form multivariate interpolation problem is not always

poised. Let the set of interpolation points

S
(n,m)
Δ = {(xi, yj) | i = 0, 1, ..., n, j = 0, 1, ...,m}
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where xi �= xj and yi �= yj with function values on that

points given by fi,j := f(xi, yj). Consider also the matrix

F ∈ R
(n+1)×(m+1) that is constructed from such values i.e.

F =

⎡
⎢⎢⎢⎣
f0,0 f0,1 · · · f0,m
f1,0 f1,1 · · · f1,m

...
...

. . .
...

fn,0 fn,1 · · · fn,m

⎤
⎥⎥⎥⎦ (1)

It is well known [6], that for the specific selection of

points S
(n,m)
Δ there exists a unique two-variable polynomial

pn,m (x, y) on Pn,m which interpolates these values i.e.

pn,m (xi, yj) ≡ f(xi, yj) =: fi,j and thus the interpolation

problem is poised. This polynomial can be represented as a

matrix product i.e.

pn,m(x, y) = XT ·A · Y (2)

where X ∈ R[x](n+1)×1 (resp. Y ∈ R[y](m+1)×1) are

vectors that depends on the basis that we use (monomial,

Lagrange, Newton) in terms of x (resp. in terms of y) and

A ∈ R
(n+1)×(m+1) is a two-dimensional matrix with elements

the coefficients or otherwise the coordinates of the terms in the

respective two-variable basis. (2) can be written as a Kronecker

product i.e.

pn,m(x, y) =
(
Y T ⊗XT

) · vec(A) = (Y ⊗X)
T · vec(A)

= vec(A)T · (Y ⊗X) = vec(A)T · g(x, y) (3)

where (⊗) is the Kronecker product and vec(A) is the

vectorization of a matrix, namely, is a linear transformation

which converts the matrix into a column vector.

A. Monomial Basis

The interpolating polynomial pn,m (x, y) in terms of the

monomial basis is written as

pn,m(x, y) =
n∑

i=0

m∑
j=0

ai,jx
iyj = X

T ·A · Y (4)

where X =
[
1 x · · · xn

]T
, Y =

[
1 y · · · ym

]T
and A ∈ R

(n+1)×(m+1). By taking the relation pn,m (xi, yj) ≡
f(xi, yj) at all the interpolation points we can easily get the

following relation

F = Vx ·A · V T
y (5)
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where

Vx =

⎡
⎢⎢⎢⎢⎢⎣

1 x0 · · · xn
0

1 x1 · · · xn
1

...
...

. . .
...

1 xn−1 · · · xn
n−1

1 xn · · · xn
n

⎤
⎥⎥⎥⎥⎥⎦

Vy =

⎡
⎢⎢⎢⎢⎢⎣

1 y0 · · · ym0
1 y1 · · · ym1
...

...
. . .

...

1 ym−1 · · · ymm−1

1 ym · · · ymm

⎤
⎥⎥⎥⎥⎥⎦

with Vx (resp. Vy) the Vandermonde matrix with respect to x
(resp. to y). It is easily seen that the matrix A is unique and it

is easily computed in case where the Vandermonde matrices

are nonsingular or otherwise the interpolation points xi (resp.

yj) are different each other and the solution is given by

A = V −1
x · F · V −T

y

However, the computation of the inverse of a Vandermonde

matrix is ill conditioned and standard numerically stable

methods in general fail to accurately compute the entries of

the inverse [7], [8], [9]. For this reason we may split (5) into

the following system of Vandermonde equations i.e.

Vx ·A1 = P ; A · V T
y = A1

with unknowns A1, A and solve it by using LU or QR
decomposition. According to (3), the polynomial pn,m (x, y)
is written as

pn,m(x, y) = X
T ·A · Y = vec(A)T · (Y⊗ X)

= vec(A)T ·m(x, y)

where

m(x, y) = (Y⊗ X) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
x
x2

...

xn

y
xy
x2y

...

xny
...

ym

xym

..., xnym

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is the two-variable monomial basis and

vec(A) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0,0
a1,0

...

an,0
a0,1
a1,1

...

an,1
...a0,m
a1,m

...

an,m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Additionally, (5) can be rewritten as

vec(F ) = (Vy ⊗ Vx) · vec(A) (6)

Note that vec(A) are the coordinates of pn,m(x, y) in terms

of the monomial basis, whereas as we shall see below vec(F )
are the coordinates of pn,m(x, y) in terms of the Lagrange

basis.

Similar results with the monomial basis are also applied to

the Lagrange basis. The interpolating polynomial pn,m (x, y)
in terms of the Lagrange basis is written as

pn,m(x, y) =
n∑

i=0

m∑
j=0

fi,jLi,n(x)Lm,j(y) = X
T
L · F · YL (7)

where

X
T
L =

[
L0,n(x) L1,n(x) · · · Ln,n(x)

]

YL =
[
Lm,0(y) Lm,1(y) · · · Lm,m(y)

]T

with

Li,n(x) =
n∏

k=0
k �=i

(x− xk)

(xi − xk)
for i = 0, 1, .., n

Lm,j(y) =
m∏

k=0
k �=j

(y − yk)

(yj − yk)
for j = 0, 1, ...,m

and F defined in (1). For the Lagrange basis in two-variable

polynomials see [6], [10], [11] and the references therein.

According to (3), pn,m (x, y) can be written as

pn,m(x, y) = X
T
L · F · YL = vec(F )T · (YL ⊗ XL)

= vec(F )T · �(x, y)

B. Lagrange asis
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in terms of the Lagrange basis

�(x, y) = YL ⊗ XL =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L0,n(x) · Lm,0(y)
L1,n(x) · Lm,0(y)

...

Ln,n(x) · Lm,0(y)
L0,n(x) · Lm,1(y)
L1,n(x) · Lm,1(y)

...

Ln,n(x) · Lm,m(y)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C. Newton Basis

Another representation of pn,m (x, y) in terms of the

Newton basis [6], [12] is the following

pn,m(x, y) =

n∑
i=0

m∑
j=0

di,j

i∏
k=1

(x− xk−1)

j∏
�=1

(y − y�−1)

= X
T
N ·D · YN (8)

where
0∏

k=1

(x− xk−1) � 1 and

0∏
�=1

(y − y�−1) � 1

XN =

⎡
⎢⎢⎢⎢⎢⎣

1
x− x0

(x− x0) (x− x1)
...

(x− x0) (x− x1) · · · (x− xn−1)

⎤
⎥⎥⎥⎥⎥⎦

YN =

⎡
⎢⎢⎢⎢⎢⎣

1
y − y0

(y − y0) (y − y1)
...

(y − y0) (y − y1) · · · (y − ym−1)

⎤
⎥⎥⎥⎥⎥⎦

and D is the coefficient matrix of Newton basis given by

D =

⎡
⎢⎢⎢⎢⎢⎣

d0,0 d0,1 · · · d0,m−1 d0,m
d1,0 d1,1 · · · d1,m−1 d1,m

...
...

. . .
...

...

dn−1,0 dn−1,1 · · · dn−1,m−1 dn−1,m

dn,0 dn,1 · · · dn,m−1 dn,m

⎤
⎥⎥⎥⎥⎥⎦

By taking the relation pn,m (xi, yj) ≡ f(xi, yj) at all the

interpolation points we get

F = NT
x ·D ·Ny (9)

where

Nz =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1
0 z1 − z0 z2 − z0 · · · zn − z0
0 0 (z2 − z0) (z2 − z1) · · · (zn − z0) (zn − z1)

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 0 0 · · ·
n−1∏
j=0

(zn − zj)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and z ∈ {x, y}. The matrix D is unique since the matrices

Nx and Ny are nonsingular (xi �= xj and yi �= yj) and can

be easily computed by

D = N−T
x · F ·N−1

y

or similar to the monomial case by solving the system of
equations NT

x · D1 = P and D · Ny = D1 with unknowns
D1 and D respectively. An alternative way to compute the
coefficients of D is by means of the divided differences

d
(k)
i,j :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
(k−1)
i,j − d

(k−1)
i−1,j

xi − xi−k

if (j < k ∧ i ≥ k)

d
(k−1)
i,j − d

(k−1)
i,j−1

yj − yj−k

if (i < k ∧ j ≥ k)

d
(k−1)
i,j + d

(k−1)
i−1,j−1 − d

(k−1)
i−1,j − d

(k−1)
i,j−1

(xi − xi−k) (yj − yj−k)
if (i ≥ k ∧ j ≥ k)

d
(k−1)
i,j if (i < k ∧ j < k)

which are defined in [12]. The polynomial pn,m (x, y) is

written as

pn,m(x, y) = X
T
N ·D · YN = vec(D)T · (YN ⊗ XN )

= vec(D)T · n(x, y)
in terms of the Newton basis

n(x, y) = YN ⊗ XN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
x− x0

...
n−1∏
i=0

(x− xi)

(y − y0)
(y − y0) (x− x0)

...
n−1∏
i=0

(x− xi)
m−1∏
j=0

(y − yi)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

By using (9), we conclude that the coordinates vec(D) of

pn,m (x, y) in terms of the Newton basis are connected with

the respective coordinates vec(F ) in terms of the Lagrange

basis by

vec(F ) = (Ny ⊗Nx)
T · vec(D) (10)

III. CHANGE OF BASIS IN POLYNOMIAL INTERPOLATION

As we show in the previous section, the interpolating

polynomial pn,m(x, y) can be represented in one of the

following ways

pn,m(x, y) = X
T ·A · Y

= X
T
L · F · YL

= X
T
N ·D · YN (11)

or equivalently

pn,m(x, y) = vec(A)T ·m(x, y)

= vec(F )T · �(x, y)
= vec(D)T · n(x, y) (12)

From (12) we have

vec(A)T ·m(x, y)=vec(F )T · �(x, y) (6)
=⇒

vec(A)T ·m(x, y)= ((Vy ⊗ Vx) · vec(A))T · �(x, y) =⇒
vec(A)T ·m(x, y)=vec(A)T · (Vy ⊗ Vx)

T · �(x, y) =⇒
m(x, y) = (Vy ⊗ Vx)

T · �(x, y) =⇒
m(x, y) =

(
V T
y ⊗ V T

x

) · �(x, y) = V T
xy · �(x, y) (13)
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where V T
xy is the transforming matrix between the coordinates

of pn,m(x, y) in monomial and Lagrange base.

Similarly, from (12) we have

vec(F )T · �(x, y) = vec(D)T · n(x, y) (10)
=⇒(

(Ny ⊗Nx)
T · vec(D)

)T

· �(x, y) = vec(D)T · n(x, y) =⇒
n(x, y) = (Ny ⊗Nx) · �(x, y) = Nxy · �(x, y) (14)

where Nxy is the transforming matrix between the coordinates

of pn,m(x, y) in Newton and Lagrange base.

Since, the i-th element of the monomial base m(x, y) has

the same degree with the respective element in the Newton

base n(x, y) there exist a lower triangular matrix L such that

L · n(x, y) = m(x, y)

From (13) and (14) we get

m(x, y) = V T
xy · �(x, y)

n(x, y) = Nxy · �(x, y)
}

=⇒
m(x, y) = V T

xy ·N−1
xy · n(x, y) ≡ L · n(x, y)

and therefore L = V T
xy ·N−1

xy or equivalently

V T
xy = L ·Nxy (15)

Since, Nxy is upper triangular and L is lower triangular, (15)

is a LU -decomposition of V T
xy . Note also that

L = V T
xy ·N−1

xy

= (Vy ⊗ Vx)
T · (Ny ⊗Nx)

−1

=
(
V T
y ⊗ V T

x

) · (N−1
y ⊗N−1

x

)
=

(
V T
y ·N−1

y

)⊗ (
V T
x ·N−1

x

)
(16)

According to [2]

Ly = V T
y N−1

y and Lx = V T
x N−1

x (17)

where

Lz :=

⎡
⎢⎢⎢⎢⎣

1
H1(z0) 1
H2(z0) H1(z0, z1) 1

...
...

. . .
. . .

Hn(z0) Hn−1(z0, z1) · · · H1(x0, . . . , zn−1) 1

⎤
⎥⎥⎥⎥⎦

with Hp(z0, . . . , zk) be the sum of all homogeneous products

of degree p of the variables z0, . . . , zk and z ∈ {x, y}. From

(16) and (17) we conclude that

L = Ly ⊗ Lx

Since the diagonal elements of L are equal to 1, (15) is the

standard LU -decomposition of V T
xy. The above results gives

rise to the following Theorem.

Theorem 1. Let V T
xy = Lxy · Nxy be the standard

LU-decomposition of the transposed Kronecker product of the
matrices Vy, Vx i.e. Vxy = Vy⊗Vx. Then, Lxy = Ly⊗Lx maps
the Newton polynomials to the monomials and Nxy = Ny⊗Nx

maps the Lagrange polynomials to the Newton polynomials.

Theorem 1, extends the results presented in [2] for the

one variable case. All the transformations described above are

summarized in Table I.

TABLE I
TRANSFORMATION MATRICES

Map Basis transform Coefficients transform

Lagrange to Monomial m(x, y) = V T
xy · �(x, y) Vx ·A · V T

y = F

Lagrange to Newton n(x, y) = Nxy · �(x, y) NT
x ·D ·Ny = F

Newton to Monomial m(x, y) = Lxy · n(x, y) LT
x ·A · Ly = D

IV. CONCLUSION

The first result that comes directly from this short note is

that in case where we select interpolation points that belongs

to Sn,m
Δ the interpolating polynomial problem is posed, since

in that case the transforming matrices that we use become

nonsingular and a unique solution of the coordinate vectors

exists. The second result, is that any interpolating polynomial

is easily expressed in the Lagrange basis, since in that case

the only we need are the values of the function that we

want to interpolate. Then, by using the transformations that

we have presented in this work we can always express the

interpolating polynomial in other bases like the monomial

and the Newton base. Finally, transformations between the

monomial, Lagrange and Newton bases have been provided

and the results in [1] and [2] have been extended to the

bivariate polynomials.
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