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 
Abstract—Most flexible rotors can be considered as beam-like 

structures. In many cases, rotors are modeled as one-dimensional 
bodies, made basically of beam-like shafts with rigid bodies attached 
to them. This approach is typical of rotor dynamics, both analytical 
and numerical, and several rotor dynamic codes, based on the finite 
element method, follow this trend. In this paper, a finite element 
model based on Timoshenko beam elements is utilized to analyze the 
lateral dynamic behavior of a certain rotor-bearing system in 
operating conditions.  
 

Keywords—Finite element method, Operational deflection shape, 
Timoshenko beam elements, Unbalance response. 

I. INTRODUCTION 

OTATING machines are extensively used in engineering 
applications. The demand for more powerful rotating 

machines has led to higher operating speeds resulting in the 
need for accurate prediction of the dynamic behavior of rotors. 
It is vital to precisely determine the dynamic characteristics of 
rotors in the design and development stages of engines in 
order to avoid resonant conditions. Thus, much research has 
been carried out in the field of rotor dynamics. 

Chiu and Chen [1] analytically studied the shaft-torsion and 
blade-bending coupling vibrations in a multi-disk rotor 
system. They obtained the natural frequencies and mode 
shapes of the system for one to three-disk cases. Whalley and 
Abdul-Ameer [2] calculated the critical speed and rotational 
frequency of shaft-rotor systems where the shaft profile is 
contoured. Lazarus et al. [3] suggested a 3D finite element 
method based on the modal theory in order to analyze linear 
periodically time-varying systems. They also performed 
experimental investigations on a test rig composed of an 
asymmetric rotor running on non-isotropic supports. Al-
bedoor [4] presented a dynamic model for a typical elastic 
blade attached to a disk driven by a shaft which is flexible in 
torsion. He employed the Lagrangian approach in conjunction 
with the finite element method in deriving the equations of 
motion, within the assumption of small deformation theory. 
Harsha et al. [5] investigated the effect of the speed of 
balanced rotor on the nonlinear vibrations of the rotor. They 
used a new reduction method to increase the numerical 
stability. 
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Dynamic analysis of multi-stage cyclic structures was 
reported by Laxalde et al. [6], [7], Laxalde and Pierre [8] and 
Chatelet et al. [9]. Chatelet et al. [9] studied the modeling 
approaches for dynamic analyses of the rotating assemblies of 
turbo machines. They compared the results obtained from the 
3D finite element modeling of two case studies with those 
obtained from a program named ROTORINSA which is based 
on beam type 1D finite elements. 

Jalali et al. [10] predicted the dynamic behavior of a rotor-
bearing system with a 1D finite element model, a 3D finite 
element model and experimental modal test. They obtained 
natural frequencies and mode shapes of the rotor at rest under 
free-free boundary condition using beam model, 3D FE model 
and modal test. Also, they performed a full rotor dynamic 
analysis for the rotor by the use of both FE models. Jeon et al. 
[11] performed a rotor dynamic analysis for a high thrust class 
liquid rocket engine turbo pump considering the dynamic 
force characteristics of ball bearings and pump impeller seals. 
Yu et al. [12] proposed a finite element model using a 3-node 
spatial element based on Timoshenko beam theory which 
provided by ANSYS package for modal analysis of 
crankshaft. They obtained the natural frequencies and mode 
shapes of the crankshaft with the proposed model. 

In this paper, lateral dynamics of a rotor with certain 
geometrical and mechanical properties is analyzed using a 
Timoshenko beam finite element model. The bending critical 
speed, the Campbell diagram, the operational deflection 
shapes at the critical speeds, the mode shapes of the rotor in 
rotating condition and the unbalance response of the rotor to 
an imbalance are the results obtained from the beam FE 
model. The calculated critical speed is far from the operational 
speed range of the rotor, thus, the rotor would not experience 
resonance.  

II. THEORETICAL FORMULATION 

The equations describing the motion of even a simple rigid 
body with mass m and principal moments of inertia Jஞ, J஗, and 
J஖ referred to a reference frame ξηζ fixed to it in the three 
dimensional space are actually complex, particularly when 
dealing with the rotational degrees of freedom, and they do not 
allow the direct use of any linear model. With reference to an 
inertial frame xyz and a rotating frame ξηζ fixed to the rigid 
body and coinciding with its principal axes of inertia, the six 

equations of motion under the action of the generic force FሬԦ 

and moment MሬሬሬԦ can be written in the form [13]. 
 

Mxሷ ൌ F୶ , Mஞ ൌ Ωሶ ஞJஞ ൅ Ω஖Ω஗൫J஖ െ J஗൯ (1) 
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myሷ ൌ F୷   , M஗ ൌ Ωሶ ஗J஗ ൅ ΩஞΩ஖൫Jஞ െ J஖൯ 
mzሷ ൌ F୸   , M஖ ൌ Ωሶ ஖J஖ ൅ ΩஞΩ஗൫J஗ െ Jஞ൯ 
 

The three equations for the rotational degrees of freedom, 
which are the well-known Euler equations, are clearly 

nonlinear in the angular velocity ΩሬሬԦ.  
However, a number of simplifications allow a linearized 

model to be obtained that retains the basic features of the 
dynamic behavior of rotating systems and allow us to describe 
it correctly, both in a qualitative and a quantitative manner. 

The two assumptions of small unbalance and small 
displacements allow the linearization of the equations of 
motion in a way that is consistent with what is usually done in 
the dynamics of structures. However, even in the case of the 
discretized model of a linear rotor that is axially symmetrical 
about its spin axis and rotates at a constant spin speed Ω, the 
linearized equation of motion (dynamic equilibrium equation) 
is of the following general form [13]: 

 
ሷܙۻ ሺtሻ ൅ ሺ۱ ൅ ۵ሻܙሶ ሺtሻ ൅ ሺ۹ ൅ ۶ሻܙሺtሻ ൌ  ሺtሻ (2)܎

 
where ܙሺtሻ is a vector containing the generalized coordinates, 
referred to an inertial frame, ۻ is the symmetric mass matrix, 
۱ is the symmetric damping matrix, ۵ is the skew-symmetric 
gyroscopic matrix, ۹ is the symmetric stiffness matrix, ۶ is 
the skew-symmetric circulatory matrix, and ܎ሺtሻ is a time-
dependent vector in which all forcing functions are listed. 

When dealing with rotating systems, one of the forcing 
functions is usually that caused by the residual unbalance that, 
although small, cannot nevertheless be neglected. Unbalance 
forces are harmonic functions of time, with an amplitude 
proportional to Ωଶ and a frequency equal to Ω. 

The gyroscopic matrix contains inertial and hence 
conservative terms that, in the case of rotor dynamics, are 
strictly linked with the gyroscopic moments acting on the 
rotating parts of the machine. If the equation is written with 
reference to a non-inertial frame, terms linked with Coriolis 
acceleration also are present in the gyroscopic matrix. The 
circulatory matrix contains non-conservative terms linked with 
the internal damping of rotating elements and, when using a 
linearized model for fluid bearings or seals, with the damping 
of the fluid film surrounding the rotor. In this paper, the 
circulatory matrix is equal to zero because damping is 
neglected in the models.  

Equation (2) is that of a non-natural, circulatory system and 
hence differs from the typical equations encountered in 
dynamics of structures, where all matrices are symmetric. It 
must be noted that in rotor dynamics, the gyroscopic and 
circulatory matrices ۵ and ۶ are proportional to the spin speed 
Ω, and when Ω tends to zero, the skew-symmetric terms 
vanish and the equation reduces to that of a still structure.  

Also, if ሺtሻ ൌ 0 as well as Ω ൌ 0, (2) can be used for modal 
analysis of the system in non-rotating situation. In addition, 
the damping and stiffness matrices ۱ and ۹ may depend on the 
spin speed, often on its square Ωଶ, and ۶ can be a more 
complex function of Ω. 

Most flexible rotors can be considered as beam-like 
structures. Under fairly wide assumptions, the lateral behavior 
of a beam can be considered as uncoupled from its axial and 
torsional behavior. The same uncoupling is usually assumed in 
rotor dynamics, with the difference that no further uncoupling 
between bending in the principal planes is possible. When the 
flexural behavior can be uncoupled from the axial and 
torsional ones, (2) holds for the first one, and the torsional and 
axial equations of motion are usually those of a natural, non-
circulatory system [13]. 

In this paper, the matrices of the beam and solid elements 
should be calculated from the formulation of the finite element 
method and the matrices in (2) should be obtained by 
assembling the global matrices for the whole finite element 
model [10]-[13]. When the natural frequencies of the rotor at 
various rotor speeds are calculated, the Campbell diagram can 
be plotted. The natural frequencies of the rotor at various rotor 
speeds can be calculated by solving the eigenvalue problem 
form of (2). In addition, The unbalance response of the rotor 
can be obtained by obtaining the solution of (2) when fሺtሻ is a 
harmonic function of time, with an amplitude proportional to 
Ωଶ and a frequency equal to Ω. 

III. FINITE ELEMENT MODEL 

Fig. 1 shows the rotor and the model of the rotor with 
Timoshenko beam elements. The FE model consists of 22 
Timoshenko beam elements.  

 

 

Fig. 1 Model of the system for dynamic analysis  
 
The turbine’s disk is modeled using two large beams with 

the density of zero. A concentrated mass in node 4 is used to 
model the turbine’s inertial properties. The radial 
compressor’s disk is modeled using two massless beams and a 
concentrated mass (node 21). Two springs are used to model 
the bearings in nodes 6 and 18. Every node used in the system 
has 4 degrees of freedom. These include translations in the 
nodal directions and rotations about nodal axes. Table I 
presents the mechanical and geometric properties of the 
elements and Table II indicates the characteristics of 
concentrated masses. 
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TABLE I 
MECHANICAL AND GEOMETRIC PROPERTIES OF THE ELEMENTS 

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 
Element 
Number 

6.5 30 60 5.5 10 13.6 15 16.5 18 18 18 18 17 15.8 14.4 13.2 12 12 53 53 7 7 d୭ሺmmሻ 

8 11.310.18 5.7 6.9 8.4 8.4 10 10 10 10 7.2 6.9 6.9 6.8 6.1 5 5.4 5.3 7.1 7.1 l ሺmmሻ 

27700 0 2770 2770 2770 2770 27702770277027702770277027702770 2770 2770 27700 0 2770 2770 ρ ሺkg
mଷൗ ሻ

72 96 96 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 200 200 72 72 E ሺGpaሻ 

 
TABLE II 

CHARACTERISTICS OF CONCENTRATED MASSES 
Mass number 1 2 

Node number 4 21 

݉ ሺgሻ 74.79 84.42 

௣ ሺkgmଶሻ 2.61ܫ ൈ 10ିହ 1.91 ൈ 10ିହ 

ௗ ሺkgmଶሻ 1.32ܫ ൈ 10ିହ 1.28 ൈ 10ିହ 

IV. RESULTS 

In order to investigate the dynamic behavior of the rotor at 
operational speeds, critical speeds and the Campbell diagram 
are obtained. The numerical analyses are performed 
considering speeds ranging from 0 to 150000 rpm. The 
Campbell diagram is shown in Fig. 2. 

 

 

Fig. 2 Campbell diagram  
 
The speeds which are the coincidence of the shaft rotating 

speed and the rotating natural frequencies of the rotor are 
25041rpm, 45894 rpm and 79876 rpm which are from the first 
backward whirling, first forward whirling and second 
backward whirling, respectively. An imbalance of 
0.07479݁ െ 6 kg m at the gravity center of the turbine is also 
considered. The unbalance response of the rotor evaluated at 
nodes is shown in Fig. 3. Also, the operational deflection 
shapes (ODS) at three mentioned speeds are obtained (Figs. 4-
6). As seen in the figures, the deflection at the second speed, 
which is from forward whirl, is more than the others, which 
are from backward whirl modes. By the operational deflection 
shapes and the unbalance response, it is clear that the real 
critical speed of the rotor is the speed corresponding to the 
intersection of the ω ൌ Ω line with the forward whirl curve 
not the backward whirl curves. 

 

Fig. 3 Unbalance response 
 
The speed in which response of the rotor peaks in Fig. 3, is 

the bending critical speed because the natural frequency of the 
rotor coincides with the excitation frequency. 

 

 

Fig. 4 The operational deflection shape at 1BW 
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Fig. 5 The operational deflection shape at 1FW 
 

 

Fig. 6 The operational deflection shape at 2BW 
 
It is obvious from Figs. 4-6 that displacement peaks at the 

critical speed point which is obtained from the Campbell 
diagram and unbalance response. 

The mode shapes corresponding to these three speeds are 
also obtained. The mode shape of the rotor at the speed 
corresponding to 1BW, 1FW and 2BW are shown in Figs. 7-9. 

The Campbell diagram of the rotor using a 3D finite 
element model is also obtained in [10] and good agreement 
between the results of the two FE models shows the accuracy 
of numerical analyses. 

 

 

Fig. 7 Mode shape corresponding to 1BW 
 

 

Fig. 8 Mode shape corresponding to 1FW 
 

 

Fig. 9 Mode shape corresponding to 2BW 
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V. CONCLUSION 

Rotors in general have complex geometries which make 
analytical modeling of the rotor to determine its dynamic 
behavior difficult. For this purpose, strong approaches such as 
finite element method are used to analyze the system 
dynamics. In this paper, the lateral dynamics of a certain rotor-
bearing system was investigated using a finite element model 
based on Timoshenko beam elements. The Campbell diagram, 
operational deflection shapes, unbalance response of the rotor 
to a center of mass imbalance at the turbine and the mode 
shapes corresponding to speeds which were coincidences of 
the shaft rotating speed and the rotating natural frequencies in 
Campbell diagram were depicted. By the operational 
deflection shapes and the unbalance response, it was proven 
that the real critical speed of the rotor was the speed 
corresponding to the intersection of the ω ൌ Ω line with the 
forward whirl curve not the backward whirl curves. 
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