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 
Abstract—Turbulent flow in complex geometries receives 

considerable attention due to its importance in many engineering 
applications. It has been the subject of interest for many researchers. 
Some of these interests include the design of storm water channels. 
The design of these channels requires testing through physical 
models. The main practical limitation of physical models is the so 
called “scale effect”, that is, the fact that in many cases only primary 
physical mechanisms can be correctly represented, while secondary 
mechanisms are often distorted. These observations form the basis of 
our study, which centered on problems associated with the design of 
storm water channels near the Dead Sea, in Israel. To help reach a 
final design decision we used different physical models. Our research 
showed good coincidence with the results of laboratory tests and 
theoretical calculations, and allowed us to study different effects of 
fluid flow in an open channel. We determined that problems of this 
nature cannot be solved only by means of theoretical calculation and 
computer simulation. This study demonstrates the use of physical 
models to help resolve very complicated problems of fluid flow 
through baffles and similar structures. The study applies these models 
and observations to different construction and multiphase water 
flows, among them, those that include sand and stone particles, a 
significant attempt to bring to the testing laboratory a closer 
association with reality.  
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I. INTRODUCTION 

IGH-VELOCITY channels are flood control channels 
that have certain characteristics. They are typically lined 

and are designed to discharge supercritical flow through 
specific reaches. Designers of these channels are primarily 
concerned with the depth of flow for the designed discharge. 
Depth determination is complicated by side inflows and 
boundary features such as contractions, expansions, curves, 
and obstructions to the flow, such as bridge piers. These 
boundary features in a supercritical channel cause flow 
disturbances that can result in a significant increase in local 
flow depth [1]. Hydraulic structures like canals and bridges 
are very expensive from the standpoints of construction and 
maintenance. Because it is often very difficult for design or 
field engineers to understand the proper functioning of such 
structures during operation, it therefore becomes essential to 
test models of such structures hydraulically, in the laboratory, 
before their actual construction [2]. Physical modeling is the 
specific branch of scientific research that enables observation 
of complex phenomena and processes that take place at and 
upon actual constructions, albeit that these occur on usually 
models, including their interdependences.  
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Physical hydraulic models are commonly used during 
design stages to optimize a structure and to ensure its safe 
operation. Models have another important role to assist non-
engineering people during the decision-making process. A 
hydraulic model may help decision-makers visualize and 
picture the flow field, giving them information that will help 
them select a suitable design. In civil engineering applications, 
a physical hydraulic model is usually a smaller-size 
representation of the prototype. In particular, for free surface 
flows the gravitational driving forces–the primary 
mechanism–must be correctly scaled in relation to inertia 
(Froude scaling) [3]. A distorted model is a physical model in 
which the geometric scale is different between each main 
direction. For example, channel models are usually designed 
with a larger scaling ratio in the horizontal directions than in 
the vertical direction: X > Z. The scale distortion does not 
significantly distort the flow pattern and it usually gives good 
results [4]. Froude-scaled modeling is based on the concept 
that complete similarity between model and prototype is 
achieved when the model displays geometric, kinematic, and 
dynamic similitude. Geometric similitude implies that all 
homologous geometric ratios are equal. Kinematic similitude 
implies that the ratios of homologous particle path lengths to 
homologous travel times are all equal, i.e., that flow patterns 
in the model parallel those of the prototype. Dynamic 
similitude implies that all homologous forces, work 
magnitudes, and power rates are in the same proportion. Water 
and sediment movement in a channel is caused by energy 
differentials and is resisted by shear stresses within the water, 
between water and sediment, and along the channel 
boundaries. Their dynamic balance is controlled by the shape 
and roughness of the channel boundary and material properties 
such as density, viscosity, and surface tension [5]. Based on 
the above-mentioned criteria, the scales of the model used in 
this study were 1:100 in the horizontal directions and 1:50 in 
the vertical direction. Setting the model and prototype the 
Froude number equal, results relations between the 
dimensions and hydraulic. A model can be calibrated to 
simulate, with approximate accuracy. In this research project 
we studied problems of storm water multiphase flow through 
an open channel that included baffles. The storm water 
channel model we used was built in the hydraulics laboratory 
of SCE - Shamoon College of Engineering, in Israel. The 
objectives of the present study were: to construct a physically 
distorted scale model of a specific storm water channel, to 
introduce designed baffle elements into the channel, to study 
the behavior of multiphase water flow with inclusion of sand 
and stone particles, and to compare the results of the model 
study with those of the prototype.  
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dimensions and hydraulic characteristics are as shown in 
Table I. 

 
TABLE I 

SCALE RELATION FOR COMPLETE SIMULATION 

Characteristics Dimension 

length X, Z 

area X · Z 

volume Xଶ · Z 

velocity Zଵ/ଶ 
discharge Zଷ/ଶ · X 

time X/Zଵ/ଶ 
force ρ · Z · Xଶ 

pressure ρ · Z 

manning coefficient Zଶ/ଷ/Xଵ/ଶ 

III. EXPERIMENTAL RESULTS 

The experimental apparatus allows us to explore different 
conditions of the flow-through channel. Our goal was to use 
baffles in a storm water channel. We studied this model for 
two cases, one with and one without baffles. The design 
utilized a water flow rate through the bridge at 400 m3/s. We 
also tested the possibility of a flow rated up to 600 m3/s of 
water through the bridge. 

 

 

Fig. 4 Velocity of the water in the experiment versus the length of the 
channel, with baffles, for different discharges 

 
The results of the measurement of the velocity of the water 

in the experiment versus the length of the channel, with 
baffles, for different discharges are presented in Fig. 4. It is 
evident that the velocity of the water depends on the flow rate 
and length of the channel. The experiments showed that the 
velocity of the water was greatly reduced when it was moving 
through the baffles. This can be seen in the Fig. 4, when the 
velocity of water through the bridge does not exceed 8 m/s.  
 

 

Fig. 5 Velocity of the water in the experiment versus the length of the 
channel, both with and without baffles (flow rate 400 m3/s) 

 
Fig. 5 represents the results of the measurements of the 

velocity of the water in the experiment versus the length of the 
channel, both with and without baffles (flow rate 400 m3/s). 
The line graphs in Fig. 5 show that baffles significantly reduce 
the velocity of water flow through the bridge. 

 

Fig. 6 Water depth in the experiment versus the length of the 
channel, with baffles for different discharges 

 
Fig. 6 shows the height of water flowing through the bridge. 

The experimental results showed that water depth does not 
exceed the height of 1.4 m, when the design flow flowing via 
the bridge. Studies have shown that the structure of the bridge 
allows pass the flow to 600 m3/s.  

Comparison (Fig. 7) of the theoretical calculation with 
experimental data, showing that the difference between the 
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