
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:8, 2014

1483


Abstract—Service Oriented Architecture (SOA) allows modeling

of dynamic interaction between incongruous providers, which
enables governing the development of complex applications.
However, implementation of SOA comes with some challenges,
including its adaptability and robustness. Dynamism is inherent to the
nature of service based applications and of their running
environment. These factors lead to necessity for dynamic adaptation.
In this paper we try to describe basics and main structure of SOA
adaptation process with a conceptual view to this issue. In this survey
we will review the relevant adaptation approaches. This paper allows
studying how different approaches deal with service oriented
architecture adaptation life-cycle and provides basic guidelines for
their analysis, evaluation and comparison.

Keywords—Context-aware, Dynamic Adaptation, Quality of
Services, Service Oriented Architecture, Service Based Application.

I. INTRODUCTION

LONG with the appearance and rapid improvement of
SOA (Service Oriented Architecture), it has been one of

the most typical platforms and the most promising computing
paradigm in the internet era [4]. Applications are more and
more build as a composition of services running on large
scale, dynamic and heterogeneous environments. Software
systems dealing with distributed applications in changing
environment normally require re-configuration and
troubleshooting to continue operation in all conditions.
Changes during operation may stem from software system’s
self like failures or context, therefore detecting significant
changes, deciding how to react and finally acting to execute
decisions, are essential to improve lifetime of systems. In this
setting, adaptability becomes a key feature of service as it
provides a way for an application to continuously change itself
in order to satisfy new requirements [1]. By self, we mean the
whole body of the software, mostly implemented in several
layers, while the context encompasses everything in the
operating environment that affects the system’s properties and
its behavior [3]. Dynamic loosely bound systems make the
management of large-scale distributed applications

S. Paktinat is studying with the Computer Engineering Department,

Islamic Azad University-South Tehran Branch, Tehran, Iran (e-mail:
sahbap67@gmail.com).

A. Salajegheh is with the Department of Computer, Islamic Azad
University-South Tehran Branch, Tehran, Iran (e-mail: salajeghe@iau.ac.ir,
afshinsala@yahoo.com).

M. A. Seyyedi is with the Computer Engineering Department, Islamic
Azad University-South Tehran Branch, Tehran, Iran (e-mail:
ma_seyyedi@azad.ac.ir).

Y. Rastegari is with the Electrical Engineering and Computer Engineering
Department, Shahid Beheshti University, Tehran, Iran (e-mail:
rastegari.yousef@gmail.com, y_rastegari@sbu.ac.ir).

increasingly complex. Adaptation are necessary to keep the
system within well-defined boundaries such as desired
behavior because there are critical dependencies between
SBAs (Service Based Applications) themselves and the
services they are exploiting, which could change without
notice, therefore SBAs have to be able to adapt to these
unforeseen changes. According to the [9] adaptive service
based software systems have the capability of monitoring the
changing system status, analyzing and controlling tradeoff
among multiple QoS features, and adapting its service
configuration to satisfy multiple QoS requirement
simultaneously. In the other word adaptation can be defined as
a process of modifying SBAs in order to satisfy new
requirement and to fit new situation dictated by the
environment on the basis of adaptation strategies designed by
the system integrator [1]. To advance the systems adaptation
and management capabilities, existence of methods and tools
is necessary to assess and possibly certify adaptation
properties, not only at design time but also at run time. In this
paper we try to describe basics and main structure of adaptable
service base software systems with a conceptual view to this
issue. To understand better these phenomena, in this survey
we will study and review the relevant adaptation approaches.
The remainder of this paper is organized as follow. Section II
presents a classification of the principles related to the
problem of service adaptation. Section III presents a review of
existing works in the area. Section IV presents analysis of
selected adaptive systems based on the classification presented
in Section II. Finally, Section V concludes the paper.

II. ADAPTIVE SERVICE-BASED SYSTEM PRINCIPLES

In this section we propose a review of adaptation concepts.
Adaptation process starts with some triggers which notice that
some changes have been happened in the system itself or in
the environment. In [1] these triggers are classified as:
changes in the infrastructural layer of the application due to
quality of service changes; changes of the application context
and location; changes of the user types, preferences, and
constraints that require application customization and
personalization as a means to adapt the application behavior to
the particular user; changes in the functionalities provided by
the component services that require modifying the way in
which services are composed and coordinated; and changes in
the way the service is being used and managed by its
consumer, which leads to changes in the application
requirements. Changes may arise from software system’ self
(internal causes) or context (any information that can be used
to characterize the situation of an entity).

Sahba Paktinat, Afshin Salajeghe, Mir Ali Seyyedi, Yousef Rastegari

Service-Based Application Adaptation Strategies:
A Survey

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:8, 2014

1484

When one or some of these triggers change system’s
conditions, adaptive system have to be able to indicate and
analyze them. Analyze of changes determine the adaptation
strategies which define the possible ways to achieve those
requirements given the current situation. The adaptation
process is organized according to the IBM’s MAPE-K
(Monitor, Analyze, Plan, Execute and Knowledge) reference
model of an autonomic system [11]. Monitoring is the
observation function to detect changes, analyze to find
adaptation strategy as a solution for adaptation goals, planning
to compute a schedule of actions to satisfy adaptation strategy,
and finally execution to perform those actions. Fig. 1

illustrates the adaptation taxonomy, which classifies
adaptation concepts by answering to the following questions:
“Why?”, “When?”, “What?”, “Where?”, “How?”, and “Who”.
“Why?” describes the motivation of adaptation, “What?”
clarifies the subject of monitoring and respectively the way it
is described, temporal aspect of changes are addressed by
“When?” questions, “Where?” explains the location of
problem that needs to be resolved by adaptation, “How?”
represents the way adaptation approach is delivered, and
finally “Who?” addresses the level of automation and human
involvement in self-adaptive software.

Fig. 1 Adaptation taxonomy

The taxonomy is an extension of the model proposed in S-
Cube. The parts showed in red are perceived from concepts
recommended in [3] and [11]. Adaptive properties are often

known as self-* properties. In [3] these properties are
categorized in three levels. First level which is mentioned as
general level contains global properties of self-adaptive

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:8, 2014

1485

software consists of self-managing, self-governing, self-
maintenance, self-control, self-evaluating, and self-organizing.
Second level is introduced as major level, which covers the
answers of “why?” dimension in Fig. 1. The properties of this
level are: self-configuration, self-repairing, self-optimizing,
and self-protection. Finally the last level or primitive level,
consist of self-awareness, which is based on self-monitoring,
self-situated, and context awareness, which refers to
operational environment. Due to the different principles of
adaptation, comparison of related works becoming as more as
complex and unsuitable, since we need methods and tools to
assess certify adaptation properties. Some works have tried to
address the evaluation of self-adaptive software. Villegas [2]
proposes a framework for evaluating quality-driven self-
adaptive software system. This framework is based on a set of
adaptation properties derived from control theory properties.
This framework defines a mapping between adaptation
properties and software quality attributes. Then, it identifies a
set of metrics used to evaluate software quality attributes. In
our paper we chose this framework to evaluate selected
adaptation approaches.

III. RELATED WORKS

Because of the dynamic and predictable nature of business
application and distributed systems, delivering quality services
to meet user demands is a big challenge. Quality management
is a crucial element as it ensures that systems meet their
requirements with respect to specific performance metrics.
QoS is defined [4] as a measure of the fulfillment of the
service agreed upon. QoS is a broad concept that encompasses
multiple nonfunctional properties, or dimensions, some of
which can be service specific and others more general such as
availability, responsiveness and reliability.

Many researchers have defined many kinds of QoS
attributes and models in the past few years. Choi’s work
represents the relationship of unique features of services and
some quality attributes [10]. This paper first analyzes the
service quality requirements and defines quality attributes of
the quality model. Then defines metrics for each quality
attributes. As already stated QoS management, is a main
trigger for adaptation. Reconfiguration is one the most
common strategies to address QoS management. For example,
Li et al [4], presents an approach for QoS driven dynamic
reconfiguration of the SOA based software. This approach can
reconfigure SOA-based software to comply with new QoS
constraints by replacing its individual or multiple component
services. This approach, calculates the QoS attributes based on
four service composition structures, who are considered as:
Sequence structure, Parallel structure, Selection structure, and
Loop structure. According to these composition structures,
when the new QoS constraints are given, this approach tries to
replace one or multiple services to comply with it.
Replacement is done based on services critical factor. Critical
factor is introduced to show the contribution of the QoS of
each component service from the same software to the QoS of
the software. This approach is based on modifying the current
configuration parameters of the system. According to the Fig.

1, this approach is an adaptive adaptation that its necessity is
to accommodate to the changes in the context.

Services are inherently dynamic and cannot be assumed to
be always stable, thus in the case of service composition the
failure of a single service leads to error propagation in the
other service involved, and therefore the failure of the system.
In these cases we need to remove the faulty behavior of a
system by replacing it by a new version that provides the same
functionality. This kind of adaptation is named as corrective
adaptation in Fig. 1 and most of the time is a response to the
self-healing property. Some of research activities have been
done in this area. Lin [5] proposes an approach for replacing
faulty services and some of their neighboring services to
maintain the original end-to-end QoS constraint. It uses an
iterative algorithm to search for a reconfiguration region that
has replaceable services to meet the original QoS constraint
for the region. In this approach, reconfiguration region may be
replaced using one-to-one, one-to-many, or many-to-one
service mapping. In this model, every service is classified by
their functionalities into service classes. Every service in a
service class has the same functionality, input and output
types, but may deliver a different QoS. The reconfiguration
strategy is based on the three process structure, contains;
parallel, conditional and loop, which are same as [4]. The
approach has implemented the adaptation manager in the, an
SOA middleware, the intelligent Accountability Middleware
Architecture (Llama). On the other word the study reported in
this paper is on the part of service process reconfiguration
after faulty services are identified.

Another popular adaptation strategy is re-compose, which
means modifying the way services are composed. A service
composition combines several services together to achieve a
certain goal [1]. Most of the time the related works of re-
composition are along with service selection/recommendation
context. For example in [7] Madkour et al. proposes a three-
phase adaptation approach. The method firstly selects the
suitable services to the current context and then recommends
them to the adaptation process, in the adaptation phase
performs adaptation by using fuzzy sets represented with
linguistic variables and memberships degrees to define the
user’s context and the rules for adopting the policies of
implementing a service. Finally it deals with the complex
requirements of the user by the composition of the obtained
adaptable atomic services. In the approach, adapting is
selecting the best policy for service implementing and
recursively new service (re-compose services) to new
utilization context. The adaptation method in [8] describes
fuzzy based service adaptation middleware (FSAM) that can
be used in context-aware middleware. The method formulates
the service adaptation process by using fuzzy linguistic
variables and memberships degree to define the context
situation, similar as previous approach. The method, proposes
three fitness functions to calculate the fitness degree for each
policy and the current context situation. The decision for
service adaptation is achieved by selecting the policy with the
largest fitness degree.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:8, 2014

1486

IV. ANALYSIS OF ADAPTATION APPROACHES

To leverage the capability of self-adaptive systems, it is
necessary to validate adaptation mechanisms to ensure that
self-adaptive software systems function properly and users can
trust them [2]. After reviewing adaptation principles and
introducing some related works, in this section we will
compare and analyze these works according to the model

which proposed in [2]. The model defines a mapping between
adaptation properties and software quality attributes, and then
it identifies a set of metrics used to evaluate software quality
attributes. The analyze process results of this model are
summarized in Table I, and we present the characterization of
our selected adaptive approaches based on this table.

TABLE I
APPLYING THE CHARACTERIZATION MODEL TO SELECTED ADAPTIVE APPROACHES

Approach Adaptation Goal Reference Outputs
Measured
Outputs

Control Actions
Adaptation
Properties

Evaluation Metrics

Lin et al.[5]
Self- healing/
self-recovery

Contracts: QoS
Constraints defining
computational states

SLOs

Discrete operations
affecting the managed
system’s software
architecture

Short settling
time, termination,
stability, accuracy

Simulated
environment
to evaluate
performance

Reconfiguration time, Re-
composition time

Ying Li et al.
[4]

QoS
preservation
self-
configuration

Contracts: QoS

SLOs, Logical
properties of
computational
elements

Discrete operations
affecting the managed
system’s software
architecture

Stability,
termination ,
Short settling
time

None None

Madkour et
al. [7]

Self-
configuration / re
composition

Contracts: QoS

Logical
properties of
computational
elements

Discrete operations
affecting the managed
system’s software
architecture

Stability,
termination

None None

Cao et al. [8]
Self-
configuration /
re-composition

Single reference
values

Logical
properties of
computational
elements

Discrete operations
affecting the managed
system’s software
architecture

Stability,
termination,
accuracy

Running
examples to
evaluate
effectiveness

None

The paper, suggests a model to characterize self-adaptive

software, which consisting of eight analysis dimensions. These
dimensions include; 1) adaptation goal, the main reason for
the approach to be self-adaptive, 2) reference inputs, specific
set of values specified the state to be achieved by the
adaptation mechanism. Reference inputs are specified as:
single reference values; some form of contracts (e.g., QoS,
service level agreements (SLA), or service level objectives
(SLO)); constraints defining computational states; or even
functional requirements, 3) measured outputs, 4) computed
control actions, are characterized in MAPE-K loop and in
practical by the nature of the output of adaptation planner, 5)
system structure, 6) observable adaptation properties, 7)
proposed evaluation, and finally 8) identified metrics and key
performance indicators. The model categorizes adaptation
properties as follows: stability, accuracy, short settling time
(i.e., the time required for the adaptive system to achieve the
desired state), small overshoot, robustness, termination,
consistency, scalability, and security.

As already stated, adaptation in SBA may be motivated by
variety of factors, or triggers. Such triggers may concern the
component services or the context of SBA. Each trigger can be
associated with a set of adaptation strategies that are suitable
to re-align the application within the system and/or context
requirements [6]. Relationships between adaptation triggers
and adaptation strategies are presented in [6]. The work
identifies changes in the service functionality, service quality,
business context, computational context, and finally user
context. Table II, lists our selected adaptation approach’s
triggers and strategies.

TABLE II
RELATIONSHIP BETWEEN ADAPTATION TRIGGERS AND ADAPTATION

STRATEGIES

Approach Adaptation triggers Adaptation strategy

 Lin et al.[5]
Changes in the service
functionality/failure

Reconfiguration/
substitution

Ying Li et al. [4] Changes in the service quality
Reconfiguration/
substitution

Madkour et al.
[7]

Changes in the user context
Re-composition/ re-
selection

Cao et al. [8]
Changes in the computational
context (network rate, network
delay)

Reconfiguration/
substitution

V. CONCLUSION

Service Oriented architecture is still a new and active
research area, and self-adaptive software enjoys a growing
importance. In this paper we declared different aspects of
adaptation taxonomy which were not covered in S-Cube. The
key to understanding adaptation taxonomy is recognizing the
relationships between the adaptation properties and software
quality attributes that were illustrated in Table I.

The most important aspect of adaptation is adaptation
strategy. Each adaptation strategy can be characterized by its
complexity and its functional and non-functional properties.
The identification of the most suitable strategy is supported by
a reasoned that also bases its decisions on multiple criteria
extracted from the current situation and from the knowledge
obtained from previous adaptations and executions, so
specifying the relationships between adaptation triggers and
strategies and the current situation like context is too
important to improve adaptation process. This work explains
some of existing approaches that contain different strategies
based on special triggers.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:8, 2014

1487

REFERENCES
[1] Raman Kazhamiakin, Salima Benbernou, Luciano Baresi, Pierluig

iPlebani, Maike Uhlig4, and Olivier Barais. (2010). Adaptation of
Service-Based Systems. In S-cube. springer.

[2] Norha M. Villegas, Gabriel Tamura and Rubby Casalla. (2011). A
framework for evaluating quality-driven self-adaptive systems. New
York: 6th Internation Symposium on Software Engineering for Adaptive
and Self-Managing Systems.

[3] M. Salehi and L.Tahvildari. (2009). Self-adaptive software: Landscape
and research challehges. ACM Transactions on Autonomous and
Adaptive Systems (TAAS).

[4] Ying Li, Xiaorong Zhang, YuYu Yin, and Jian Wu. (2010). Qos-driven
dynamic reconfiguration of the SOA based software. The IEEE
International Conference on Service Science(ICSS), (pp. 99-104).
Hangzhou

[5] Kwei-Jay Lin, Jing Zhang, Yanlong Zhai and Bin Xu. (2010). The
design ad implementation of service process reconfiguration with end-
to-end QoS constraints in SOA. Service Oriented Computing and
Application, 157-168.

[6] Antonio Bucchiarone, Cinzia Cappiello, Elisabetta Di Nitto, Raman
Kazhamiakin, Valentina Mazza, Marco Pistore. (2009). Design for
adaptation of service-based applications: Main issues and requirements.
In Service_oriented Computing. ISCOC (pp. 467-476). Stockholm:
Springer Berlin Heidelberg.

[7] Mohcine Madkour, Driss El Ghanami , Abdelilah Maach and
Abderrahim Hasbi. (2013). Context-aware service adaptation: An
approache based on fuzzy sets and service composition. Information
Science and Engineering, 1-16.

[8] Jiannong Cao, Na Xing, Alvin T.S Chan, Yulin Feng, Beihong Jin. .
(2005). Service adaptation using fuzzy theory in context-aware mobile
computing middleware. 11th IEEE International Embedd and Real-Time
Computing Systems and Applications, (pp. 496-501).

[9] S.S Yau, N.Ye, H. Sarjoughian and Huang. (2008). developing service-
based software system with QoS monitoring and adaptation. IEEE
International Workshop on Future Trends of Distributed , (pp. 74-80).
omputing Systems.

[10] Si Won Choi, Jin Sun Her and Soo Dong Kim. (2007). Modeling QoS
attributes and metrics for evaluating services in SOA considering
consumer's perspective as the first class requirement. 2nd IEEE
Conference on Asia-Pacific Service Computing, (pp. 398-405). Tsukuba.

[11] Valeria Crdellini, Emiliano Casalicchio, Vincenzo Grassi, Stefano
Lannucci, Francesco Lo Presti, Raffaela Mirandola. (2012). Moses: A
framework for QoS driven runtime adaptation of service-oriented
systems . IEEE Transaction on Software Engineering, (pp. 1138-1159).

