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Abstract—This paper proposes a linear mixed model (LMM) 

with spatial effects to forecast rice and cassava yields in Thailand at 

the same time. A multivariate conditional autoregressive (MCAR) 

model is assumed to present the spatial effects. A Bayesian method is 

used for parameter estimation via Gibbs sampling Markov Chain 

Monte Carlo (MCMC). The model is applied to the rice and cassava 

yields monthly data which have been extracted from the Office of 

Agricultural Economics, Ministry of Agriculture and Cooperatives of 

Thailand. The results show that the proposed model has better 

performance in most provinces in both fitting part and validation part 

compared to the simple exponential smoothing and conditional auto 

regressive models (CAR) from our previous study. 

 

Keywords—Bayesian method, Linear mixed model, Multivariate 

conditional autoregressive model, Spatial time series. 

I. INTRODUCTION 

PATIAL time series are data collected across both time 

and space. Thus the data analysis should consider the 

correlations across the time and across the areas. These kinds 

of data are found in many applications especially in 

agriculture. For example, the Office of Agricultural 

Economics, an organization under the Ministry of Agriculture 

and Cooperatives of the Kingdom of Thailand [1], releases 

annual reports for common agricultural product yields such as 

rice, rubbers, cassava, sugar cane, and pineapples, in each 

province. These reported data and a study of forecasting, 

which helps decision making and planning in the present, 

motivated us to investigate and develop a proper forecasting 

model. 

There have been a number of approaches to model time 

series data, spatial data, or spatial time series data. For 

example, for time series data, [2] used a Bayesian statistical 

model to forecast the parts demand time series data for Sun 

Microsystems, Inc., [3] proposed ARIMA models that could 

be used to make efficient forecast for boro rice production in 

Bangladesh from 2008-09 to 2012-13, and reference [4] 

proposed a forecasting model that can detect trend, 

seasonality, auto regression and outliers in time series data 

related to some covariates. Their proposed model was applied 

to vegetable prices in Thailand.  

For spatial data, the spatial effects can be done in a number 

of ways [5]; one of the common approaches is a conditional 
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auto regressive model (CAR) first introduced by [6]. 

Reference [7], extending the model of [6], proposed empirical 

Bayesian methods building from Poisson regression with 

random intercepts defined with CAR spatial correlations. 

Reference [8] extended the models of [7] to fully Bayesian 

setting for mapping the risk from a disease. 

For spatial time series data, [9], using geostatistical 

approach to analyze the yearly data collected from 100 

georeferenced locations, studied the spatial and temporal 

variability of attributes related to the yield and quality of 

durum wheat production. Reference [10] presented spatial 

time series models, based on Bayesian linear mixed models 

with CAR spatial effects, for rice yields in Thailand. Most 

models for spatial time series data are based on generalized 

linear mixed models (GLMMs). In this paper we focus on a 

linear mixed model (LMM), a special case of the GLMMs, 

since the product yields are continuous data. 

LMMs are usually used when responses are correlated data 

which may be due to repeated measurements on each subject 

over time [11]. The LMMs allow fixed effects and spatial 

effects to be included. Recently, a Bayesian approach using 

Markov Chain Monte Carlo (MCMC) is becoming 

increasingly popular as techniques for parameter estimation in 

complex models due to its extreme flexibility, so it is adopted 

for parameter inference in this paper. 

In particular, a CAR model is used for univariate spatial 

data; the data involve a single response variable. For 

multivariate spatial data which involve more than one 

response variables, a multivariate conditionally autoregressive 

model (MCAR) proposed by [12] is commonly applied. An 

advantage of an MCAR model is that it can handle the 

correlations between the response variables as well as well as 

the spatial correlations between areas. Reference [13] used 

MCAR for multivariate areal boundary analysis. They 

illustrated the methods using Minnesota county-level 

esophagus, larynx, and lung cancer data. 

The study of forecasting and the agricultural reported data 

motivated us to do this work as mentioned earlier. We select 

to forecast rice and cassava yields because they are major 

crops of Thailand. Rice production has long played a vital role 

in Thailand’s socio-economic development, making the 

country the world’s largest rice exporter in the last 3 decades. 

Thailand has the fifth-largest amount of land under rice 

cultivation in the world [14]. It has planned to increase the 

rice-growing areas available for rice production by adding 

500,000 hectares to it is already 9.2 million hectares [15].  

Cassava is considered as one of the most important 

economic crops of Thailand. It is utilized as raw material in 
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various industrials of the country, such as food, feed mill and 

other continuous industrials [16]. It is also an important 

energy crop for ethanol production, which is used for gasohol 

production [17]. Thailand is the fourth cassava producer in the 

world; however, it is the world largest exporter with exported 

value of over THB 29 billion per year. Thailand’s cassava 

planted area is 1.2 million hectares which is the fourth 

following rice, maize and rubber tree, with production yield of 

26.9 million ton [1].  

This study proposes the LMM with multivariate conditional 

autoregressive model (MCAR) representing spatial effects for 

rice and cassava yields in 19 northeastern provinces of 

Thailand which has not been proposed yet. The proposed 

model is compared to the simple exponential smoothing and 

CAR models from our previous study [10]. This paper is 

organized as follows. Section II briefly describes the 

methodology. The application is illustrated in Section III. In 

Section IV, the result of the study is presented. Lastly, in 

Sections V and VI the discussion and conclusion are drawn.  

II.  METHODOLOGY  

A.  Linear Mixed Models for Time Series Data 

Linear mixed models for time series data can be expressed 

as: 

 

T T
it it it i it

= + +y X β Z b ε                       (1) 

 

for 1,..., ;  1,...,i m t T= = , where 
it

y  is the thi  response at time 

t , 
it

X is the regressor variables associated with the fixed 

effects, β  is the parameter vector of fixed effects, 
it

Z

corresponds to the predictor variables with random effects, 

MN( , )
i
∼b 0 D  is the random effects for the thi cluster where D  

is the positive definite matrix, and 
it

ε is the random errors. 

B. Multivariate CAR Models (MCAR) 

Reference [12] describes multivariate CAR models as 

follows. Let areal random effects corresponding to the two 

crop yields be 
1 2( , )T T=φ φ φ  where 

1 11 1( ,..., )T

mφ φ=φ , 

2 12 2( ,..., )T

mφ φ=φ , and m  is the number of areal units. The 

bivariate spatial random effect φ  is defined as the conditional 

distribution, 
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where 
( 1, 2)i i−φ  stands for the collection of all 

ilφ  except
1iφ  

and 2iφ . Let 1
1

il l
i

l i

w

w

φ
φ
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w

φ
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+

= ∑ , the averages of 

the random effects for area i ’s neighbors specific to variables 

1 and 2, respectively. It can be seen that Λ serves as scaled 

conditional precision for 1 2( , )i iφ φ , where iw +  is a scale 

parameter. Areas with more neighbors have higher precision. 

Since Λ  is common for all areas 1,...,i m= , it controls 

the conditional precision for each pair of variables at the same 

site averaged over all areas. Letting 
1−=Σ Λ , 

1

w+

Σ  is the 

conditional covariance matrix with 12
12

11 22

σ
ρ

σ σ
=  as the 

conditional correlation between 1iφ  and 2iφ , 1,...,i m= . 

Under the MCAR, the multivariate joint distribution is 

 

1
( ) exp [ ( )]

2

Tp
 ∝ − ⊗ − 
 

φ φ Λ D W φ , 

 

where Λ  is 2x2 positive definite and ⊗  denotes the 

Kronecker product. ( )
ij

w=W is a neighborhood matrix for 

areal units, which can be defined as 

 

1 if subregions  and  share a common boundary, 

0 otherwise
ij

i j i j
w


= 



≠  

 

w =D  diag( )iw +  is a diagonal matrix with ( , )i i  entry 

equal to 
i ij

j

w w+ = ∑ . 

C.  Bayesian Models  

The model usually consists of three levels, or stages of 

hierarchies. At the first stage, a linear model is set up given 

fixed and random effects; at the second stage, the distributions 

of fixed and random effects are specified given the variance 

components; finally, at the last stage, prior distributions are 

assigned to the variance components. 

Reference [18] briefly describes the basic elements of 

Bayesian inferences. Suppose that y  is a vector of 

observations, 
1( ,..., )T

my y=y , and θ  is a vector of 

parameters, 
1( ,..., )T

kθ θ=θ . 

Let f ( | )y θ  represent the conditional probability density 

function of y  given θ , and π( )θ  is a prior distribution for 

.θ Then, the posterior probability density function of θ  is 

given by 
 

f ( | )π( )
π( | )

f ( | )π( )d
=

∫
y θ θ

θ y
y θ θ θ

.                          (3) 

                                                              

The goal of Bayesian inference is to get the posterior 

distribution. Particularly, some numerical summaries are 

obtained from the posterior distribution. For instance, a 

Bayesian point estimator for a univariate θ  is often obtained 

as the posterior mean: 
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E( | ) π( | )dθ θ θ θ= ∫y y
f ( | )π( )d

f ( | )π( )d

θ θ θ θ

θ θ θ
= ∫

∫
y

y

.     (4) 

III. APPLICATION  

The rice and cassava yields in 19 northeastern provinces of 

Thailand have been extracted from the Office of Agricultural 

Economics [1] from 2002 to 2011 (120 months). The data are 

divided into 2 parts, the fitting part consisting of 108 months 

data and the validation part consisting of the last 12 months 

data. The proposed model which is a special case of LMM is 

applied to those data and it is expressed as follows. 

Let ikty be the agricultural yields in province , 1,...,19i i = , 

product type , 1k k =  for rice and 2k =  for cassava, and 

month , 1,...,120t t = . 

 

ikt k ik kt ikty V Aφ ε= + + + ,                    (5) 

 

        
2| , , N( , )ikt k ik kt ikty V Aφ µ σ∼ , 

 

where 
ikt k ik ktV Aµ φ= + +  and 

2N(0, )iktε σ∼ . 
kV  are the 

product type random effects, ikφ are the area-product type 

spatial effects, 
ktA  are the time-product type random effects, 

and 
iktε  are province-product type-time random effects. The 

estimated 
iktµ  are used for prediction.  

A.  Model Estimation 

We use a Bayesian method via Gibbs sampling MCMC in 

OpenBugs software [19] for parameter estimation. 

For Bayesian setting, we assume priors as follows. 

 

)k vV σ 2∼ Ν(0, , InvGamma(0.005,0.005)vσ 2 ∼  

1

( 1, 2)

2

| CAR
i

i i

i

φ

φ −

 
∼ Μ 

 
φ  in (2) 

)kt AA σ 2∼ Ν(0, , InvGamma(0.005,0.005)Aσ 2 ∼  

InvGamma(0.005,0.005)σ 2 ∼  

B. Model Comparison 

The proposed model is compared with the traditional 

exponential smoothing model and our previous model [10] 

using CAR model. The Gibbs sampling MCMC are run for 

11,000 iterations, with burn-in of 1,000. We assess MCMC 

convergence of all model parameters by visual analysis of 

history and Kernel density plots. 

IV. RESULTS 

The visual analysis is used for MCMC convergence 

diagnostics [19]. The trace plots for some estimated means are 

shown in Figs. 1-4 and the kernel density plots are shown in 

Figs. 5-8. The chains moving around the parameter spaces and 

the densities looking like their distributions indicate that each 

parameter is converged to a stationary density. 

 

 

Fig. 1 History plot of the estimated mean for rice yield in January of 

Ubon Ratchathani 

 

 

Fig. 2 History plot of the estimated mean for rice yield in February of 

Ubon Ratchathani 

 

 

Fig. 3 History plot of the estimated mean for cassava yield in January 

of Ubon Ratchathani 

 

 

Fig. 4 History plot of the estimated mean for cassava yield in 

February of Ubon Ratchathani 

 

 

Fig. 5 Kernel density plot of the estimated mean for rice yield in 

January of Ubon Ratchathani 
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Fig. 6 Kernel density plot of the estimated mean for rice yield in 

February of Ubon Ratchathani

 

Fig. 7 Kernel density plot of the estimated mean for cassava yield in 

January of Ubon Ratchathani

 

Fig. 8 Kernel density plot of the estimated mean for cassava yield in 

February of Ubon Ratchathani

 

Fig. 9 Actual and predicted values of rice yield in Ubon Ratchthani 

province 

 

Fig. 10 Actual and predicted values of rice yield in Khon Kean 

province 

 

 

Fig. 6 Kernel density plot of the estimated mean for rice yield in 

February of Ubon Ratchathani 

 

the estimated mean for cassava yield in 

January of Ubon Ratchathani 

 

Fig. 8 Kernel density plot of the estimated mean for cassava yield in 

February of Ubon Ratchathani 

 

Fig. 9 Actual and predicted values of rice yield in Ubon Ratchthani 

 

Fig. 10 Actual and predicted values of rice yield in Khon Kean 

Fig. 11 Actual and predicted values of cassava yield in Ubon 

Ratchthani province

Fig. 12 Actual and predicted values of cassava yield in Khon Kaen 

province

Using the mean absolute error (MAE) criterion, for the rice 

yields, the performance of the proposed model 

the simple exponential and the CAR

I. It can be seen that, in the fitting part, the proposed model 

has a better performance than

models in most provinces. For the validation part, the 

proposed model is superior to the other models in more than 

half of the number of provinces. The predicted and actual 

values of rice and cassava yields are presented in Fig

V.  DISCUSSION

The LMM with MCAR spatial effects for spatial time 

data is proposed. It takes into account the spatial

following the first law of geography 

related to everything else, but near things are 

than distant things” [20]. It also accounts for the correlation

between product types as well as products and 

Compared to the simple exponential smoothing and 

previous CAR models, the proposed model has a better 

performance in most provinces in both fitting part and 

validating part. The most advantage of the proposed model is 

that it can predict several product yields at each province at 

the same time. The limitation of this study is using seco

data which causes problems 

the proposed model can be extended to include trend and 

seasonal components. 

 

Fig. 11 Actual and predicted values of cassava yield in Ubon 

Ratchthani province 

 

 

Actual and predicted values of cassava yield in Khon Kaen 

province 

 

absolute error (MAE) criterion, for the rice 

he performance of the proposed model compared to 

the CAR models is shown in Table 

It can be seen that, in the fitting part, the proposed model 

has a better performance than the exponential and the CAR 

models in most provinces. For the validation part, the 

proposed model is superior to the other models in more than 

half of the number of provinces. The predicted and actual 

values of rice and cassava yields are presented in Figs. 9-12. 

ISCUSSION 

The LMM with MCAR spatial effects for spatial time series 

data is proposed. It takes into account the spatial correlations 

he first law of geography stating that “Everything is 

else, but near things are more related 

It also accounts for the correlations 

product types as well as products and time. 

exponential smoothing and our 

, the proposed model has a better 

provinces in both fitting part and 

The most advantage of the proposed model is 

that it can predict several product yields at each province at 

The limitation of this study is using secondary 

 of verification. For further study 

the proposed model can be extended to include trend and 
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TABLE I 

PERFORMANCE OF THE PROPOSED MCAR, CAR, AND ES MODELS FOR RICE 

YIELDS  

Province Model MAE 

Fitting Validation 

Loei MCAR 43,760.09 68,576.67 

CAR 19,663.52 23,324.83 

ES 21,182.73 24,979.32 

Nong Bua Lam 

Phu 

MCAR 32,741.48 68,987.50 

CAR 38,540.08 44,978.08 

ES 36,668.33 43,289.07 

Udon Thani MCAR 44,974.35 68,970.00 

CAR 78,898.44 99,315.83 

ES 74,148.97 98,556.02 

Nong Khai MCAR 34,566.30 68,716.67 

CAR 39,589.53 47,905.42 

ES 40,616.49 53,840.55 

Sakon Nakhon MCAR 30,262.69 68,781.67 

CAR 71,723.71 83,601.67 

ES 75,126.66 90,544.82 

Nakhon 

Phanom 

MCAR 34,867.41 68,503.33 

CAR 39,743.58 52,045.58 

ES 39,952.72 58,702.04 

Mukdahan MCAR 46,269.07 68,607.50 

CAR 15,171.42 21,645.50 

ES 16,085.04 23,359.88 

Yasothon MCAR 31,437.13 68,802.50 

CAR 40,910.25 53,510.50 

ES 41,756.63 58,424.90 

Amnat Charoen MCAR 31,961.30 68,640.00 

CAR 37,985.24 45,806.75 

ES 39,371.74 49,915.28 

Ubon 

Ratchathani 

MCAR 51,923.06 68,676.67 

CAR 116,337.88 152,390.67 

ES 119,697.32 165,278.30 

Si Sa Ket MCAR 41,355.09 68,463.33 

CAR 106,546.71 140,177.33 

ES 107,194.27 159,423.68 

Surin MCAR 52,275.19 68,817.50 

CAR 128,916.47 152,628.25 

ES 132,952.98 166,862.99 

Buri Ram MCAR 44,746.57 68,914.17 

CAR 113,385.69 139,047.08 

ES 115,194.83 154,783.45 

Maha Sarakham MCAR 23,225.65 69,092.50 

CAR 76,426.60 100,950.25 

ES 78,221.27 106,847.28 

Roi Et MCAR 44,513.70 68,938.33 

CAR 113,450.50 132,047.50 

ES 115,850.40 147,864.24 

Kalasin MCAR 32,384.81 68,933.33 

CAR 61,366.79 77,158.75 

ES 62,183.73 83,444.63 

Khon Kaen MCAR 37,123.80 68,550.83 

CAR 85,891.24 103,153.17 

ES 88,218.96 112,170.31 

Chaiyaphum MCAR 35,388.61 68,837.50 

CAR 49,097.91 59,031.58 

ES 49,750.54 63,623.78 

Nakhon 

Ratchasima 

MCAR 53,938.24 68,470.00 

CAR 116,099.64 154,018.42 

ES 119,624.43 163,438.90 

VI. CONCLUSION 

The objective of this study is to propose an appropriate 

forecasting model for multivariate spatial time series data. The 

Bayesian inference, using the Gibb sampling MCMC method, 

in a LMM with MCAR spatial effects is considered. The 

proposed model is applied to rice and cassava yields data in 19 

Northeastern provinces of Thailand in 2002 to 2011. Using the 

MAE criterion, the proposed model has a better performance 

than the simple exponential model and the CAR model from 

our previous study in most of provinces. The advantage of the 

proposed LMM with MCAR spatial effects is that it can 

predict several product yields in several areas at the same 

time. 
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