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Abstract—An alternative approach is proposed to develop the 

analytic solution for one dimensional heat conduction with one mixed 
type boundary condition and general time-dependent heat transfer 
coefficient. In this study, the physic meaning of the solution 
procedure is revealed. It is shown that the shifting function takes the 
physic meaning of the reciprocal of Biot function in the initial time. 
Numerical results show the accuracy of this study. Comparing with 
those given in the existing literature, the difference is less than 0.3%. 

 
Keywords—Analytic solution, heat transfer coefficient, shifting 
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I. INTRODUCTION 
EAT transfer with variable heat conduction coefficient 
and heat transfer coefficient can be important in many 

engineering applications. The studies on the problems of heat 
transfer with space and temperature dependent heat 
conduction coefficient in literature are tremendous [1], [2]. 

For the heat conduction with mixed type boundary 
condition and time-dependent heat transfer coefficient, the 
problem cannot be solved by the method of separation of 
variable, hence, various approximated and numerical methods 
were taken [3], [4]. Kozlov [5] used the Laplace 
transformation method to study the problems with Biot 
function in a rational combination of sines, cosines, 
polynomials, and exponentials. Even though it is possible to 
obtain an exact series solution of the specified transformed 
system, there always is great difficulty while taking the 
inverse Laplace transform of the transformed solution in 
complex domain. Recently, various inverse schemes [6] for 
determining the time-dependent heat transfer coefficient were 
developed. 

From the existing literature, due to the complexity and 
difficulty of the solution, it can be found that the study on the 
heat conduction with mixed type boundary condition and 
time- dependent heat transfer coefficient is insufficient. After 
several decades of the development of analytical-numerical 
and numerical methods for the solution of non-stationary 
problems of the diffusion of heat and substance with a 
time-varying heat transfer coefficient, an analytical solution 
for a plate with an arbitrary law of the variation of this 
coefficient was obtained by Lee and his colleagues [7]. They 
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proposed a simple and accurate analytic form solution for 
wide class of problems. The work has been considered to be of 
great importance in the literature [8], [9]. 

This work proposes a different type of shifting function to 
develop the analytic closed form solution for one dimensional 
heat conduction with one mixed type boundary condition and 
general time-dependent heat transfer coefficient. The solution 
method is an extension of Lee and his colleagues’ works [10], 
[11], by choosing the shifting function which owns its 
physical meaning. 

 
 

 
 

 

 

 

 

 

Fig. 1 One-dimensional heat transfer system of a slab with a time- 
dependent heat convection coefficient 

II. MATHEMATICALMODELING 
Consider the heat conduction in a slab with mixed type 

boundary condition at one end as shown in Fig. 1. The 
governing differential equation of the system is: 
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and the initial condition is  
 

)()0,( 0 xTxT = , when 0=t .   (4) 
 
Here, T  is the temperature, x  is the spatial-domain 

variable, α  is the thermal diffusivity, t  is the time, L is the 
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half thickness of the slab, k is the thermal conductivity, h(t) is 
the time-dependent heat transfer coefficient, ∞T is an 
environment temperature constant, and 0T  is the initial 
temperature. In terms of the following dimensionless 
quantities: 
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the associated dimensionless governing differential equation 
of the system is 
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where τ  and )(τBi  denote Fourier number and Biot 
function, respectively. 

The boundary conditions are 
 

θτθ )(Bi
X

=
∂
∂ , at 0=X ,      (7) 

 

0=
∂
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X
θ , at 1=X ,    (8) 

 
and the initial condition is  
 

)(0 Xθθ = , when 0=τ .  (9) 
 
To simplify the analysis and increase the accuracy, one 

splits )(τBi  into a constant δ and a variable )(τF  as  
 

)()( τδτ FBi +=      (10) 
 
where 

)0(Bi=δ ,    (11) 
 

)0()()( BiBiF −= ττ .   (12) 
 
It is obvious that 0)0( =F , and the boundary condition at 

X = 0, (8) can be rewritten as  
 

θτδθθ )(F
X

=−
∂
∂ .    (13) 

III. THE SHIFTING FUNCTION METHOD 

A. Change of Variable 
To find the solution for the partial differential equation with 

a time dependent heat convection coefficient at one boundary, 
one extends the shifting function method developed by Lee 
and Lin [10] and Lee et al. [11] by taking 

 
)()(),(),( XgfXvX τττθ += ,  (14) 

where ),( τXv is the transformed function, )(τf  is taken as 
 

),0()()( τθττ Ff = ,   (15) 
 

and g(X) is a shifting function to be specified. 
Substituting (14) into (6), (7), (13), and (9), one has the 

following partial differential equation 
 

τ
τ

τ
τττ

d
dfXgXv

dX
Xgdf

X
Xv )()(),()()(),(

2

2

2

2

+
∂

∂
=+

∂
∂ , 

in 10 << X , 0>τ ,    (16) 
 

along with the boundary conditions and initial condition 
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)()()0()0,( 0 XXgfXv θ=+ .   (19) 

 
It should be noted that (16)-(19) only contain two variables 

),( τXv and ),1( τθ . 

B. Shifting Function and Its Physical Meaning 
To simplify the problem, one specifies a particular shifting 

function g(X). One lets the shifting function g(X) in (16) - (18) 
satisfy the differential equation 
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and the following boundary conditions 
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Therefore, the shifting function g(X) is determined as 
 

δ
1)( −=Xg ,           (23) 

 
and takes the physic meaning of the reciprocal of Biot 
function at time 0=τ . 

Substitution the function g(X) in (14), it becomes 
 

δ
τθτττθ ),0()(),(),( FXvX −=          (24) 

 
Setting X = 0 in the equation above, one obtains 
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After rearranging these terms, we have 
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with (23) and (26), the function variables in governing 
differential equation (16) is reduced from two to one and 
expressed in terms of the function variable ),( τXv . 
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The associated boundary conditions of transformed 

function ),( τXv ,(17) and (18) become the homogeneous 
type as follows: 
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Since )0,0()0()0( θFf = and 0)0( =F , therefore, the 
associated initial condition, (19) becomes 
 

)()0,( 0 XXv θ= .              (30) 

C. Series Expansion 
To find the solution for the partial differential equation (27) 

with boundary conditions (28)-(29) and initial condition (30), 
one uses the method of series expansion with try functions 
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satisfying the boundary conditions (28)-(29). Here the 
characteristic values ),3,2,1( =nnλ  are the roots of 
the transcendental equation 
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One can assume the transformed function ),( τXv  takes 

the series form of 
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Substituting solution from (35) into differential equation 

(27), it leads to  
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After taking the inner product with arbitrary try function 

)( Xmφ  and integrating X from 0 to 1, the resulting 
differential equation becomes 
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(Situation I): Consider the nm =  case, (37) reduces to  
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(Situation II): Consider the case nm ≠ , hence, (37) 
becomes 
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After dropping all constant terms, one obtains 
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and finds that its solution is the trivial solution 
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As a result, the solution for )(τnq  in (41) is 
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Finally, using the series expansion, the associated initial 

condition becomes 
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If )(0 Xθ  denotes a constant temperature 0θ , we obtain 
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After substituting the transformed function ),( τXv , (35), 

(31), and (45) as well as the shifting function g(X), (23), back 
to (14), one has the analytic solution 
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D. Constant Heat Transfer Coefficient 

When the heat transfer coefficient h is a constant, the Biot 
function is a constant δ and 0)( =τF . The infinite series 
solution, (48), is reduced to  
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The solution is exactly the same as that obtained via the 
method of separation of variable [1]. 

IV. VERIFICATION AND EXAMPLES 
To illustrate the previous analysis and the accuracy of the 

solution, one examines the following two cases. 

A. Case1 : )(0 Xθ  is a constant. 

Consider the heat conduction in a slab with initial constant 
temperature 0θ . Assume the general form of the Biot function 
is 
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where ba,  are constants; ω,s  are control variables. 

According to (11) - (12), we obtain 
 

)cos1()( ωττ τsebF −−=    (51) 
 

ba −=δ      (52) 
 
and 

)sincos()( ωτωωττ τ += − sbeF s .  (53) 
 
Therefore, from (48), the temperature distribution is 
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For comparison, we show the results of Chen et al. [7] as 

follows 
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when 2.1=a , 1=b , 1=s , ω = 0, and 0θ = - 0.664, the 
case is exactly the same as the one discussed by Ivanov and 
Salomatov [3] and Postol’nik [4], who calculated the heating 
of an infinite plate. In Figs. 2, 3, the temperatures of theslab at 
X = 1, and various time points evaluated via the present 
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analysis are compared with those in the existing literature [7]. 
It shows that the results are very consistent. Fig. 4 shows the 
numerical difference between present analysis and [7], the 
maximum difference is less than 0.3%. 

In Fig. 5, as times go, the temperature variation along the 
slab is illustrated. It can be found that the temperature 
variation of the slab of present analysis coincides with [7]. 

 

 

Fig. 2 Influence of s  parameter on the temperature variation of the 

slab at 1=X ( 0=ω ) 
 

 

Fig. 3 Temperature variation of the slab with variousω  at 1=X
( 0=s ) 

 

 

Fig. 4 Difference between present analysis and [7] with various X
( 5,5,5.0 === ωτ s ) 

 

Fig. 5 Temperature variation along the slab at 4,1,0=τ
( 664.0,0,2,1,2.1 0 −===== θωsba ) 

B. Case2 : )(0 Xθ  is not a constant. 

Consider the heat conduction in a slab with initial 
temperature )

2
cos()(0 XX πθ = . The other constants are the 

same as Case 1, and )0(nq  is determined as 
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The numerical result is shown in Fig. 6. It is obvious when 

the Fourier constant τ  is equal to 4, the temperatures along 
the boundary surfaces approach to the environment 
temperature zero. 

 

 
Fig. 6 Temperature variation along the slab at 4,1,0=τ

[ )
2
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XXsba πθω ===== ] 

V. CONCLUSION 
In this paper, an alternative approach is proposed to develop 

the analytic solution for the one dimensional heat conduction 
with one mixed type boundary condition and general 
time-dependent heat transfer coefficient. In the present study, 
the physic meaning of the solution procedures are revealed. It 
is shown that the solution is also simple accurate and fast 
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convergent. Numerical results are shown to be consistent with 
those in literature. The proposed solution method can also be 
extended to the studies of the problems with boundary 
conditions of different kinds and those of multiple dimensions. 

ACKNOWLEDGMENT 
This research work was supported by the National Science 

Council of Taiwan, the Republic of China, under grant: NSC 
101-2221-E-006-031. 

REFERENCES 
[1] Özisik, M. N.,Boundary Value Problems of Heat Conduction, 

International Textbook Company, Pennysylvania, 1968, pp. 43-69. 
[2] Borukhov, V.T.,Tsurko, V.A., andZayats, G.M., “The functional 

identification approach for numerical reconstruction of the 
temperature-dependent thermal conductivity coefficient”, International 
Journal of Heat and Mass Transfer, 2009, vol. 52,no. 1-2, pp. 232-238. 

[3] Ivanov, V.V. and Salomatov, V.V., “On the calculation of the 
temperature fieldin solids with variable heat-transfer coefficients”, 
Journal of Engineering Physics and Thermophysics, 1965, vol. 9, no. 1, 
pp. 83-85. 

[4] Postol’nik, Yu.S.,“One-dimensional convective heating with a 
time-dependent heat-transfer coefficient”, Journal of Engineering 
Physics and Thermophysics, 1970, vol.18, no. 2, pp. 316-322. 

[5] K ozlov, V.N., “Solution of heat-conduction problem with variable heat 
exchange coefficient”, Journal of Engineering Physics and 
Thermophysics, 1970, vol. 18,no. 1, pp. 133-138. 

[6] Chen, H.T. and Wu, X.Y., “Investigation of heat transfer coefficient in 
two dimension altransient inverse heat conduction problems using the 
hybrid inversescheme”, International Journal for Numerical Methods in 
Engineering, 2008, vol. 73, no.1, pp. 107-122. 

[7] Han Taw Chen, Shao Lun Sun, Hui Chen Huang, and Sen Yung Lee, 
“Analytic Closed Solution for the Heat Conduction with Time 
Dependent Heat Convection Coefficient at One Boundary”, 2010, CMES, 
vol. 59, no. 2, pp. 107-126 . 

[8] Yatskiv, O. I., Shvets, R. M., and Bobyk, B. Ya., “Thermostressed State 
of a Cylinder with Thin Near-Surface Layer Having Time-Dependent 
Thermophysical Properties”, J. of Mathematical Sciences, 2012, vol. 187, 
No. 5, 647-666. 

[9] Caffagni, A., Angeli, D., Barozzi, G.S., and Polidoro, S., “A Revised 
Approach for One-Dimensional Time-Dependent Heat Conduction in a 
Slab”, ASME J. of Heat Transfer, 2013, vol. 135, pp. 31301-1 ~31301-8. 

[10] Lee, S.Y. and Lin, S.M., “Dynamic analysis of nonuniform beams with 
time-dependentelastic boundary conditions”,ASME Journal of Applied 
Mechanics, 1996, vol.63, no. 2, pp. 474-478. 

[11] Lee, S.Y., Lu, S.Y., Liu, Y.T., and Huang, H.C., “Exact Large 
Deflection Solutions for Timoshenko Beams with Nonlinear Boundary 
Conditions”, CMES, 2008, vol. 33, no. 3, pp. 293-312. 

 
 
 

Sen Yung Lee is a Distinguished Professor of 
Department of Mechanical Engineering, National Cheng 
Kung University, Taiwan, R.O.C.. He received his Ph.D. 
from State University of New York at Buffalo, USA in 
1984. His research interests are solid mechanics, heat 
conduction, and creative design with more than 80 
patients. 


