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Abstract—In this paper, we present a neural-network (NN) based 

approach to represent a nonlinear Tagagi-Sugeno (T-S) system. A 
linear differential inclusion (LDI) state-space representation is utilized 
to deal with the NN models. Taking advantage of the LDI 
representation, the stability conditions and controller design are 
derived for a class of nonlinear structural systems. Moreover, the 
concept of utilizing the Parallel Particle Swarm Optimization (PPSO) 
algorithm to solve the common P matrix under the stability criteria is 
given in this paper. 
 

Keywords—Lyapunov Stability, Parallel Particle Swarm 
Optimization, Linear Differential Inclusion, Artificial Intelligence. 

I. INTRODUCTION 
N 1985, Takagi and Sugeno first propose the new concept for 
fuzzy inference systems [1]. Their method is called the 

Takagi-Sugeno (T-S) fuzzy model, which has been widely used 
in the industry and academia with lots of successful examples. 
The T-S fuzzy model utilizes linear models in the consequent 
parts and results in the convenience on analysis via the 
conventional linear system theory. Different T-S fuzzy model 
based controllers have been proposed one after another [2]-[7]. 
The local dynamics in different state space regions are 
represented by a set of linear sub-models in this type of fuzzy 
controllers. In other words, this kind of fuzzy controllers are 
composed of these linear sub-models. 

On the other hand, swarm intelligence is also a raising 
research field after the late 1990s. Unlike the fuzzy models, 
algorithms in swarm intelligence work base on the tinny 
intelligences, which are able to be observed from the creatures’ 
behavior or their special characteristics for surviving in Mother 
Nature, to collaborate a serious of process for solving 
optimization problems in the fields of management, 
engineering, and economics. Many newly developed swarm 
intelligence algorithms are easy to be found in current 
literatures. For instance, Chu et al. propose Cat Swarm 
Optimization (CSO) [8], [9] for solving numerical optimization 
problems by taking the felid as the model; in 2010, Pan et al. 
propose Fish Migration Optimization (FMO) [10] by 
simulating the migration behavior and the life cycle of the 
grayling; and Tsai et al. propose Evolved Bat Algorithm (EBA) 
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[11] in 2012. Beside the innovative algorithms in swarm 
intelligence, some algorithms are proposed base on the fusion 
of different swarm intelligence algorithms, e.g., Baterial-GA 
Foraging [12] is an example of the fusion of different swarm 
intelligence algorithms. In addition, algorithms in swarm 
intelligence can be employed to solve optimization problems in 
two ways: solving the problem directly by optimizing the 
mathematic formula of the described problem [2], [13]-[17]. 
The other way is combining the swarm intelligence algorithm 
with other systems such as Artificial Neural Network (ANN) 
[18]-[20]. In this paper, we present a concept of employing 
swarm intelligence algorithm to find the common symmetric 
positive definite matrix P for r subsystems. The existing of the 
P matrix insures that the system is stable. 

The rest of this paper is constructed as follows: The brief 
review on the T-S type fuzzy model, the NN approximation, 
and the PPSO, which is one of the improved versions of PSO in 
swarm intelligence, are given in Section II. Base on the LDI 
representation and Lyapunov's approach, a stability criterion is 
derived to guarantee the stability of fuzzy systems via the linear 
matrix inequality (LMI) technique. Finally, the design of our 
method to find the common symmetric positive definite matrix 
P is presented at last. 

II. LITERATURE REVIEW 

A. Motion for Structural Systems 
The equation of motion for a shear-type-building modeled as 

an n-degree-of-freedom system controlled by actuators and 
subjected to external force ߶ሺݐሻ can be characterized by (1): 

 
ܯ  തܺሷ ሺݐሻ ൅ ܥ തܺሶ ሺݐሻ ൅ ܭ തܺሺݐሻ ൌ ሻݐሺܷܤ െ  ሻ      (1)ݐҧ߶ሺݎܯ

 
where തܺሺݐሻ ൌ ሾݔҧଵሺݐሻ, ,ሻݐҧଶሺݔ … , ሻሿݐҧ௡ሺݔ א ܴ௡  is a n-vector; 
തܺሷ ሺݐሻ , തܺሶ ሺݐሻ , and തܺሺݐሻ  are the acceleration, velocity, and 
displacement vectors, respectively; matrices ܥ ,ܯ , and ܭ are 
the ሺ݊ ൈ ݊ሻ  mass, damping, and stiffness matrices; ݎҧ is a 
n-vector denoting the influence of the external force;ܤ is an 
ሺ݊ ൈ ݉ሻ matrix denoting the locations of m control forces; 
߶ሺݐሻ is the excitation with an upper bound ߶௨௣ሺݐሻ ൒ ԡ߶ሺݐሻԡ; 
ܷሺݐሻ corresponds to the actuator forces (generated by an active 
tendon system or an active mass damper, for example). It 
should be noted that this is only a static model. 

For the controller design, the standard first-order state 
equation corresponding to (1) is obtained in (2), (3): 
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തܺሶ ሺݐሻ ൌ ሻݐሺܺܣ ൅ ሻݐሺܷܤ ൅  ሻ               (2)ݐሺ߶ܧ
 
where 

തܺሺݐሻ ൌ ൤
ሻݐҧሺݔ
ሻሶݐҧሺݔ ൨                                  (3) 

 
in which തܺሺݐሻ  is a 2݊state vector; ܣ  is a ሺ2݊ ൈ 2݊ሻ  system 
matrix. 

B. Modeling of the Neural Network 
Nowadays, NN is widely used in many control systems. 

Especially, in the nonlinear fields due to their universal 
approximation capability. A neural-network-based approach is 
utilized in the discussion of the stability of nonlinear systems to 
approximate the nonlinear structural system and the stability 
conditions thus derived. Assume we have a NN model with ܵ 
layers. Each layer hasܴఙሺߪ ൌ 1,2, … , ܵሻ  neurons, in which 
ሻݐఋሺݔ~ሻݐଵሺݔ and ݑଵሺݐሻ~ݑ௠ሺݐሻ  are the input variables. The 
notation ܹఙ  denotes weight matrix of the ߪ௧௛  layer.The 
transfer function vector of the ߪ௧௛ layer is defined in (4): 

 
Ψఙሺݒሻ ؠ ሾܶሺݒଵሻ ܶሺݒଶሻ …  ܶሺݒோ഑ሻሿ்    (4) 

 
whereܶ൫ݒ఍൯ሺζ ൌ 1,2, … , ܴఙሻ is the transfer function of the ζ௧௛ 
neuron; andݒ is the net input. The final output of the NN model 
can then be described by (5): 

 
ሶܺ ሺݐሻ ൌ ΨௌሺܹௌΨௌିଵሺܹௌିଵΨௌିଶሺ… … ΨଶሺܹଶΨଵሺܹଵΛሺݐሻሻሻሻሻሻ   (5) 

 
Although many successful applications of NNs can be found 

in recent days, there are still some drawbacks to their use in any 
control scheme. The most significant example is that a class of 
NNs admit a linear difference inclusion (LDI) state-space 
representation has been proposed and used in stability analysis 
with a Lyapunov function method. Base on the LDI model, 
some systematic model based neural network control design 
techniques have been developed. 

A LDI base system can be described in the state-space 
representation as follows: 

 
ሶܻ ሺݐሻ ൌ  ሻ                            (6)ݐሻሻܻሺݐሺܽሺܣ

 
ሻሻݐሺܽሺܣ ൌ ∑ ݄௜ሺܽሺݐሻሻܣҧ௜௥

௜ୀଵ                     (7) 
 
The class of the structural system listed in (2) can be 

considered as one kind of LDI. [21] It means that without loss 
of generality, we can use ݄௜ሺݐሻ instead of ݄௜ሺܽሺݐሻሻ. We will use 
݄௜ሺݐሻ from now on. This class also contains the T-S fuzzy 
model, which is commonly used in the field of fuzzy control. 
Subsequently, the min-max matrix ܩ఍

ఙ can be defined by (8): 
 

఍ܩ
ఙ ൌ ݀݅ܽ݃ൣ݃൫ܶሺݒ఍ሻ൯൧,  ߪ ൌ 1,2, … , ܵ             (8) 

 
By using the interpolation method and (5), we can obtain 
 

ሶܺ ሺݐሻ ൌ ሾ ෍ ݄఍ೄሺݐሻܩ఍
ௌሺܹௌሾ… ሾ

ଶ

఍ೄୀଵ

෍ ݄఍మሺݐሻܩ఍
ଶሺܹଶ

ଶ

఍మୀଵ

 

ሾ ෍ ݄఍భሺݐሻܩ఍
ଵሺܹଵΛሺݐሻሻሿሻሿ … ሿሻሿ

ଶ

఍భୀଵ

ൌ ෍ … ෍ ෍ ݄఍ೄሺݐሻ …
ଶ

఍భୀଵ

ଶ

఍మୀଵ

ଶ

఍ೄୀଵ

݄఍మሺݐሻ݄఍భሺݐሻ 

 
఍ܩ

ௌܹௌ … ఍ܩ
ଶܹଶܩ఍

ଵܹଵΛሺݐሻ ൌ ∑ ݄Ω഑ሺݐሻܧΩ഑ΛሺݐሻΩ഑                             
(9) 

 
where 

෍ ݄఍഑ሺݐሻ ؠ ෍ ෍ … ෍ ݄௤భ
഑ሺݐሻ݄௤మ

഑ሺݐሻ … ݄௤ೃ഑
഑ ሺݐሻ

ଶ

௤ೃ഑
഑ ୀଵ

ଶ

௤మ
഑ୀଵ

ଶ

௤భ
഑ୀଵ஖഑

 

 
At last, from (6) and (7), the dynamics of the NN model (9) 

can be rewritten in (10): 
 

ሶܺ ሺݐሻ ൌ ∑ ݄௜ሺݐሻܧത௜Λሺݐሻ௥
௜ୀଵ                              (10) 

 
where ݄௜ሺݐሻ ൒ 0 , ∑ ݄௜ሺݐሻ ൌ 1௥

௜ୀଵ ݎ ,  is a positive interger, ܧത௜ 
denotes a constant matrix with an appropriate dimension 
associated with ܧΩ഑. The LDI state-space representation in (10) 
can be further rearranged into (11): 

 
ሶܺ ሺݐሻ ൌ ∑ ݄௜ሺݐሻሼܣ௜ܺሺݐሻ ൅ ሻሽ௥ݐ௜ܷሺܤ

௜ୀଵ                 (11) 
 

whereܣ௜  and ܤ௜  are the partitions of ܧ௜  corresponding to the 
partitionΛሺݐሻ. 

Thus, the nonlinear structural system in (2) can be 
approximated as a LDI representation in (11). Subsequently, 
based on this LDI representation, sufficient conditions will be 
presented to guarantee the close-loop system finite-time 
stabilization and eliminate the effect of the approximation 
errors and external disturbance on the regulated output. These 
conditions can be reduced to feasibility problems involving 
LMIs or the swarm intelligence algorithms. In addition, the LDI 
representation follows the same rules as the T-S fuzzy model, 
therefore, combining the flexibility of fuzzy logic theory and 
the rigorous mathematical analysis tools of a linear system 
theory into a unified framework. Tanaka and Sugeno [22] 
proposed a control concept called “parallel distributed 
compensation” (PDC) for the fuzzy control of T–S fuzzy 
systems in 1992. The method of fuzzy-model-based control via 
PDC schemes is thus developed to achieve suitable control 
performance, taking into consideration stability analysis of a 
nonlinear structural system. A useful remark is described below: 
The class of neural network-based LDI representations is 
similar to Takagi-Sugeno’s fuzzy model, which is obtained by 
interpolating several literalized systems at different operating 
points through fuzzy certainty functions. [23] Therefore, the 
results presented above can be applied to their fuzzy models. 

C. Parallel Particle Swarm Optimization 
PPSO [24] is proposed by Chang et al. in 2005. Based on the 

original structural of PSO, the authors divide the artificial 
agents into independent groups, and let each group has its own 
ecological distribution. Learning from the ecology, it is known 
that an isolated environment would develop a different 
ecological distribution comparing to the outside environment. 
The precedents of splitting the amount of the population into 
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several sub-populations to construct the parallel structure can 
be found in several algorithms, such as Island-model Genetic 
Algorithm or Parallel Genetic Algorithm [25]. In addition, 
Chang et al. also demonstrated three information exchanging 
strategies for the artificial agents to share the information for 
finding the near best solution under the designed conditions. 

In short, the complete PPSO algorithm with its three 
communication strategies can be summarized as follows: 
Step 1. Initialization: Generate ௝ܰ particles ௜ܺ,௝

௧ for the ݆௧௛ 
group, ݅ ൌ 0, 1, … , ௝ܰିଵ; ݆ ൌ 0, 1, … , ܵ െ 1; ܵ ൌ 2௠ , 
where ܵis the number of groups, ௝ܰ is the number of 
particles contained in the ݆௧௛ group, ݉  is a positive 
integer, and ݐdenotes the iteration. 

Step 2. Evaluation: Evaluate the fitness value of ൫ ௜ܺ,௝
௧ ൯ for 

every particle in each group by the user defined fitness 
function and update the stored near best solution. 

Step 3. Movement: Update the velocity and the particles’ 
coordinate by (12)-(14). 

 

௜ܸ,௝
௧ାଵ ൌ ܹ௧

௜ܸ,௝
௧ ൅ ܿଵݎଵ൫ ௜ܲ,௝

௧ െ ௜ܺ,௝
௧ ൯ ൅ ܿଶݎଶ൫ܩ௝

௧ െ ܺ௜,௝
௧ ൯        (12) 

  

௜ܺ,௝
௧ାଵ ൌ ௜ܺ,௝

௧ ൅ ௜ܸ,௝
௧ାଵ                      (13) 

 
݂ሺܩ௧ሻ ൑ ݂൫ܩ௝

௧൯                        (14) 
 

where ௜ܸ,௝
௧  is the velocity of the  ݅௧௛ particle in the  ݆௧௛ group at 

the  ݐ௧௛ iteration, ܩ௝
௧is the best solution among all particles in 

the ݆௧௛  group at the ݐ௧௛  iteration, ܩ௧  denotes the near best 
solution among all groups at the ݐ௧௛ iteration, and ݂ሺ·ሻ stands 
for the user defined fitness function, which is used to describe 
the solution space of the targeting problem. 
Step 4. Communication: Three possible communication 

strategies proposed by Chang et al. are listed as follows: 
Strategy i. Migrate ࢚ࡳto each group: Mutate ܩ௧to replace 

the poorest particles in each group and replace ܩ௝
௧ 

byܩ௧ for each group per ܴଵ iterations. 
Strategy ii. Migrate ࢐ࡳ

 to its neighboring groups: Utilize ࢚
௝ܩ

௧  to replace the poorest particles in the 
neighboring groups per  ܴଶ iterations. 

Strategy iii. Hybrid Migrations: Separate the groups into 
two clusters. Apply strategy i to the first cluster 
per ܴଵ iterations; apply strategy ii to both clusters 
per  ܴଶ iterations. 

Step 5. Termination: Repeat Step 2 to Step 5 until the 
termination condition is satisfied. Record the best value 
of the function ݂ሺܩ௧ሻ and the best particle position 
among all groups. 

D. LDI-Based Stability Conditions for Nonlinear systems 
In this article, the PDC technique is employed to design the 

global controller for the model listed in (11). The ݅௧௛ rule of the 
fuzzy logic controller (FLC) is obtained as follows: 

Control Rule i: 
IF ݔ௜ሺݐሻ is ܯ௜ଵ and …. And ݔ௚ሺݐሻ is ܯ௜௚ 
 

THEN ܷሺݐሻ ൌ െܭ௜ܺሺݐሻ, ݅ ൌ 1, 2, … ,  (15)                  ݎ
 

whereܭ௜ denotes the local feedback gain vector in the  ݅௧௛ 
subspace. The final model-based fuzzy controller is 
analytically represented in (16): 

 

ܷሺݐሻ ൌ െ ∑ ௪೔ሺ௧ሻ௄೔௑ሺ௧ሻೝ
೔సభ

∑ ௪೔ሺ௧ሻೝ
೔సభ

ൌ െ ∑ ݄௜ሺݐሻܭ௜ܺሺݐሻ௥
௜ୀଵ              (16) 

 
Thus, the complete closed-loop fuzzy system can be 

obtained as follows: 
 
ሶܺ ሺݐሻ ൌ ∑ ∑ ݄௜ሺݐሻ݄௟ሺݐሻሾሺܣ௜ െ ሻሿ௥ݐ௜ሻܺሺܭ௜ܤ

௟ୀଵ
௥
௜ୀଵ ൅  ሻ (17)ݐ௜߶ሺܧ

 
Therefore, the control system for structural system (1) 

described by T-S fuzzy representation with the technique of 
PDC control is obtained. 

In 2006, Fang et al. propose a quadratic stabilization 
condition for T-S fuzzy control systems in the presentation 
form of LMI Formulation [26]. The LMI is any constraint of the 
form listed in (18): 

 
ሻݒሺܨ ൌ ଴ܨ ൅ ∑ ௜ܨ௜ݒ

௠
௜ୀଵ ൐ 0                       (18) 

 
whereݒ ൌ ሾݒଵ, ,ଶݒ … , ௠ሿݒ א ܴ௠  is a variable vector, and the 
symmetric matrices ܨ௜ ൌ ௜ܨ

் א ܴ௡ൈ௡ , ݅ ൌ 0, … , ݉  are given. 
The solution set ሼܨ|ݒሺݒሻ ൐ 0ሽ may be empty, however, it is 
always convex. A typical stability condition for the fuzzy 
system listed in (11) is analyzed as follows: 

Theorem 1: The equilibrium point of the fuzzy control 
system listed in (11) is stable in the large if there exist a 
common positive definite matrix P and the feedback gains K 
such that the following two inequalities are satisfied: 

 
ሺܣ௜ െ ௜ሻ்ܲܭ௜ܤ ൅ ܲሺܣ௜ െ ௜ሻܭ௜ܤ ൅ ଵ

ఎమ ௜ܧ௜ܧܲ
்ܲ ൏ 0      (19) 

 

ቂሺ஺೔ି஻೔௄೔ሻାሺ஺೔ି஻೔௄೔ሻ
ଶ

ቃ
்

ܲ ൅ ܲ ቂሺ஺೔ି஻೔௄೔ሻାሺ஺೔ି஻೔௄೔ሻ
ଶ

ቃ ൅ ଵ
ఎమ ௜ܧ௜ܧܲ

்ܲ ൏ 0    (20) 
 

whereܲ ൌ ்ܲ ൐ 0 for ݅ ൏ ݈ ൑ ݅ and ݎ ൌ 1, 2, … ,  .ݎ
 

III. OUR PROPOSED METHOD 
Theorem 1 states the stability of a T-S fuzzy controller 

system and the stabilization can be achieved by finding a 
common symmetric positive definite matrix P for r subsystems. 
Hence, the stability analysis is converted to the problem of 
solving eigen values using the interior-point method associated 
with LMI techniques. The stability condition can be reduced to 
that of linear system when ݎ ൌ 1. In this paper, we propose the 
concept of utilizing swarm intelligence method to find the 
common symmetric positive definite matrix P, which satisfies 
the LMI stability conditions, instead of using the conventional 
methods. 

To employ PPSO solving problems of optimization, a fitness 
function should be defined at the first beginning. The fitness 
function is the mathematic representation of the evaluation 
condition for the target problem. In our design, we’re going to 
use PPSO to find a common P matrix, which satisfies the 
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condition listed in (21): 
 

ሺܣ௜ െ ௜ሻ்ܲܭ௜ܤ ൅ ܲሺܣ௜ െ ௜ሻܭ௜ܤ ൏ 0              (21) 
 

whereܲ ൌ ்ܲ ൐ 0 and ݅, ݈ ൌ 1,2, … , ݎ .According to Hsiao et 
al.’s report [2], The equilibrium point of a closed-loop fuzzy 
system is asymptotically stable in the large, if there exists a 
common positive definite matrix P, which satisfies (21).The 
objective of our proposed method is to choose the proper 
common matrix P for the T-S fuzzy controller system which 
satisfies the stability condition listed in (21). The Duffing 
equation can describe a mechanical system with a hardening 
spring and can display rich nonlinear phenomena such as chaos 
and bifurcation. As a result, in recent years, the Duffing 
equation has become a test-bed for various advanced nonlinear 
and/or adaptive control techniques [27]. In this section, our 
proposed concept is illustrated for a simulated chaotic system in 
which the Duffing equation is considered for a large 
displacement when the high order term cannot be ignored. An 
example of the nonlinear chaotic system is given in (22): 

 

ቐ
ሻݐሶଵሺݔ ൌ ሻݐଶሺݔ2.5

ሻݐሶଶሺݔ ൌ െሾ0.4ݔଵሺݐሻሿଷ െ ሻݐଵሺݔ0.4 െ ሻݐଶሺݔ0.01
൅0.4 cosሺ1.29ݐሻ ൅ ݂ · ሻݐሺݑ

            (22) 

 
whereݑሺݐሻdenotes the control force and ݂is a constant. 

To construct a PDC fuzzy controller for dynamic systems 
with disturbances, we first employ the NN-based approach to 
represent the dynamics of the chaotic system. In order to 
stabilize the chaotic system, two model-based fuzzy controllers 
are designed, based on the concept of the PDC scheme. The 
membership function for PDC control is plotted in Fig. 1. 

 

 
Fig. 1 Membership function of the chaotic system 

 
For the purpose of fulfilling the stability conditions of the 

theorem, PPSO is employed to find the feasible P matrix. Each 
particle contains a symmetric positive definite matrix. The 
fitness function we design for this application is listed in (23): 

 
ܨ ൌ α ൈ β         (23) 

 
whereܨdenotes the fitness value, and  stands for the AND 
operation in Boolean logic;  and  come from (24) and (25). 

 

α ൌ ൜1,  ifሺܣ௜ െ ௟ሻ்ܲܭ௜ܤ ൅ ܲሺܣ௜ െ ௟ሻܭ௜ܤ ൏ 0
0,  otherwise                                                 

          (24) 
 

β ൌ ൜ 1, ܲ ൌ ்ܲ ൐ 0
0,  otherwise                  (25) 

IV. DISCUSSION AND CONCLUSION 
This paper discusses the stability problem for a nonlinear 

system described by an NN type fuzzy model. An LDI 
representation and the global fuzzy logic controller is 
constructed by blending all local state feedback controllers. The 
concept of using PPSO to find the common P matrix, which 
satisfies the stability criteria of the nonlinear system, is 
presented in this paper. Based on this criterion, the fuzzy 
controller design, with the LMI technique, can be used to 
stabilize the proposed fuzzy systems. 
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