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Abstract—In this paper, an analytical study is made for the 

dynamic behavior of human brain tissue under transient loading. In 
this analytical model the Mooney-Rivlin constitutive law is coupled 
with visco-elastic constitutive equations to take into account both the 
nonlinear and time-dependent mechanical behavior of brain tissue. 
Five ordinary differential equations representing the relationships of 
five main parameters (radial stress, circumferential stress, radial 
strain, circumferential strain, and particle velocity) are obtained by 
using the characteristic method to transform five partial differential 
equations (two continuity equations, one motion equation, and two 
constitutive equations). Analytical expressions of the attenuation 
properties for spherical wave in brain tissue are analytically derived. 
Numerical results are obtained based on the five ordinary differential 
equations. The mechanical responses (particle velocity and stress) of 
brain are compared at different radii including 5, 6, 10, 15 and 25 mm 
under four different input conditions. The results illustrate that loading 
curves types of the particle velocity significantly influences the stress 
in brain tissue. The understanding of the influence by the input loading 
cures can be used to reduce the potentially injury to brain under head 
impact by designing protective structures to control the loading curves 
types. 
 

Keywords—Analytical method, mechanical responses, spherical 
wave propagation, traumatic brain injury. 

I. INTRODUCTION 
RAUMATIC brain injury (TBI) continues attracting a 
great deal of attentions due to its irreversible effects and 

high mortality or disability. Annual head injury statistics show 
that there are about 1.5 million Americans who suffer TBI each 
year and 50,000 of them die, 230,000 hospitalize and 
80,000-90,000 people experience the onset of long-term 
disability [1]. 

On the prevention side, a better understanding of TBI 
mechanisms is needed. Up to now, much work has been done 
analytically to investigate the mechanical responses of brain 
(intracranial pressure, stress and strain). One of the earliest 
works was done by Anzelius [2], who assumed the head as a 
rigid spherical vessel fully filled with inviscid fluid. In 1969, 
Engin [3] proposed an analytical model to study the 
axisymmetric transient response of a fluid-filled shell subjected 
to a delta-function impulsive loading, where the shell 
representing the skull was considered to have membrane and 
bending properties and the fluid representing the brain was 
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assumed to be inviscid compressible. Based on Engin’s model, 
Talhouni and DiMaggio [4] developed a model considering the 
skull as a thin elastic prolate spheroidal shell to simulate the 
head impact by an explosive shock wave. They investigated the 
distribution of stress in the shell and pressure in the fluid by 
taking into account eccentricity of the head and found that 
eccentricity had a significant effect on the brain response. 
Young [5] proposed a model which combined the Hertzian 
contact stiffness and the effective bending stiffness of 
membrane to predict the brain response during head impact. 
Based on Young’s model, Heydari and Jani [6] developed a 
fluid-filled ellipsoidal shell model with thickness varying, 
which was more realistic than a spherical model. Up to now, 
most of these analytical models assumed brain tissue as 
inviscid fluid whereas the properties of actual brain are more 
complex According to the experimental and simulative studies, 
researchers have found that brain tissue behave more like 
hyper-viscoelastic solid. Therefore, it is worthwhile to further 
develop hyper-viscoelastic analytical models to study the 
response of the brain under dynamic loading. 

On the other hand, the study of wave propagation in soft 
tissue has received a great deal of attentions, due to the 
importance of wave dynamics for the visualization of internal 
organs or bones. In 1978, Chivers and Parry [7] presented a 
compilation of acoustic properties (velocity and attenuation) 
for several mammalian tissues. Kremkau et al. [8] measured 
wave propagation speed and attenuation in the frequency range 
of 1 to 5 MHz in 22 tissue samples from six anatomic sites in 
five normal human brains. Recent studies showed that 
intracranial wave motion could generate significant intracranial 
pressure and strain in the brain, especially from the wave 
produced by the blast loading and high local impact. Thus, it is 
important to consider the influence of stress wave propagation 
in the brain when studying the TBI mechanisms. Valdez and 
Balachandran [9] theoretically investigated wave propagation 
through brain to understand the influence of nonlinear material 
properties of the tissues on the propagation characteristics of 
stress waves generated by transient loading in terms of the 
propagation speed and attenuation. In their study, the brain was 
modeled as hyper-viscoelastic solid and wave was assumed to 
propagate in a one-dimensional rod. All brain fibers are 
assembled at the center of brain, which cause the stress 
concentration. This means the maximum stress will always 
take place at the center of brain, no matter which part of the 
head is impacted. It is not in accord with the fact that the region 
of maximum stress and strain is dependent on the impact 
position. 
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It is necessary to develop a reliable method to account for 
tissue deformation, stress and strain of brain in 
three-dimensional space. In this study, an analytical method 
will be used to investigate the wave propagation behavior in a 
three-dimensional space of a material like human brain tissue 
under transient loading, where brain tissue is modeled as 
hyper-viscoelastic solid, which takes into account both 
nonlinear and time-dependent properties of brain tissue.  

II. ANALYTICAL SOLUTION FOR SPHERICAL WAVE 
PROPAGATION 

We consider spherical wave propagation within an infinite 
medium with an initial spherical void. The inner surface is 
subjected to an initial particle velocity. The responses will be 
obtained, analytically, in terms of particle velocity and stress as 
a function of time and position. 

A. Governing Equations: Equation of Mass Conservation 
and Equation of Motion 

During the propagation all spherical waves keep the 
spherical shape with the same center. As shown in Fig. 1, an 
infinitesimal element is analyzed in the system of spherical 
coordinates. The strain ߝ௥ and particle velocity ݒ in the radial 
direction can be expressed as 
 

( , ) ( , )( , )  ( , )r
u r t u r tr t v r t

r t
ε ∂ ∂

= =
∂ ∂

，  (1) 

 
where ݑሺݎ,  ሻ is the radial displacement. Because of sphericalݐ
symmetry of the motion, the values of circumferential stain in 
the two principal directions are the same and are determined by 

 
( , )( , ) ( , ) u r tr t r t
rθ ϕε ε= = . (2) 

 
Also, ,ݎఏሺߪ  ሻݐ ൌ ,ݎఝሺߪ ሻݐ . For convenience, we use 

௥ߪ , ఏߪ  , ௥ߝ ఏߝ , , and ݒ  to represent 
,ݎ௥ሺߪ ሻݐ , ,ݎఏሺߪ ሻݐ , ,ݎ௥ሺߝ ሻݐ , ,ݎఏሺߝ ሻݐ , and ,ݎሺݒ  ሻݐ , respectively, 
where ߪ௥ and ߪఏ are the radial stress and circumferential stress, 
respectively. 
 

 
Fig. 1 An infinitesimal element in spherical coordinates (adapted from 

[11]) 
 

The governing equations of spherical waves consist of three 
parts, the continuity equations, the motion equation and the 
constitutive equation, which represent the mass conservation, 
the momentum conservation and material properties, 
respectively. The continuity equations are given by 

 

0 and 0r v v
t r t r

θε ε∂ ∂ ∂
− = − =

∂ ∂ ∂
, (3) 

 
and the equation of motion in the radial direction is expressed 
as  
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0
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0rr v

r r t
θσ σσ ρ

−∂ ∂
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∂ ∂
 (4)

 
where ߩ଴ is the density of material. The constitutive equation 
of material (tissue) is given in the next section.  

B. Governing Equations: Constitutive Equation 
The material properties are assumed isotropic and 

homogeneous. The stress in a solid material is based on the 
changing of volume and shape. To model this nearly 
incompressible material, brain tissue, the stress is expressed as 
the sum of a volumetric part, which is determined by 
volumetric only, and a deviatoric part, which depends on shape 
change [10]. The volumetric part of the stress is assumed linear 
elastic, so the bulk modulus, ܭ, is constant. To represent the 
time-dependent/relaxation effect of brain tissue, the deviatoric 
part of the stress (shear modules) is modeled visco-elastic, 
which is formulated in the exponential forms as 
 

( ) /
0( ) tG t G G G e τ−

∞ ∞= + − , (5) 
 
where ܩஶ, ܩ଴ , and ߬ represent the long-time shear modulus, 
the short-time shear modulus, and the decay constant, 
respectively. 

To describe the nonlinear part of the model, a hyper-elastic 
Mooney-Rivlin constitutive law is used. Considering 
visco-elastic properties, the Mooney-Rivlin constitutive law 
can be expressed as [12] 

 

( ) ( )1 1 2 20
= ( ) 3 ( ) 3
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where ܹ is the strain energy , ܫଵ ܽ݊݀ ܫଶ are strain invariants,  
௜௝ܩ ൌ ௜௝ஶܥ ൅ ௜௝݁ି௧/ఛೖܥ , ݇ ൌ 1. According to Miller’s 
experimental study [12], it can be assumed that ܥଵ଴ஶ ൌ  ଴ଵஶܥ
and  ܥଵ଴ ൌ  ଴ଵஶ andܥ ଵ to representܥ ଵஶ andܥ ଴ଵ.  Now, usingܥ
 ଵ଴ respectively, (6) can be rewritten asܥ
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The Lagrange stress can be obtained according to the 
equation ߪ ൌ డௐ

డλ
, which gives  

 
( ) 1/

1 10
=

t tC C e dNτ τσ − −
∞

⎡ ⎤+⎣ ⎦∫  (8) 
 
where Nൌ2λ ൅ 2 െ 2λିଶ െ 2λିଷ 

By using the integration by parts, we can obtain  
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∞
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or 

( ) ( ) 11 //
0 1 1 10

1
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τ
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∞
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where ܥ ൌ ଵஶܥ ൅ ଵ, ଴ܰܥ ൌ ሺ2λ ൅ 2 െ 2λିଶ െ 2λିଷሻ௧ୀ଴ , or in 
an equivalent differential form, 
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Refer to(10), the integral term can be expressed as 

 
( ) ( )1 1/ /

1 0 1 10
1

1 = +
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Substituting this into(12), we obtain  
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0

1 1
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 (13) 

 
Between strain and stretch, a relationship is given as 

ߝ ൌ ଵ
ଶ

ሺߣଶ െ 1ሻ and డఒ
డ௧

ൌ ଵ
√ଶఌାଵ

, where ߝ  is the 
Green-Lagrangian strain. Now we can obtain the constitutive 
relationship of brain tissue in differential form as 
 

( )1
0

1 1

+ = + CM N N
t t
σ σ ε

τ τ
∞∂ ∂

−
∂ ∂  (14) 

 

where ܯ ൌ ܥ ቂ2ሺ2ߝ ൅ 1ሻିభ
మ ൅ 4ሺ2ߝ ൅ 1ሻିଶ ൅ 6ሺ2ߝ ൅ 1ሻିఱ

మቃ. 
Similar to the derivation of generalized equation by Wang et 

al. [11], the three-dimensional nonlinear constitutive equations 
can be reduced to two parts including the volumetric law and 
the distortional law due to the spherical symmetry of the 
motion. The volumetric viscosity can be neglected in wave 
propagation. Thus, (14) can be expressed as 

 

2 3 2 0r rK
t t t t
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 (15) 
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where, ܧ௘௙௙ ൌ ܯܥ  is the effective Young’s modulus, 
௘௙௙ܩ ൌ

ா೐೑೑

ଶሺଵା௩ሻ is the effective shear modulus, and  ߪ௘௙௙ሺߝሻ ൌ
ଵஶሺܰܥ െ ଴ܰሻ is the effective stress.  

C. Solution by Characteristic Method 
Wang et al. [11] proposed the use of characteristic method to 

analyze the propagation features of spherical waves in 
engineering plastics. We use the characteristic method to solve 
the propagation of spherical waves in the brain tissue by 
transforming those five partial differential equations (two 
continuity equations, one motion equation, and two 
constitutive equations) to five ordinary differential equations. 
The two families of characteristic lines are obtained as follows. 

 

( )
0

4
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 (17) 

 
where ܿ௞ is wave velocity in the brain which is dependent on 
strain and relaxation time, and ܭ ൅ ସ

ଷ
 ௘௙௙ is defined as waveܩ

modulus. The corresponding characteristic compatibility 
relationship along these two characteristic lines is  
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where the plus and minus signs stand for wave propagation 
direction. 

Furthermore, we get the third family of characteristic line 
 

=0dr , (19) 
 

and the corresponding characteristic compatibility 
relationships along this characteristic line are 
 

( )2 3 2 0r rd d K d dθ θσ σ ε ε+ − + =  (20) 
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vd dt
rθε =  (22) 

 
where represents the loci of particle movement, (20) and (21) 
represent the material constitutive equations along the particle 
motion locus [11]. 

III. NUMERICAL RESULTS AND DISCUSSION 
A numerical solution is conducted to investigate the 

nonlinear visco-elastic spherical wave propagation in brain 
tissue by using finite difference method. Based on the previous 
in this study is given in Table I [13], [14]. 
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TABLE I 

MOONEY-RIVLIN AND VISCO-ELASTIC CONSTANTS USED IN THIS STUDY 
Tissue ܥ (Pa) ܥଵ (Pa) ܥଵஶ (Pa) Bulk modulus K (GPa) ߬ଵ(s) Density ߩ଴ (kg/mଷ) Poisson’s ratio ߭ 

Brain 65 52.5 12.5 2.19 1/125 1040 0.499999 
 
Here, the Mooney-Rivlin constants ܥ is the average of 10ܥ 

and 01ܥ  used by Kleiven [14]. The ܥ  (short-term) to ܥଵஶ 
(long-term) ratio is taken as 0.19 to derive the values of  ܥଵ and  
,ݎ௥ሺߪଵஶ [15]. The initial condition is taken asܥ ሻݐ ൌ ,ݎఏሺߪ ሻݐ ൌ
,ݎ௥ሺߝ ሻݐ ൌ ,ݎఏሺߝ  ሻݐ ൌ ,ݎሺݒ ሻݐ ൌ 0 , and ݎ଴ ൑ ݎ ൑ ∞ .At ݎ଴, 
particle velocity as a function of time is applied, corresponding 
to a sudden internal expansion. The area under this curve 
represents the total displacement applied atݎ଴.To evaluate the 
effect of the loading profile, four loading curves of particle 
velocity but with the same peak value are applied at ݎ଴ ൌ 5݉݉ 
(Fig. 2). Fig. 2 (a)-(c) show linearly varying velocity, whereas 
Fig. 2 (d) represents a nonlinear process which is sine function. 

A. Effect of Loading Profile and Peak Value  
The mechanical responses at the radii of 5, 6, 10, 15, and 25 

mm are obtained. Fig. 3 (a)-(d) show the particle velocity at 
these radii with corresponding input conditions. As shown in 
these figures, a common feature exists that with the increasing 
of wave propagating distance all particle velocity experience 
attenuation of its amplitude, while the general shape with 
respect to the peak stress is retained. The attenuation is due to 
the effect of spherical dispersion and viscous responses 
induced by the so-called internal dissipative force. Another 

feature is noted that negative particle velocity appears in Fig. 3 
(c) at the end. This is due to the rapid decrease of particle 
velocity which provides a large inertial resistance to the 
spherical dispersion. 

Fig. 4 (a)-(d) show the radial stress at the different radii 
under respective input velocity. Similar to particle velocity, the 
radial stress also attenuates with the propagation of wave in 
radial direction. The loading profile (a) produces the largest 
peak compressive radial stress. After the peak, the compressive 
radial stress reduces to zero and then the stress becomes tensile, 
due to the decrease of velocity which needs a tensile force to 
counteract the inertia force. Loading curve (c) causes the 
largest peak radial tensile stress due to its large acceleration. 
The occurrence of negative particle velocity in Fig. 3 (c) can be 
explained by it as well. Note that the values in both peak 
compressive and tensile stress are very different in Fig. 4 
(a)-(d), even though they have the same peak value of input 
velocity as shown in Fig. 2 (a)-(d). This demonstrates that the 
loading profile affects the maximum radial stress that the peak 
values of radial stress are dominated by the rate of change in 
the input velocity, which is the value of acceleration or 
deceleration. 
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Fig. 2 Input particle velocity time history curves at ݎ଴ ൌ 5݉݉
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Fig. 3 Particle velocity vs. time curves at r=5, 6, 10, 15, and 25 mm, corresponding to four different inputs in Fig. 2a-d, respectively. 
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Fig. 4 Radial stress curves at r=5, 6, 10, 15, and 25 mm, corresponding to four different inputs in Figs. 2 (a)-(d), respectively
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Fig. 5 (a)-(d) show similar plots to those in Fig. 4 (a)-(d), but 
for the circumferential stress. The circumferential stress has 
similar values to those of the radial stress. This is because the 
effective bulk modulus is of the 10଺ times higher than Young’s 
modulus or shear modulus and the Poisson’s ratio used in our 
numerical study is nearly 0.5 where the brain is approximate to 
the incompressible material. The compressive circumferential 
stress takes place when the brain is subjected to sudden internal 

expansion, whereas it is tensile stress under a static pressure. 
This may be seen from the motion equation (4). For a static 
equilibrium equation, the last term of acceleration vanishes. For 
a compressive radial stress, the circumferential stress is always 
tensile. However, for a wave problem, when the term for 
acceleration is sufficiently large, it is possible that a 
compressive circumferential stress is also obtained, for a 
compressive radial stress.  
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Fig. 5 Circumferential stress curves at r=5, 6, 10, 15, and 25 mm, corresponding to four different inputs in Figs. 2 (a)-(d), respectively. 
 

IV. CONCLUSIONS 
This paper presents an analytical study of the dynamic 

behavior of the human brain tissue under sudden internal 
expansion.  

Numerical solution is carried out to investigate the nonlinear 
visco-elastic spherical wave propagation in the brain tissue by 
using characteristic method. From the numerical results, 
following conclusions can be obtained: 
1) Particle velocity and stress experience the attenuation with 

the increasing of propagating distance due to the effect of 
spherical dispersion and viscous responses. 

2) The peak values of radial stress are dominated by 
the changing rate of input velocity which is the value of 
acceleration or deceleration. It is possible to reduce the 
maximum tensile or compressive stress by adjusting the 
input velocity curve shape without changing the input 
boundary deformation. 

3) The compressive circumferential stress takes place when 
brain tissue is subjected to sudden internal expansion. This 
is different from the result of static analysis where it is 
tensile stress under a static loading. The reason is that the 
circumferential stress is affected by both inertia force and 
sudden internal loading. 
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