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device are used to reduce temperature drifting of the LDMOS 
in class A, AB single case-design amplifiers, where IDQ is 
ultra-critical. Temperature compensation in LDMOS 
amplifiers based on the fact that the quiescent current 
increases proportionally with the temperature enhancement of 
the LDMOS case (Tc) after reaching a certain temperature 
point. Therefore, temperature rate must be reversed and 
neutralized as described by Erickson’s research engineer C. 
Blair in “Biasing LDMOS FETs for Linear Operation” [9]. 

However, according to our research, the mentioned discrete 
component bias temperature compensation circuit could 
enable a significant degree of error due to the different 
component tolerances. It is also very difficult to track and 
mirror the exact temperature rise due to the different thermal 
characteristics as well as operating conditions and topologies 
of the amplifier. For example, when two or more high power 
LDMOS constitute a single amplifier utilizing a common heat 
sink; heat dissipated by each device interacts to the others 
throughout the common heat sink. 

II. MATERIALS AND METHODS 
By incorporating a microprocessor controlled bias circuitry, 

we are targeting far more accurate results. Microprocessor 
operates as a control tracking system temperature 
compensator, designed to be used in topologies like Doherty, 
where two or more LDMOS semiconductors must be absolute 
temperature balanced or in any other applications where IDQ 
must be perfectly stable. The principle of the circuit is based 
on the voltage to temperature analog to digital and digital to 
analog conversation. It can be achieved by the use of an 
independent voltage source temperature sensing network that 
provides the temperature variations (-mV/C) of the LDMOS 
junction temperature (Tj) into a microprocessor controller. 
The choice of the microprocessor strictly depends on the 
compensation resolution requirements. As a result, the 
microprocessor can be programmed with the desired LDMOS 
thermal parameters in order to compensate accurately by 
creating the proper error voltage (VGS) at the gates of the 
device. The automatic temperature control block diagram is 
realized in Fig. 4. 

Thermal dissipation is always in reverse proportionally to 
the amplifier’s efficiency as well as proportional to the DC 
power dissipation of the LDMOS ratings. Thus, the choice of 
the LDMOS semiconductors which constitute the amplifier 
under test has been based on the thermal dissipation of its case 
(Tc), drain current operation (VDD), efficiency (η) as well as 
the cooling system employed. The methodology used is 
presented in Freescale’s application note AN 2004 [10]. 

The power dissipation of the device can be expressed using 
(1): 

 
ൌ ݏݏ݅݀ܲ  ሺܴݎ݁ݓ݋݌ ݐݑ݌݊݅ ܨ ൅ כ ܦܫሺ ݎ݁ݓ݋݌ ܥܦ  ሻሻܦܸ  െ

 ሺܴݎ݁ݓ݋݌ ݐݑ݌ݐݑ݋ ܨ ൅  ሻ     (1)ݎ݁ݓ݋݌ ݀݁ݐ݈݂ܿ݁݁ݎ ܨܴ 
 
Junction - to-case thermal resistance is also calculated from 

(2): 
 

ൌ ܥܬߠ  ሺܶܬ െ  (2)             ݊݋݅ݐܽ݌݅ݏݏ݅݀ ܲ / ሻܥܶ 
 
As this research is in progress, a general overview of the 

amplifier’s architecture is illustrated in Fig. 2. It forms a 
hardware system of interaction that presents the crucial key 
role parameters of efficiency, linearity, thermal stability, as 
well as bandwidth of a DVB-T signal amplifier. 

 

 
Fig. 2 System of Interaction of a DVB-T Amplifier 

 

 
Fig. 3 Automatic Temperature Control 

 
The Automatic Temperature Control (Fig. 3) has been 

justified on a combined push pull LDMOS VHF (170-
230MHz) DVB-T amplifier using two Freescale’s [10] 
MRFE6VP61K25H. The amplifier has been mounted on a 
copper heat spreader plate with dimensions 20cm 
X10cmX0.5cm without applying forced-air cooling, so the 
temperature on the LDMOS’s cases would rise very fast. The 
tested quiescent currents were set at 2A, 3A, 4A, 5A and the 
drain voltage at 50V. The drifting average response between 
50-120C LDMOS operation without compensation is given in 
Fig. 4, whereas with compensation in Fig. 5. 
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Fig. 4 IDQ Versus Temperature without Compensation 

 

 
Fig. 5 IDQ Versus Temperature with Compensation 

III. CONCLUSIONS 
Enhancing efficiency versus linearity has always been a 

major research trade off topic in UHF and microwave 
applications [11]. 

Temperature rise has forced many designers to settle the 
“back off” at a lower efficiency point in order to confirm that 
the linear amplifier will not drift operating from the linear 
region under excessive temperature conditions. 

Our research has demonstrated that high power LDMOS 
disable reliable operation without employing a bias 
temperature compensation circuit even operating in class C.  

According to our results, the quiescent current will have a 
great offset from the set value when the LDMOS will reach 
temperatures above 40C. Usually high power LDMOS will 
reach temperature levels up to 120C during long time 
operation. 

Without compensation we detected a power output 
reduction up to 20% and gain instability. 

Thus, achieving stabilization of the optimum efficiency will 
increase the average digital power of the transmitter as well as 

the efficiency. 
The impact of energy consumption benefits also an entire 

network of transmitters becoming very friendly for the 
environment 

It also creates new prospects for future research for the 
optimization of other crucial parameters like the matching 
network for higher return loss when “back off “is set at a very 
low power output point. Finally, it provides information to the 
semiconductor manufacturers to improve the performance of 
the new generation semiconductors based on new research 
evidence. 
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