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Optimal Control of Volterra Integro-Differential

Collocation Method

problem (OCP) for systems governed by Volterra integro-differential
(VID) equation is considered. The method is developed by means
of the Legendre wavelet approximation and collocation method. The
properties of Legendre wavelet together with Gaussian integration
method are utilized to reduce the problem to the solution of nonlinear
programming one. Some numerical examples are given to confirm the
accuracy and ease of implementation of the method.

I. INTRODUCTION

IN the present paper, a collocation approach based on
Legendre wavelets is utilized for numerical approximation

of optimal control u∗ and corresponding optimal state x∗ that
minimizes the quadratic performance index

J =

∫ T

0

(
x2(t) + u2(t) + f(t)x(t) + g(t)u(t)

)
dt, (1)

subject to dynamic system

x′(t) = a(t)x(t) + b(t)u(t) +

∫ t

0

(
K(t, s)ϕ(x(s)

)
ds, (2)

where x(t) and u(t) are real valued functions belong to
L2[0, T ]. In (2), ϕ can be a nonlinear or linear operator.
A wide class of control systems can be described by
Volterra integral (VI) or VID equations. These Optimal
control problems can be used to model many classes
of phenomena, such as population dynamics, continuum
mechanics of materials with memory, economic problem, the
spread of epidemics, non-local problems of diffusion and heat

systems governed by VI or VID systems has been studied by

loss of generality, it is assumed that T = 1.
The approximate optimal solution of both control and state

functions together with the value of performance index in this
paper is obtained by applying a direct method. The direct
approach transforms the control problem after discretization

problem can be solved by means of optimization algorithms
such as sequential quadratic programming or gradient methods
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methods, which is based upon solving the necessary conditions
derived from Pontryagin’ s minimum principle, is their broader
radius of convergence to an optimal solution. In addition, since
the necessary conditions do not have to be derived, the direct
methods can quickly be utilized to solve a number of practical

In recent years, Wavelets lead to a huge number of
applications in numerical approximations. A survey of some

Legendre wavelet has been used by many researchers because
of its good accuracy in approximations. An excellent survey
on applications of Legendre wavelets on solving different

In recent decades, numerical schemes which are based on
operational matrix of integration have been widely utilized for
solving different equations. The idea of these methods is based
upon the integral expression∫ t

0

ψ(τ)dτ ≈ Pψ(x) (3)

where ψ is an arbitrary basis vector and P is operational matrix
of integration. The operational matrix of integration can be
uniquely determined on the use of particular basis functions.
In other words,

ψ′(x) = Bψ(x), (4)

where B is the operational matrix of derivative for any
selected basis. The advantage of using this matrix is that, in
the matrix relation, there is not any approximation symbol;
meanwhile, in the integration form (3), the approximation

and Hosseini introduced an operational matrix of derivative
for Legendre wavelets for solving the singular ordinary
differential equations. Several papers have appeared in the
literature concerned with the applications of operational

In the present paper, we introduce a new direct
computational method to solve the optimal control of
nonlinear VID system with quadratic performance index.
Our method consists of reducing the OCP to a nonlinear
programming (NLP) by first expanding the state rate x′(t),
state and control functions as Legendre wavelet functions
with unknown coefficients. Many well developed optimization
algorithms can be used to solve the resulted NLP [17]. The
operational matrix of derivative D, integration P and the
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conduction problem [1]. The problem of optimal control for

many authors [1]- [15]. In the rest of the paper and without

to an optimization problem [16]. The nonlinear optimization
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Abstract—In this paper, the numerical solution of optimal control [17]. The advantage of direct methods over the indirect

trajectory optimization [16].

of their usages in various sciences can be found in [18].

problems can be found in [19]- [26].

symbol could be seen obviously [26]. In [26], Mohammadi

matrix of derivative [27], [28].
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integration of the cross product of two Legendre wavelet
functions are also given.

review the basic properties of Legendre wavelet which has

method is used to approximate the solution of the optimal
control problem. As a result, a NLP problem is obtained . At
the end of this section, the convergence analysis of Legendre
wavelets is stated. For confirming the effectiveness of the
presented method, several illustrative examples are provided

II. WAVELETS AND THEIR PROPERTIES

Recently, wavelets have found their way into many different
fields of science and engineering. Wavelets constitute a family
of functions constructed from dilation and translation of a
single function called mother wavelet. When the dilation
parameter a and the translation parameter b vary continuously,
we have the following family of continuous wavelets

ψa,b(t) = |a|− 1
2ψ

( t− b

a

)
, a, b ∈ R, a �= 0.

where, ψa,b forms a wavelet basis for L2(R). If we consider
the parameters a and b as discrete values a = a−k

0 , b =
nb0a

−k
0 , where a0 > 0, b0 > 0 and n and k are positive

integers, then we have the following discrete wavelets:

ψn,k(t) = |a0| k2ψ(ak0t− nb0).

In particular, when a0 = 2 and b0 = 1 then ψnk form an

For any positive integer k, the Legendre wavelets are defined

φnm(t) =
{ √

m+ 1
22

k
2Lm(2kt− 2n+ 1), t ∈ [ 2n−2

2k
, 2n
2k
),

0, otherwise,

where n = 1, . . . , 2k−1 and m = 0, . . . ,M − 1. Here, Lm(t)
are the Legendre polynomials of order m. For m = 0, 1, 2, · · · ,
Legendre polynomials can be calculated by using the following

L0(t) = 1, L1(t) = t,

Lm+1(t) =
(2m+ 1

m+ 1

)
tLm(t)−

( m

m+ 1

)
Lm−1(t).

A function f(t) defined over [0, 1) may be expanded in terms
of Legendre wavelets as

f(t) =
∞∑

n=1

∞∑
m=0

cnmφnm(t), (5)

where cnm = 〈f(t), φnm(t)〉, in which 〈·, ·〉 denotes the inner
product. If the infinite series in (5) is truncated, then it can be
written as

f(t) =
2k−1∑
n=1

M−1∑
m=0

cnmφnm(t) = CTφ(t), (6)

where C and φ(t) are 2k−1M × 1 vectors given by

C = [C10, C11, . . . , C1M−1, . . . , C2k−10, . . . , C2k−1M−1]
T ,

φ = [φ10, φ11, . . . , φ1M−1, . . . φ2k−10, . . . , φ2k−1M−1]
T . (7)

In the following section, we introduce the operational matrix
of derivative and integration for Legendre wavelet, and state
the operational matrix of product for Legendre wavelets.
Theorem 1 [26]: Let φ(t)be the Legendre wavelet vector
defined in (7). Then, the first derivative of the vector φ(t)can
be expressed as:

dφ

dt
= Dφ(t),

where D is 2k−1M operational matrix of derivative and
defined as follows:

D =

⎛
⎜⎜⎜⎜⎜⎝

F 0 . . . 0

0 F . . . 0

...
...

. . .
...

0 0 . . . F

⎞
⎟⎟⎟⎟⎟⎠
, (8)

in which F is M ×M square matrix with entries

Frs =
{ 2k

√
(2r − 1)(2s− 1),

r = 2, . . . ,M, s = 1, . . . , r − 1,

and(r + s)isodd,

0, otherwise.

(9)
The integration of vector φ defined in (7) can be obtained as:

∫ t

0

φ(t′)dt′ = Pφ(t),

where P is the 2k−1M × 2k−1M operational matrix for

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

U F · · · F F

0 U · · · F F

...
...

. . .
...

...
0 0 · · · U F

0 0 · · · 0 U

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (10)

In (10), U and F are M ×M matrices given by:

U =
1

2k

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1√
3

0 · · · 0 0

−√
3

3
0

√
3

3
√
5

· · · 0 0

0 −
√

5

5
√

3
0 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 0
√

2M−3

(2M−3)
√
2M−1

0 0 0 · · · −√
2M−1

(2M−1)
√

2M−3
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The outline of this paper is as follows: In Section II, we will

been used in our approximations. In Section III, the proposed

in Section IV. Section V ends this paper with a brief conclusion.

orthonormal basis [18].

A. Legendre Wavelet

as follows [25]:

relation [25]:

B. Operational Matrices of Legendre Wavelet

integration and is given in [20] as:
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and

F =
1

2k

⎛
⎜⎜⎜⎜⎝

2 0 · · · 0

0 0 · · · 0

...
...

. . .
...

0 0 · · · 0

⎞
⎟⎟⎟⎟⎠ .

The integration of the product of two Legendre function vectors is
obtained as

I =

∫ 1

0

(
φ(t)φT (t)

)
dt (11)

where I is an identity matrix.

In the following theorem, the error bound of approximation with
Legendre wavelet for a function f ∈ L2[0, 1], a nonnegative integer
k, m = 0, 1, · · · , n = 0, 1, · · · , 2k−1 is given.
Theorem 2 [29]: Suppose that the function f : [0, 1] −→ R is
m times continuously differentiable, f ∈ Cm[0, 1] . Then CTφ
approximate f with mean error bounded as follows:

‖f − CTφ‖ ≤ 1

m!2mk
sup

x∈[0,1]

|fm(x)|.

proof: see [29].

III. LEGENDRE WAVELET COLLOCATION METHOD

In this section, we use Legendre wavelet for discretization of
considering OCP. Let N be the number of basis functions. The
nodal point arrangement for the Legendre wavelet collocation method
(LWCM) is given as:

ti =
2i− 1

2kM
i = 1, . . . , 2k−1M. (12)

Solving the considered OCP consists of two stages: the discretization
of quadrature performance index (1) and the controlled VID system
(2). In our scheme, we use the matrix of product integration
to approximate the quadrature performance index (1). In the
discretization of the controlled VIE, we utilize both of the quadrature
rule and the Legendre wavelet approximation of control, state and
state rate functions together with collocating the system over the
given nodes in (12).

For discretization of the integro-differential dynamic system (2),
we suppose

u(t) � UTφ(t), x(t) � XTφ(t), x′(t) � XTDφ(t). (13)

where X , U and φ(t) are introduced in (7). By substituting (13) in
dynamic system (2), we gain

XTDφ(t)− a(t)XTφ(t)− b(t)UTφ(t)−∫ t

0

(
k(t, s)ϕ(XTφ(s))

)
ds = 0, XTφ(0) = X0. (14)

By collocating (14) in points (12), we gain

XTDφ(ti)− a(ti)X
Tφ(ti)− b(ti)U

Tφ(ti)−∫ ti

0

(
k(ti, s)ϕ(X

Tφ(s))
)
ds = 0, XTφ(0) = X0. (15)

By using transformation s = ti
2
(τ + 1), (15) is converted to

XTDφ(ti)− a(ti)X
Tφ(ti)− b(ti)U

Tφ(ti)−

∫ 1

−1

(
k(ti,

ti
2
(τ + 1))ϕ(XTφ(

ti
2
(τ + 1)))

)
dτ = 0,

XTφ(0) = X0. (16)

By utilizing Gauss-Legendre (GL) quadrature formula, we obtain

XTDφ(ti)− a(ti)X
Tφ(ti)− b(ti)U

Tφ(ti)− ti
2

N∑
j=0

(
wj

(
k(ti,

ti
2
(τj+1))ϕ(XTφ(

ti
2
(τj+1)))

))
= 0, XTφ(0) = X0.

(17)
where τjs are GL nodes, zeros of Legendre polynomials LM (t) in
the interval [−1, 1] and wjs are the corresponding weights. While
explicit formulas for quadrature nodes are not known, the weights

wj =
2

(1− τ2
j )(L

′
M (τj))2

.

Finally, the controlled VID (2) is reduced to 2k−1M nonlinear
algebraic equations given in (17).

For discritization of the performance index stated in (1), we use
the following approximation methodology. Firstly, the real valued
functions f(t) and g(t) are approximated

f(t) = FTφ(t), g(t) = GTφ(t). (18)

where F = [f10, . . . , f2k−1M ], G = [g10, . . . , g2k−1M ] and φ is
defined in (7).
By substituting (18) in (1), we get

J =

∫ 1

0

(
XTφ(t)φT (t)X + UTφ(t)φT (t)U + FTφ(t)φT (t)X

+GTφ(t)φT (t)U
)
dt. (19)

We obtain from (11)

J(X,U) = XTX + UTU + FTX +GTU. (20)

If f and g be constant functions, so (1) is converted to

J(X,U) = XTX + UTU + fPX + gPU, (21)

where P is given in (10).

IV. NUMERICAL EXPERIMENT

In this section, we examine the accuracy of the new methods
on several examples. These problems are considered in order to
demonstrate the efficiency and accuracy of our method. In order
to analysis the error of the method, the following notations are
introduced:

‖Ex(t)‖∞ = max
1≤i≤2k−1M

|Ex(ti)| ,

‖Eu(t)‖∞ = max
1≤i≤2k−1M

|Eu(ti)| . (22)

where Ex(t) = x∗(t) − XTφ(t), Eu(t) = u∗(t) − UTφ(t) and ti
are given in (12). We applied the method presented in the previous
section on following three examples and obtained the results for k =
2 and different values of M .

C. Convergence of Legendre Wavelet

A. The System Dynamic Approximation

can be expressed in closed form by the following relation [1]:

B. The Performance Index Approximation
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TABLE I
NUMERICAL RESULTS OF EXAMPLE 1

M Ex Eu J∗
2 1.4202E-01 3.7357E-01 1.0511E-02
4 1.6433E-04 1.1330E-02 1.9821E-07
6 6.0008E-06 7.4246E-05 1.1673E-11
8 2.1710E-07 2.5093E-07 2.7293E-12

TABLE II
NUMERICAL RESULTS OF EXAMPLE 2

M Ex Eu J∗
2 8.2349E-02 7.4267E-02 9.3354E-03
4 2.9025E-02 2.5947E-03 5.1861E-04
6 8.0233E-05 4.5393E-04 7.4667E-08
8 1.4878E-07 4.8128E-06 4.5791E-12

A. Example 1
Consider the minimization of functional

J =

∫ 1

0

(
(x(t)− et)2 + (u(t)− e3t)2

)
dt, (23)

subject to nonlinear VID system

x′(t)− 3

2
x(t)+

1

2
u(t)−

∫ t

0

(
et−sx3(s)

)
ds = 0, x(0) = 1. (24)

The exact optimal control and state are x∗(t) = et and u∗(t) = e3t.
Trivially, the optimal value of cost functional is J∗ = 0. The results
of solving this example with LWCM for k = 2 and different values
of M are given in Table I.

Find the optimal control u∗ and corresponding optimal state x∗

that minimizes the quadratic performance index

J =

∫ 1

0

(
(x(t)− et

2

)2 + (u(t)− (1 + 2t))2
)
dt, (25)

subject to VID system

x′(t) + x(t)− u(t)−
∫ t

0

(
t(1 + 2t)es(t−s)x(s)

)
ds = 0. (26)

The optimal control u∗ and corresponding optimal state x∗ are
respectively 1 + 2t and et

2

. Table II presents the results of LWCM
for k = 2 and various values of M .

C. Example 3
Consider the minimization of functional

J =

∫ 1

0

(
(x(t)− t)2 + (u(t)− (1− tet

2

))2
)
dt, (27)

subject to dynamic state

x′(t)− x(t)− u(t) + 2

∫ t

0

(
tse−x2(s)

)
ds = 0. (28)

The optimal value of cost functional is J∗ = 0. The optimal control
u∗(t) and corresponding optimal state x∗(t) are as follows:

{ x∗(t) = t,

u∗(t) = 1− te−t2 ,
(29)

Table III exhibits the results of example 3 with LWCM.

TABLE III
NUMERICAL RESULTS OF EXAMPLE 3

M Ex Eu J∗
2 7.4716E-04 4.5276E-03 3.9430E-06
4 1.9633E-06 1.7998E-04 5.9811E-10
6 5.5157E-08 1.8581E-06 2.4736E-14
8 3.1731E-09 8.4100E-09 8.6735E-17

V. CONCLUSION

A collocation Legendre wavelet-based method was developed to
obtain the approximate optimal control and state of controlled VID
system with quadratic performance index. The proposed approach is
based on converting the OCP into a finite dimensional mathematical
programming problem. Many effective algorithms can be applied to

Legendre wavelet function vectors is an identity matrix and the
operational matrix of derivative is rather sparse, so Legendre wavelet
method is easy to implement and computationally very attractive.
The method is in the case of optimal control of systems governed
by VID equation which is applicable in the field of practical science
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