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Numerical Solution for Integro-Differential
Equations by Using Quartic B-Spline

Wavelet and Operational Matrices

Abstract—In this paper, Semi-orthogonal B-spline scaling
functions and wavelets and their dual functions are presented
to approximate the solutions of integro-differential equations.The
B-spline scaling functions and wavelets, their properties and the
operational matrices of derivative for this function are presented to
reduce the solution of integro-differential equations to the solution of
algebraic equations. Here we compute B-spline scaling functions of
degree 4 and their dual, then we will show that by using them we have
better approximation results for the solution of integro-differential
equations in comparison with less degrees of scaling functions

I. INTRODUCTION

THE integral equation is a mathematical model of
many evolutionary problems with memory arising

years, many different basic functions have been used to

as orthogonal bases and wavelets. A differential equation
can be replaced by an integral equation which incorporates

integral equation automatically satisfies these boundary

may be considered as basis functions generated by dilations

we develop a non- orthogonal (semi-orthogonal) wavelet
using B-spline specially constructed for the bounded

form. Integro-Differential Equations(IDE) have applications
in natural sciences and engineering . Recent work in the
context of solution of these type of problems include spline

Wavelet analysis has been applied in a wide range of
engineering disciplines; particularly, wavelets are very
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successfully used in signal analysis, time frequency analysis

wavelet either have infinite support or a nonsymmetric and
in some cases,fractal nature. These properties can make them

In contrast, the Semi-Orthogonal (SO) wavelets have finite
support, both even and odd symmetry and simple analytical

In this present paper, we apply compactly supported
quartic(five order) (SO) B-spline wavelets, specially
constructed for the bounded interval [0, 1] to solve the
first Order Fredholm integro- differential equation of the
form: ⎧⎨⎩g(x)y′(x) = f(x) +

1∫
0

k(x, t)y(t)dt

y(0) = y0

(1)

where f , g and k are given continuous functions and y is an
unknown function to be determined.
The use of SO compactly supported spline wavelets

wavelets are smoothness,the larger are their supports in
time(space).The order of vanishing moments usually increases
with smoothness.Total positivity properties of splines have
certain desirable properties from an approximation points of

The last decade demonstrates an augmentation of interest
of B-spline wavelets.Solving integral and integro-differential

efficiency of approximation using B-spline wavelets was

obtained results indicate the effectiveness of high-order
B-spline in fault detection and localization.

II. B-SPLINE SCALING FUNCTIONS AND WAVELETS
ON[0,1]

We generate a doubly-indexed family of wavelets form ψ

ψa,b(t) = |a|− 1
2ψ(

t− b

a
), a �= 0, a, b ∈ R (2)

The wavelets have been grouped in different families . These
wavelets have an particularly desirable property that they are

from biology, chemistry, physics, engineering[3]. In recent

estimate the solution of integral equations[9]-[21], such

its boundary conditions [1], as such each solution of the

conditions[3]. In application to discrete data sets, wavelets

and translations of a signal function [2].In this paper,

interval[17]-[16], this wavelet can be represented in a closed-

approximation method [25], collocation method [12], wavelet
basis method [4]-[5],hybrid Legendre polynomials and
block-pulse functions approach [18]-[22], wavelet-Galerkin
method [20],hybrid Taylor polynomials and block-pulse
functions approach [19],Chebyshev collocation method
[23]and Petrov-Galerkin method[30] etc.
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and fast algorithms for easy implementation [10]. Orthogonal

a poor choice for characterization of a function[11]-[29].

expressions,ideal attributes of a basis function[10]-[16].

is justified by their interesting properties[14]-[28].Thes

view[24].

equations using linear B-spline[15],quadratic B-spline[13] and
cubic B-spline scaling functions[7]-[8] This wavelet family
also found and application in image processing[2]. The

compared with other families of orthogonal wavelets[26].The

by dilating and translating: [11]
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zero in everywhere except of determined closed and bounded
interval that we say so-called function has compact support.
We can say generally that jth generation of daughters will have
2j wavelets defined by:

ψj,k(t) = ψ(2jt− k), 0 ≤ k ≤ 2j − 1 (3)

The members of this generation will be constant on intervals
of length 2−(j+1) . The first idea in studying of wavelets was
this matter that we can write functions as linear combinations
of the Father and Mother wavelets and first generation of
daughters, This basis denote by Bj .There is another basis
of wavelets that is called sons wavelet . Here, we can define
generations of sons wavelet by the following relation :

φj,k(t) = ψ(2jt− k), 0 ≤ k ≤ 2j − 1 (4)

Now, assume Sj denote the set of 2j functions {φj,k(t)}2
j−1

k=0 .
Therefore, Sj will account as a basis for the inner product
space Vj . Vector space Vj with the basis Sj , forms a nested
sequence of subspaces V0 ⊆ V1 ⊆ V2 ⊆ . . . and using the
basis Bj for Vj , and orthogonal decomposition theorem we
will have :

Vj = Vj−1 ⊕ V ⊥
j−1 = (Vj−2 ⊕ V ⊥

j−2)⊕ V ⊥
j−1 =

. . . = V0 ⊕ V ⊥
0 ⊕ V ⊥

1 ⊕ . . . V ⊥
j−1 (5)

The wavelets have especial particularities that all of them is
gathered in a collection of Multi Resolution Analysis (MRA).
Multi Resolution Analysis of L2(R) is defined as a sequence
of closed subspaces Vj of L2(R), j ∈ Z, with the following

1) Vj ⊂ Vj+1

2) f(x) ∈ Vj ⇐⇒ f(2x) ∈ Vj+1

3) f(x) ∈ V0 ⇐⇒ f(x+ 1) ∈ V0
4)

⋃
Vj is dense in L2(R) and

⋂
Vj = φ

5) A scaling function ϕ ∈ V0,with a non vanishing integral,
exists such that the collection ϕ is Riesz basis of V0

Some of the important properties relevant to the present work
are given below:
1. vanishing moments: a wavelet is said to be have a
vanishing moment of order m if

+∞∫
−∞

xpψ(x)dx = 0; p = 0, ...,m− 1 (6)

All wavelets must satisfy the above condition for p = 0.
2. Semi − orthogonality: the wavelets ψj,k form a
semi-orthogonal basis if

〈ψj,k, ψi,s〉 = 0; i �= j; ∀i, j, k, s ∈ Z (7)

The generalization to biorthogonal wavelets has been
considered to gain more flexibility. Here,a dual scaling
function ϕ̃ and a dual wavelet ψ̃ exist that generate a Dual
Multi Resolution Analysis (DMRA) with subspaces Ṽj and
W̃j , such that

Ṽj⊥Wj and Vj⊥W̃j (8)

and consequently

W̃j⊥Wj′ for j �= j′ (9)

When semi-orthogonal wavelets are constructed from
B-spline of order m, the lowest octave level j = j0 is

2jo ≥ 2m− 1 (10)

so as to give a minimum of one complete wavelet on the
interval [0,1].In this paper we will use a wavelet generated by
a quartic B-spline(m = 5) cardinal B-spline function.
From(10), the five order B-spline lowest level, which must be
an integer,is determined to j0 = 4. For each level j ≥ j0 this
constrains all octave levels to j ≥ 4 .

A. Definition

Let m and n be two positive integers and

a = x−m+1 = ... = x0 < x1 < ... < xn

= xn+1 = ... = xn+m−1 = b (11)

be an equally spaced knots sequence. The functions

Bm,j,X(x) =
x− xj

xj+m−1 − xj
Bm−1,j,X(x)

+
xj+m − x

xj+m − xj+1
Bm−1,j+1,X(x) (12)

and

B1,j,X(x) =

{
1 x ∈ [xj , xj+1)
0 else

(13)

are called cardinal B-spline functions of order m ≥ 2

for the knot sequence X =
{
xjk

}2j+m−1

k=1−m
and

Supp[Bm,j,X(x)] = [xj , xj+m]
⋂
[a, b] .

For the sake of simplicity, suppose [a, b] = [0, n] and
xj = j, j = 0, ...n . The Bm,j,X(x) = Bm(x − k), j =
0, ..., n − m , are interior B-spline functions , while
the remaining Bm,j,X(x), j = −m + 1, ...,−1 and

for the bounded interval [0, n]. Since the boundary B-spline
functions at 0 are symmetric reflections of those at n, it is
sufficient to construct only the first half functions by simply
replacing x with n− x .
By considering the interval [a, b] = [0, 1], at any level
j ∈ Z+ ,the discrete step is 2−j , and this generates n = 2j

Xj =

⎧⎨
⎩

xj1−m = xj2−m = ... = xj0 = 0

xjk = k2−j k = 1, ..., 2j − 1
xj
2j

= xj
2j+1

= ... = xj
2j+m−1

= 0
(14)

For each level j ≥ j0 the scaling function of order m can be
defined as allows:

properties [11]:

determined in[10] by

j = n−m+1, ..., n−1 are boundary B-spline functions[14],

number of segments in [0, 1] with knot sequence[31]
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ϕm,j,k(x) =⎧⎨⎩
Bm,j0,k(2

j−jox) k = 1−m, ...,−1
Bm,j0,2j−m−k(1− 2j−jox) k = 2j −m+ 1, ..., 2j − 1
Bm,j0,0(2

j−jox− 2−jok) k = 0, ..., 2j −m
(15)

And the two-scale relation for the m-order semi-orthogonal
compactly supported B-spline wavelet are defined as follows:

ψm,j,k−m(x) =
2k+2m−2∑

j=k

qk,jBm,j,k−m(x), k = 1, ...,m− 1

(16)

ψm,j,k−m(x) =

2k+2m−2∑
j=2k−m

qk,jBm,j,k−m(x), k = m, ..., n−m+ 1

(17)

ψm,j,k−m(x) =

n+k+m−1∑
j=2k−m

qk,jBm,j,k−m(x), k = n−m+ 2, ..., n

(18)

where qk,j = qj−2k .
Hence, there are 2(m − 1) boundary wavelets and (n −
2m + 2) inner wavelet in boundary interval [a, b]. Finally by
considering the level j with j ≥ j0 , the B-spline wavelet in
[0, 1] can be expressed as follows:

ψm,j,k(x) ={
ψm,j0,k(2

j−jox) k = −m+ 1, ...,−1
ψm,j0,2j−2m+1−k(1− 2j−jox) k = 2j − 2m+ 2, ..., 2j −m
ψm,j0,0(2

j−jox− 2−jok) k = 0, ..., 2j − 2m+ 1
(19)

The scaling functions ϕm,j,k(x) ,occupy m segments and
the wavelet functions ψm,j,k(x) occupy 2m− 1 segments.

III. GENERAL ORDER B-SPLINE WAVELETS

The B-spline wavelet can be defined recursively by the

ϕm(x) =

∫ +∞

−∞
ϕm−1(x− t)ϕ1(t)dt =

∫ 1

0

ϕm−1(x− t)dt

(20)

where

ϕ1(x) =

{
1 0 ≤ x < 1
0 else

(21)

The construction of the scaling function of m-th order
B-spline wavelet is based on the two scale relation:

ϕm(x) =
m∑

k=0

pkϕm(2x− k) (22)

where pk is the two scale sequence and can be expressed
as a combination:

pk = 21−m

(
m
k

)
, 0 ≤ k < m (23)

The two-scale relation for m-th order B-spline wavelets is
given by:

ψm =
3m−2∑
k=0

qkϕm(2x− k) (24)

qk = (−1)
k
21−m

m∑
l=0

(
m
l

)
ϕ2m(k − l + 1) (25)

The decomposition relation for m-th order B-spline wavelet is:

ϕm(2x− l) =
∑
k

(
al−2kϕ(x− k) + bl−2kψ(x− k)

)
, l ∈ Z

(26)
where decomposition sequences{ak} and {bk} are as follows:

ak =
(−1)

k+1

2

∑
l

q−k+2m−2l−1cl,2m (27)

bk = − (−1)
k+1

2

∑
l

p−k+2m−2l−1cl,2m (28)

In (27)and (28) the coefficients sequence {ck,m} is presented
by m-th order fundamental cardinal spline functions:

Lm(x) =
∞∑

k=−∞
ck,mϕm(

m

2
+ x− k) (29)

To obtain the coefficient sequences,using an analytical
relation for B-spline wavelets with order m < 3 . For higher
values of m obtaining the analytical solutions became very
difficult,and for values of m greater than 5, it is impossible
in the light of Abel-Ruffini theorem. Therefore, the analytical
formula was omitted here. Another way of obtaining the
coefficient sequences is to form the bi-infinite system of
equations as follows:

∞∑
k=−∞

ck,mϕm(
m

2
+ j − k) = δj,0, j ∈ Z (30)

The coefficients sequence {ck,m} is infinite for m ≥ 3 ,
so that (29)does not vanish identically outside any compact
set.However, these coefficients decay to zero exponentially fast
as k → ∞ , which implies decaying to zero of (29) as x →
±∞ .

IV. QUARTIC B-SPLINE WAVELET (m = 5)

Quartic B-spline ϕ5(x) scaling function is given by the
next recursive relation:

convolution[10]:
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Fig. 1. Scaling functions of quartic B-spline wavelet

Fig. 2. Wavelet functions of quartic B-spline wavelet

ϕ5(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x4

24 0 ≤ x < 1

−x4

6 + 5x3

6 − 5x2

4 + 5x
6 − 5

24 1 ≤ x < 2
x4

4 − 5x3

2 + 35x2

4 − 25x
2 + 155

24 2 ≤ x < 3

−x4

6 + 5x3

2 − 55x2

4 + 65x
2 − 655

24 3 ≤ x < 4
x4

24 − 5x3

6 + 25x2

4 − 125x
6 + 625

24 4 ≤ x < 5
0 else

(31)
where the compact support in the range [0,m] referring to

the property B-spline scaling functions. Two scale sequences
{pk}5k=0 and {qk}13k=0 are as follow . Based on them two scale
relations for ϕ5(x) and ψ5(x) can be constructed using(22)
and(24)respectively.

{pk}5k=0 =

{
1

16
,
5

16
,
5

8
,
5

8
,
5

16
,
1

16

}
(32)

{qk}13k=0 = { 1

5806080
,− 169

1935360
,

2141

725760
,− 5197

181440
,

149693

1161216
,− 54289

165888
,
74339

145152
,− 74339

145152
,
54289

165888
,− 149693

1161216
,

5197

181440
,− 2141

725760
,

169

1935360
,

1

5806080
} (33)

quartic B-spline wavelet.

So the corresponding scaling function is:

ϕj,k(x) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(xj−k)4

24
k ≤ xj < k + 1

− (xj−k)4

6
+

5(xj−k)3

6
− 5(xj−k)2

4
+

5(xj−k)

6
− 5

24
k + 1 ≤ xj < k + 2

(xj−k)4

4
− 5(xj−k)3

2
+

35(xj−k)2

4
−

25(xj−k)

2
+ 155

24
k + 2 ≤ xj < k + 3

− (xj−k)4

6
+

5(xj−k)3

2
− 55(xj−k)2

4
+

65(xj−k)

2
− 655

24
k + 3 ≤ xj < k + 4

(xj−k)4

24
− 5(xj−k)3

6
+

25(xj−k)2

4
−

125(xj−k)

6
+ 625

24
k + 4 ≤ xj < k + 5

0 else
(34)

With the respective left and right hand side boundary scaling
function.The actual coordinate position x is related to xj
according to xj = 2jx.

ϕ5(2x− k) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2x−k)4

24
k/2 ≤ x < k/2 + 1/2

− (2x−k)4

6
+

5(2x−k)3

6
− 5(2x−k)2

4
+

5(2x−k)
6

− 5
24

k/2 + 1/2 ≤ x < k/2 + 1

(2x−k)4

4
− 5(2x−k)3

2
+

35(2x−k)2

4
−

25(2x−k)
2

+ 155
24

k/2 + 1 ≤ x < k/2 + 3/2

− (2x−k)4

6
+

5(2x−k)3

2
− 55(2x−k)2

4
+

65(2x−k)
2

− 655
24

k/2 + 3/2 ≤ x < k/2 + 2

(2x−k)4

24
− 5(2x−k)3

6
+

25(2x−k)2

4
−

125(2x−k)
6

+ 625
24

k/2 + 2 ≤ x < k/2 + 5/2

0 else

(35)

ϕ(x) =
1

16
ϕ(2x) +

5

16
ϕ(2x− 1) +

5

8
ϕ(2x− 2)+

5

8
ϕ(2x− 3) +

5

16
ϕ(2x− 4) +

1

16
ϕ(2x− 5) (36)

ϕ5,−4(x) =⎧⎨⎩
(16x+4)4

24
− 5(16x+4)3

6
+ 25(16x+4)2

4
−

125(16x+4)
6

+ 625
24

0 ≤ x < 1/16
0 else

(37)

ϕ5,−3(x) =⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− (16x+3)4

6
+ 5(16x+3)3

2
− 55(16x+3)2

4
+

65(16x+3)
2

− 655
24

0 ≤ x < 1/16
(16x+3)4

24
− 5(16x+3)3

6
+ 25(16x+3)2

4
−

125(16x+3)
6

+ 625
24

1/16 ≤ x < 1/8
0 else

(38)

ϕ5,−2(x) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16x+2)4

4
− 5(16x+2)3

2
+ 35(16x+2)2

4
−

25(16x+2)
2

+ 155
24

0 ≤ x < 1/16

− (16x+2)4

6
+ 5(16x+2)3

2
− 55(16x+2)2

4
+

65(16x+2)
2

− 655
24

1/16 ≤ x < 1/8
(16x+2)4

24
− 5(16x+2)3

6
+ 25(16x+2)2

4
−

125(16x+2)
6

+ 625
24

1/8 ≤ x < 3/16
0 else

(39)
Figs. 1 and 2 show the scaling and wavelet function for
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ϕ5,−1(x) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− (16x+1)4

6
+ 5(16x+1)3

6
− 5(16x+1)2

4
+

5(16x+1)
6

− 5
24

0 ≤ x < 1/16
(16x+1)4

4
− 5(16x+1)3

2
+ 35(16x+1)2

4
−

25(16x+1)
2

+ 155
24

1/16 ≤ x < 1/8

− (16x+1)4

6
+ 5(16x+1)3

2
− 55(16x+1)2

4
+

65(16x+1)
2

− 655
24

1/8 ≤ x < 3/16
(16x+1)4

24
− 5(16x+1)3

6
+ 25(16x+1)2

4
−

125(16x+1)
6

+ 625
24

3/16 ≤ x < 1/4
0 else

(40)

ϕ5,12(x) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− (16x−12)4

6
+ 5(16x−12)3

2
− 55(16x−12)2

4
+

65(16x−12)
2

− 655
24

15/16 ≤ x < 1
(16x−12)4

4
− 5(16x−12)3

2
+ 35(16x−12)2

4
−

25(16x−12)
2

+ 155
24

7/8 ≤ x < 15/16

− (16x−12)4

6
+ 5(16x−12)3

6
− 5(16x−12)2

4
+

5(16x−12)
6

− 5
24

13/16 ≤ x < 7/8
(16x−12)4

24
12/16 ≤ x < 13/16

0 else
(41)

ϕ5,13(x) =⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(16x−13)4

4
− 5(16x−13)3

2
+ 35(16x−13)2

4
−

25(16x−13)
2

+ 155
24

15/16 ≤ x < 1

− (16x−13)4

6
+ 5(16x−13)3

6
− 5(16x−13)2

4
+

5(16x−13)
6

− 5
24

7/8 ≤ x < 15/16
(16x−13)4

24
13/16 ≤ x < 7/8

0 else
(42)

ϕ5,14(x) =⎧⎪⎪⎨⎪⎪⎩
− (16x−14)4

6
+ 5(16x−14)3

6
− 5(16x−14)2

4
+

5(16x−14)
6

− 5
24

15/16 ≤ x < 1
(16x−14)4

24
7/8 ≤ x < 15/16

0 else
(43)

ϕ5,15(x) =

{
(16x−15)4

24 15/16 ≤ x < 1
0 else

(44)

ψ(x) =
13∑
k=0

qkϕ(2x− k) (45)

ψ5(x) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
8709120x

4 0 ≤ x < 1/2
− 73

1244160x
4 + 1

8505x
3 − 1

11340x
2+

1
34020x− 1

272160 1/2 ≤ x < 1
9581

4354560x
4 − 19417

2177280x
3 + 1303

96768x
2−

19609
2177280x+ 6547

2903040 1 ≤ x < 3/2
− 118927

4354560x
4 + 366119

2177280x
3 − 186253

483840x
2+

121121
311040x− 427181

2903040 3/2 ≤ x < 2
759239
4354560x

4 − 3146561
2177280x

3 + 6466601
1451520x

2−
− 13202873

2177280 x+ 26819897
8709120 2 ≤ x < 5/2

− 2980409
4354560x

4 + 5183893
725760 x

3 − 13426333
483840 x2+

134472511
2903040 x− 123314239

4354560 5/2 ≤ x < 3
7873577
4354560x

4 − 16524079
725760 x3 + 7385369

69120 x2−
17868671
80640 x+ 497668543

2903040 3 ≤ x < 7/2
− 14714327

4354560 x
4 + 108543091

2177280 x3 − 56901557
207360 x2+

1454458651
2177280 x− 5286189059

8709120 7/2 ≤ x < 4
15619
3402 x

4 − 33822017
435456 x3 + 15828929

32256 x2−
597598433
435456 x+ 277413649

193536 4 ≤ x < 9/2
− 15619

3402 x
4 + 38150335

435456 x3 − 20157247
32256 x2+

859841695
435456 x− 64472345

27648 9/2 ≤ x < 5
14714327
4354560 x

4 − 4466137
62208 x3 + 165651247

290304 x2−
875490655
435456 x+ 4614904015

1741824 5 ≤ x < 11/2
− 7873577

4354560x
4 + 30717383

725760 x3 − 179437319
483840 x2+

16606729
11520 x− 869722273

414720 11/2 ≤ x < 6
2980409
4354560x

4 − 12698561
725760 x3 + 16211669

96768 x2−
19138891
26880 x+ 3289787993

2903040 6 ≤ x < 13/2
− 379619

2177280x
4 + 219161

45360 x
3 − 48550091

967680 x2+
134333585
580608 x− 206319601

516096 13/2 ≤ x < 7
118927
4354560x

4 − 887291
1088640x

3 + 26470067
2903040 x

2−
78936197
1741824 x+ 1176488101

13934592 7 ≤ x < 15/2
− 1915

870912x
4 + 38237

544320x
3 − 2442883

2903040x
2+

7802653
1741824x− 124594649

13934592 15/2 ≤ x < 8
503

8709120x
4 − 1069

544320x
3 + 72701

2903040x
2−

1236079
8709120x+ 21016259

69672960 8 ≤ x < 17/2
1

8709120x
4 − 1

241920x
3 + 1

17920x
2−

3
8960x+ 27

35840 17/2 ≤ x < 9
0 else

V. FUNCTION APPROXIMATING USING SCALING FUNCTION

For any positive integer M = j0, a function f(x) defined
over [0, 1] may be represented by B-spline scaling functions as:

f(x) =
2M−1∑
k=−4

skϕM,k = STΦM (46)

where

S = [s−4, s−3, ..., s2M−1]

ΦM = [ΦM,−4,ΦM,−3, ...,ΦM,2M−1] (47)

with

sk =

1∫
0

f(x)ϕ̃M,k(x)dx, k = −4,−3, ..., 2M − 1 (48)
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where ϕ̃M,k(x) are dual functions of ϕM,k(x) .

Φ̃ = TΦΦ, TΦ = (PM )
−1 (49)

These can be obtained by linear combinations of
ϕM,k(x) , k = −4,−3, ..., 2M − 1 , as follows.Let Φ̃M be
the dual functions of ΦM given by:

Φ̃M = [ϕ̃M,−4, ϕ̃M,−3, ..., ϕ̃M,2M−1] (50)

Using (47)and(48)we get:

∫ 1

0

Φ̃MΦT
Mdx = I1 (51)

where I1 is(2M + 4)× (2M + 4) identity matrix. Let:

PM =

1∫
0

ΦMΦT
Mdx (52)

The entry (PM )i,j of the matrix PM is calculated from:

1∫
0

ϕM,i(x)ϕM,j(x)dx (53)

From(51)and(52) we get:

Φ̃M = (PM )
−1

ΦM (54)

Furthermore,a function f(x) defined over[0, 1] may be
represented by B-spline wavelets as:

f(x) =
2j−1∑
k=−4

cm,kϕ5,k(x) +
∞∑
j=5

2j−5∑
k=−4

dj,kψj,k(x) (55)

If the infinite series in(55) is truncated at M , then(55) cam
be written as:

f(x) �
15∑

k=−4

cm,kϕ5,k(x) +
M∑
j=5

2j−5∑
k=−4

dj,kψj,k(x) = CTΨ(x)

(56)

where ϕ5,k and ψj,k are scaling and wavelets functions,
respectively C and Ψ are(2M + 4)× 1 vectors given by:

C = [c−4, c−3, ..., c15, d5,−4, d5,−3

, ..., d5,7, ..., dM,−M+1, ..., d2M ,−5] (57)

Ψ = [ϕ5,−4, ϕ5,−3, ..., ϕ5,15, ψ5,−4,

ψ5,−3, ..., ψ5,7, ..., ψM,−M+1, ..., ψM,2M−5] (58)

with

ck =

1∫
0

f(x)ϕ̃5,k(x)dx, k = −4,−3, ...15 (59)

dj,k =

1∫
0

f(x)ψ̃j,k(x)dx,

j = 5, 4, ...M, k = −4,−3, ..., 2j − 5 (60)

whereϕ̃5,k(x) and ψ̃j,k(x) are dual functions of ϕ5,k(x)
and ψj,k(x) respectively.These can be obtained by linear
combinations as follows:

Φ = [ϕ5,−4(x), ϕ5,−3(x), ..., ϕ5,15(x)]
T (61)

Ψ = [ψ5,−4(x), ψ5,−3(x), ..., ψM,2M−5(x)]
T (62)

The differentiation of vectors ΦM in (47)can be expressed
as:

Φ′
M = DΦΦM (63)

where DΦis (2M + 4)× (2M + 4) operational matrices of
derivative for B-spline scaling functions.

DΦ =

1∫
0

Φ′
M (t)Φ̃T

M (t)dt

= (

1∫
0

Φ′
M (t)ΦT

M (t)dt)(PM )
−1

= F (PM )
−1 (64)

where

F =

1∫
0

Φ′
M (t)ΦT

M (t)dt (65)

F is matrices (2M + 4)× (2M + 4) as follows:

⎡⎢⎢⎣ 1

∫

0
ϕ′

M,−4(t)ϕM,−4(t)dt · · ·
1

∫

0
ϕ′

M,−4(t)ϕ
M,2M−1

(t)dt

.

.

.
. . .

.

.

.
1∫

0
ϕ′

M,2M−1
(t)ϕM,−4(t)dt · · ·

1∫

0
ϕ′

M,2M−1
(t)ϕ

M,2M−1
(t)dt

⎤⎥⎥⎦
(66)

Since the element ϕM,k in the vector ΦM given in(47) is
nonzero between k

2M
and k+5

2M
,for any entries of Fj,k we

have:

Fj,k =

1∫
0

ϕ′
M,j(t)ϕM,k(t)dt =

∫ k+5

2M

k

2M

ϕ′
M,j(t)ϕM,k(t)dt

(67)

VI. THE OPERATIONAL MATRICES OF
DERIVATIVE
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The differentiation of vectors Ψ in (58) can be expressed as:

Ψ′ = DΨΨ (68)

where DΨ is (2M + 4) × (2M + 4) operational matrices
of derivative for B-spline wavelets. The matrix DΨ can be
obtained by considering:

Ψ = HΦM (69)

where H is a (2M + 4) × (2M + 4) matrix,which can be
calculated as follows:

Φj = [ϕj,−4, ϕj,−3, ..., ϕj,2j−1]
T

Ψj = [ψj,−4, ψj,−3, ..., ψj,2j−5]
T (70)

Using (32)and(70) we get

Φj = αjΦj+1 (71)

where αj , j = 5, ..., is (2j + 4)× (2j+1 + 4) matrix. From
(33) and(70) we have:

Ψj = UjΦj+1 (72)

where Uj , j = 4, ..., is (2j)×(2j+1+4) matrix.Using(62),(71)
and(72) matrix H obtain as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α5 × α4 × ...× αM

−−−−−−−−
U5 × α4 × ...× αM

−−−−−−−−
...

UM−2 × αM−1 × αM

−−−−−−−−
UM−1 × αM

−−−−−−−−
UM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(73)

From(64),(65) and(73) we get:

Ψ′ = HΦ′
M = HDΦΦM = HF (PM )

−1
ΦM = DΨΨ (74)

VIII.

In this section we solve first order Fredholm
integro-differential equations of the form (1) by using
B-spline wavelets.Let:

w(x) =

1∫
0

k(x, t)y(t)dt (75)

For this purpose, we first approximate y(x) and w(x)to
expand(56)as:

y(x) = CTΨ(x) (76)

w(x) =

1∫
0

k(x, t)CTΨ(t)dt (77)

where Ψ(x) is defined in (58) and C is (2M+4)×1 unknown
vector defined similarly to C in(57).We can approximate
(77) using quadrature Newton-Cotes integration techniques as:

w(x) =

1∫
0

k(x, t)CTΨ(t)dt =
n∑

i=1

ωik(x, ti)C
TΨ(ti) (78)

where ωi and ti are weight and nodes of Newton-Cotes
integration method.For approximate y′(x) to expand(68)as:

y′(x) = CTΨ′(x) = CTDΨΨ(x) (79)

From (1),(77)and(78), we get:

g(x)CTDΨΨ(x) = f(x) + w(x) (80)

Also using boundary values in(1) and(76)we have

CTΨ(0) = y0 (81)

To find the solution y(x) in (76) we first collocate (80)in xi =
(2i− 1)/(2M+2 − 1), i = 1, ..., 2M+1 , the resulting equation
generates 2M+1 algebraic equations. The total unknowns for
vector C in (76) is 2M+1+2 . These can be obtained by using
(80),(81).

IX.
In this section, we found an error bound for the presented

method.

A. Theorem 1

Assume that f ∈ C5[0, 1] is represented by quartic B-spline

|dj,k| ≤ με
2−6j

5!
(82)

where μ = max
∣∣f (5)(t)∣∣

t∈[0,1]
and ε =

1∫
0

∣∣∣x5ψ̃5(x)
∣∣∣dx .

B. Theorem 2

Consider the previous theorem assume that ej(x) be error
of approximation in space V j , then

|ej(x)| = O(2−5j) (83)

Thus, order of error depend on the level j. Obviously, for
larger level of j, the error of approximation will be smaller.

VII. THE OPERATIONAL MATRICES OF
DERIVATIVE USING WAVELETS

FIRST ORDER FREDHOLM INTEGRO-DIFFERENTIAL
EQUATIONS

ERROR CONSIDERATION

wavelets as (56), where has 5 vanishing moments, then [10]
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C. Theorem 3

For the m-th order B-spline wavelet the approximation
error decreases with the m-th power of the scale 2j

‖f − Pjf‖ ≤ C2−jm
∥∥∥f (m)

∥∥∥ (84)

Specifically we can derive the following asymptotic relation,

lim
j→∞

‖f − Pjf‖ = Cm2−jm
∥∥∥f (m)

∥∥∥ (85)

Where the constant Cm is the same for all spline wavelet

Cm =

√
B2m

(2m)!
(86)

Where B2m is Bernouillis number of order 2m.

D. Theorem 4

Assume K1,K2 ∈ L2 in two dimensional rectangle
[0, 1] × [0, 1] and g1, g2 ∈ ([0, 1] × [0, 1]) . If y and yj are
the exact and approximate solution (obtained by m-order
B-spline wavelet) of (1), respectively, then

‖y(x)− yj(x)‖ ≤ B2−jm
∥∥∥y(m)

∥∥∥ (87)

X. NUMERICAL EXAMPLES

We applied the method presented in this paper and solved
three examples . This method differs from the collocation

these could be used as a basis for comparison.
1) Example 1: Consider first-order Fredholm

integro-differential equation

⎧⎪⎪⎨⎪⎪⎩
y′(x) = − cos(2πx)− 2π sin(2πx)− 1

2 sin(4πx)

+
1∫
0

sin(4πx+ 2πt)y(t)dt+ y(x)

y(0) = 1

(88)

The exact solution of this problem is y(x) = cos(2πx) .
We applied the method presented and solved equation. The
absolute error for M = 4, 5 are shown in Table I .

2) Example 2: Consider first-order Fredholm
integro-differential equation

⎧⎨⎩y′(x) = 1−e1+x

1+x +
1∫
0

exty(t)dt+ y(x)

y(0) = 1

(89)

The exact solution of this problem is y(x) = ex . The absolute
error for M = 4, 5 are shown in Table II .

TABLE I
EXACT AND ABSOLUTE ERROR VALUES WITH M=4,5

xi M = 4 M = 5 Exact

0 0.026× 10−8 0.011× 10−8 1.00000000

0.1 0.0194× 10−8 0.0168× 10−8 0.80901699

0.2 0.0166× 10−8 0.016× 10−8 0.30901699

0.3 0.012× 10−8 0.010× 10−8 -0.30901699

0.4 0.0194× 10−8 0.015× 10−9 -0.80901699

0.5 0.0786× 10−8 0.066× 10−8 -1.00000000

0.6 0.001× 10−8 0.012× 10−9 -0.80901699

0.7 0.0316× 10−8 0.029× 10−9 -0.30901699

0.8 0.017× 10−8 0.0116× 10−9 0.30901699

0.9 0.0293× 10−8 0.0066× 10−8 0.80901699

1 0.014× 10−8 0.0123× 10−8 1.00000000

TABLE II
EXACT AND ABSOLUTE ERROR VALUES WITH M=4,5

xi M = 4 M = 5 Exact

0 0.045× 10−8 0.023× 10−10 1.00000000

0.1 1.010× 10−8 0.0010× 10−10 1.10517092

0.2 1.0554× 10−9 0.024× 10−10 1.22140276

0.3 0.052× 10−9 0.022× 10−10 1.34985881

0.4 0.037× 10−8 0.007× 10−10 1.49182470

0.5 0.068× 10−9 0.018× 10−10 1.64872127

0.6 0.027× 10−8 0.015× 10−10 1.82211880

0.7 0.06× 10−9 0.006× 10−10 2.01375271

0.8 0.011× 10−9 0.0126× 10−10 2.22554093

0.9 0.0292× 10−9 0.0042× 10−10 2.45960311

1 0.01× 10−9 0.003× 10−10 2.71828183

TABLE III
EXACT AND ABSOLUTE ERROR VALUES WITH M=4,5

xi M = 4 M = 5 Exact

0 0.0093× 10−8 0.006× 10−8 0.0

0.1 0.0095× 10−9 0.0045× 10−9 0.09531018

0.2 0.012× 10−9 0.0036× 10−9 0.18232156

0.3 0.012× 10−9 0.01× 10−10 0.26236426

0.4 0.076× 10−8 0.092× 10−9 0.33647224

0.5 0.126× 10−8 0.05× 10−10 0.40546511

0.6 0.006× 10−9 0.003× 10−9 0.47000363

0.7 0.15× 10−9 0.076× 10−9 0.53062825

0.8 0.076× 10−9 0.004× 10−9 0.58778666

0.9 0.008× 10−9 0.001× 10−9 0.64185389

1 0.006× 10−9 0.0066× 10−9 0.69314718

3) Example 3:

⎧⎨⎩y′(x) = 1
1+x − x

2 − ln(x+ 1) + 1
(ln 2)2

1∫
0

x
1+ty(t)dt+ y(x)

y(0) = 0
(90)

The exact solution of this problem is y(x) = ln(1 + x) . The
absolute error for M = 4, 5 are shown in Table III .

[6]

transforms of a given order m, and is given by [31]

procedure with chebyshev wavelets presented in [27] and
hybrid taylor and block-pulse functions given in [19] and thus
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XI. CONCLUSION

In the present work, a technique has been developed for
solving first-order Fredholm integro-differential equations. As
the B-spline wavelets have the property of semi-orthogonal
on the interval [0, 1], we can combine various bases with
quartic B-spline wavelets to produce Hybrid functions, with
the property of semi-orthogonality . The same approach can
be used to solve other problems. The operational matrices
of derivative for B-spline scaling functions and wavelets are
given. The problem has been reduced to solving a system of
algebraic equations and applications are demonstrated through
numerical examples. The numerical examples show that the
accuracy improves with increasing the M in quartic B-spline
wavelets, and thus for better results, using the larger M is
recommended.
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