
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:7, 2014

1134

Abstract—Cloud outsource storage is one of important services in

cloud computing. Cloud users upload data to cloud servers to reduce
the cost of managing data and maintaining hardware and software. To
ensure data confidentiality, users can encrypt their files before
uploading them to a cloud system. However, retrieving the target file
from the encrypted files exactly is difficult for cloud server. This study
proposes a protocol for performing multikeyword searches for
encrypted cloud data by applying k-nearest neighbor technology. The
protocol ranks the relevance scores of encrypted files and keywords,
and prevents cloud servers from learning search keywords submitted
by a cloud user. To reduce the costs of file transfer communication, the
cloud server returns encrypted files in order of relevance. Moreover,
when a cloud user inputs an incorrect keyword and the number of
wrong alphabet does not exceed a given threshold; the user still can
retrieve the target files from cloud server. In addition, the proposed
scheme satisfies security requirements for outsourced data storage.

Keywords—Fault-tolerance search, multi-keywords search,
outsource storage, ranked search, searchable encryption.

I. INTRODUCTION
ONG et al. [1] proposed a searchable encryption scheme
based on a symmetric key. The scheme involved applying a

two-layer encryption construction to encrypt each word of the
files, and the computational overhead for performing a search
was relative to the file size. Goh et al. [2] proposed an index
searching algorithm based on a bloom filter. Their scheme
reduced the computational overhead of loading an index and
searching for files. To improve that scheme, Chang et al. [3]
proposed an enhanced scheme. Curtmola et al. [4] constructed
an encrypted index searching algorithm based on a hash table,
in which each entry comprised trapdoor and encrypted file
identifiers. Bonch et al. [5] proposed a searchable encryption
algorithm based on asymmetric cryptography. The scheme
involved employing a public key for encrypting and uploading
data to a cloud server, but only an authorized user could use a
private key to search the encrypted files. Moreover, the
keyword search function of these schemes [1]-[5] supported
only one keyword per search.

Golle et al. [6] proposed a conjunctive keyword search
scheme for encrypted data. Conjunctive keyword searches are
conducted to retrieve files that contain all keywords. Compared
with the schemes [1]-[5], Golle et al.’s conjunctive keyword
search scheme is more accurate. Katz et al. [7] proposed a
predicate encryption scheme for encrypted data that supported

Ren-Junn Hwang and Chung-Chien Lu are with the Department of
Computer Science and Information Engineering, Tamkang University, New
Taipei City, Taiwan (e-mail: junhwang@ms35.hinet.net, 600420078@
s00.tku.edu.tw, respectively).

Jain-Shing Wuis with the Institute for Information Industry,Taipei,
Taiwan(e-mail:jsw@iii.org.tw).

This work was partially supported by the Ministry of Science and
Technology, Taiwan, under grants no. NSC102-2221-E-032-022.

conjunctive and disjunctive keyword searches. A disjunctive
keyword search can be conducted to retrieve files containing a
subset of keywords. The scheme proposed by Katz et al. offers
more flexibility in performing keyword searches. However,
because the volume of data in cloud servers is increasing, even
when a cloud user performs a multikeyword search, the query
results typically involve a substantial number of files. The
following challenges exist [8]: (1) to identify the most relevant
file(s), a cloud user must decrypt the returned files; thus, the
computational burden is on the user; and (2) because cloud
servers return many files following a keyword search, the
network communication cost is considerably high. Moreover,
some of the files are unrelated to the cloud user’s requirements.
However, the user must pay all fees and costs associated with
the returned files. Consequently, the pay-per-use principle of
cloud computing is violated.

Wang et al. [9] proposed a secure ranked search for
encrypted data in a cloud system. A ranked search is a keyword
search that returns files based on a ranked relevance value. A
ranked search can reduce the time cost of decrypting the files
and communication cost of returning them. Wang et al. used
keyword frequency and file size to calculate the relevance value
between keywords and files. However, this scheme supported
only one keyword per query. Cao et al. [9] proposed a ranked
multikeyword search scheme for encrypted cloud data. Their
scheme further enhanced the accuracy of the keyword search
results by requiring cloud users to input exact keywords to
retrieve a specific file. However, users may input an incorrect
word when performing a keyword search.

Wang et al. [11] proposed another scheme to support secure
similarity search in searchable encryption. When a cloud user
inputs an incorrect keyword, their scheme can differentiate
between the wrong and right keyword. Within the scope of that
difference, it can perform a keyword search to identify
matching files and return them to the user. However, their
scheme supported only one keyword per search, and it did not
support ranked keyword searches.

These studies provide limited keyword search functionality
for cloud storage services. Thus, service providers must
implement a complete secure search scheme to promote their
services. This study proposes a scheme for performing ranked
multikeyword searches with fault tolerance in cloud storage
systems. The proposed scheme uses similar keyword sets to
perform a similarity search, and a secure k-nearest neighbor
(kNN) scheme to perform a ranked multikeyword search.
Moreover, the proposed scheme is fault tolerant to account for
cloud users inputting an incorrect keyword, and still involves
performing a file search. When the files are located, they are
assigned an associated correlation value. It transfers the
encrypted file one by one based on the order of the relevance

Ren-Junn Hwang, Chung-Chien Lu, Jain-Shing Wu

Searchable Encryption in Cloud Storage

S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:7, 2014

1135

score and stops when the cloud user already get his target files.
Thus, the proposed scheme reduces the communication cost of
transferring files, and the user’s computational cost of
decrypting the files is low. More importantly, after integrating
these functions, the security is robust. Table I defines the
notations of this paper.

TABLE I

NOTATION
Notations Meaning
F The set of mplaintext files, denoted as F =(f1, f2,…, fm)
C The set of m encryption files, denoted as C=(c1, c2,…, cm)
W The set of n distinct keywords, denoted as W=(w1, w2,…, wn)
I Index

Aj
d Similar keyword set of wj and d is threshold. Each key word w'

in Aj
d satisfies (wj, w')≤d.

Ad All similar keyword set, denoted as Ad=(A1
d A2

d,…,An
d)

U Dummy keyword set of m files, denoted as U=(U1, U2,…,Um)

φ(⋅)、δ(⋅) pseudo-random functions defined to be {0,1}s×{0,1}*→{0,1}l,
where s is the bit length of key.

π(⋅) collision resistance hash function defined to be
{0,1}s×{0,1}*→{0,1}g, where {0,1}s is key.

II. THE PROPOSED SCHEME
This paper presents a system model comprising a cloud user

and a cloud server. The user encrypts the data before uploading
them to the server. To search the encrypted data, the user
constructs and uploads an index of his or her encrypted data to
the server. To perform a search, the user must be authorized by
the server. The user enters keywords to generate a trapdoor
when the search request is sent to the cloud server. The server
computes the ranked score based on the index and trapdoor, and
then returns highly correlated data to the user.

The threat model was developed based on the assumption
that a server is honest but curious. In other words, the cloud
server follows the proposed protocol, although it may analyze
some queries and search results to acquire information from the
outsourced data.

The proposed scheme supports ranked multikeyword
searches, which tolerate queries involving incorrect keywords.
Unlike many previous search schemes that support only some
functions, the proposed scheme contains upload, trapdoor, and
search phases. During the upload phase (Section A), a cloud
user constructs an index and uploads an encrypted file and the
index to a cloud server. The server stores the encrypted file and
index only. No other user can infer the correlation between each
keyword and file based on the index. In the trapdoor phase
(Section B), the user generates a specific trapdoor based on his
or her search keywords when querying the server. No other user
can learn any information on the search keywords from the
trapdoor. During the search phase (Section C), a server
computes the margin between the trapdoor and index of each
encrypted file. The server does not learn any information from
the search keywords in the index or query, although the server
can determine the correlation (i.e., relevance) between a user
query and each file. Subsequently, the server incrementally
returns the encrypted files in order of relevance to the user.
When the user receives the required file, the server stops
returning files to the user. Consequently, the communication

overhead from transferring files is reduced, and the user
conserves computational resources by not decrypting
unnecessary files.

A. Upload Phase
A cloud user constructs the distinct keyword set W from the

set of files F. The user also constructs a similarity keyword for
each keyword, and generates an index to store the relevance
score for a given keyword and file. The ranking function
defines the correlation as follows.

Ranking function: To evaluate the correlation between a
keyword and a specific file, the ranking function in (1) is used
to compute a relevance score for keyword wj and file fi which
inspires from [12].

Score൫݆ݓ, ݂݅൯ ൌ 1
ห݂݅ห

ሺ1 ൅ ݆ߟ݈݊
݅ሻሺln ሺ1 ൅ ݉

݆ߟ
ሻ, (1)

where |fi| denotes the number of words in fi,ηj

i is the sum of
instances in which wj appears in fi,ηj represents the number of
files containing wj, and m is the number of files. No other user
can learn the correlation between each keyword and file.
Subsequently, the cloud user uploads the encrypted files and
index to the cloud server.
Step U1Determinen distinct keywords from F and encrypt each

fi to the encrypted file ci.
Step U2Apply Algorithm 1[11] to construct the similar

keyword set Aj
d for each wj, where the number of difference

alphabet between wj and a given similar keyword is less
than d, ௝ܽ,௞

ௗ denotes the k-th similar keyword corresponding
to wj, and | ௝ܽ,௞

ௗ | is the length of the given similar keyword.

Algorithm 1: CreatSimilaritySet(wj, d)
Input: Keyword wj and threshold distance d
Output: similar keyword set Aj

d

Begin
1:set Aj

d=߶
2: ifd≥1 then
3: CreateSimilaritySet(wj, d-1)
4: ifd=0 then
5: set Aj

d={wj};
6: else
7: fork←1 to|Aj

d-1| do
8:fori←1 to 2×| ௝ܽ,௞

ௗିଵ|+1 do
9: set Variant as ௝ܽ,௞

ௗିଵ ;
10: ifi is odd then
11: Insert * at position ⎣(i+1)/2⎦ of Variant;
12: else
13: Replace the ⎣i/2⎦-th character of Variant with *;
14: ifVariant is not in Aj

d-1then
15: set Aj

d= Aj
d∪ {Variant};

End

Step U3Choose u dummy keywords for each file and generate a

random number for each dummy keyword, where u =
160ε, and ε∈Z+. Each dummy keyword must not exist in

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:7, 2014

1136

W. The random number is generated from a uniform
distribution U(-b, b), where the mean is0 and the variance
is σ = b2/3(b is a random value).

Step U4Construct the (n+1+u)×h matrix Pi for each fi to store
the relevance score for given values ofwj and ci, where h-
 = max{|Aj

d|| 1 < j <n}. The initial value of each element in
Pi is 0.

Step U4.1Calculate the relevance score for keyword wjand
file fi by applying(1),and store the value in Pi[j, 1]

Step U4.2 Calculate the relevance score for ௝ܽ,௞
ௗ and fi by

applying (1), and store the value in Pi[j, k+ 1].
Step U4.3Assigna value of 1toeach field in the (n + 1)th row.
Step U4.4Assignthe first random number from Step U3 at

each field of the (n + 2)th row, the second random
number at each field of the (n + 3)th row, and so on.

Step U5Generate the index Ii of fi based on Pi as follows:
Step U5.1Generate two (n+1+u)×(n+1+u) invertible

matrices {M1, M2} and the secret key S as an (n+1+u)-bit
string.

Step U5.2Construct two (n+1+u)×h matrices {Pi', Pi"} based
on Pi and S. If the jth bit of S equals 0, then both Pi'[j, k]
and Pi''[j, k] are identical to Pi[j, k]. If the jth bit of S
equals 1, then Pi'[j, k] and Pi''[j, k] are assigned to be
random numbers, and the sum of Pi'[j, k] and Pi''[j, k] is
equal to Pi[j, k].

Step U5.3Compute Ii = {M1
TPi', M2

TPi"}, where M1
T and

M2
Tare transposed matrices of M1 and M2, respectively.

Step U6Upload the encrypted files C and index I = {Ii| i= 1,2,
…,m}) to the cloud server and then delete both C and I.
Moreover, the cloud user stores W, U, M1, M2, S, and Ad

.
Step U3 involves constructing random numbers to ensure the

confidentiality of the keywords. Step U5 involves generating Ii
for each instance of fi based of the keyword matrix Pi; this step
was inspired by the kNN technique [10]. Recovering Pi from Ii
without knowingM1, M2, and S is difficult for any user. In
addition, only the cloud user can learn the relevance score of a
given wj and ci based on Ii.

B. Trapdoor Phase
The cloud user first constructs the (n+1+u)×h matrix Q based

on his or her search keywords. Element Q[j, 1] of row jinQ
corresponds to the keyword wj, and Q[j, k+1] corresponds to the
similar keyword ௝ܽ,௞

ௗ for wj. The initial value of each element in
Q is 0. Finally, the user generates a trapdoor based on Q. The
user queries to the cloud server only including the trapdoor
exclusive the search keywords. The steps in this phase are
detailed as follows.
Step T1 Apply Algorithm 1 to construct the similar keyword

set Ld of the search keywords.
Step T2 Compute K = Ad∩Ld.
Step T3 LetQ[j, k] = 1 if the corresponding wj is included in

K.
Step T4Randomly select u/2 rows from the (n+2)th row to the

(n+1+u)th row of Q, and assign a value of 1 to each
element in the selected rows.

Step T5Multiply Qbyr, and then assign the random number t to
each element of the (n+1)th row.

Step T6Construct two (n+1+u)×h matrices {Q', Q"}based onQ
and S. If the jth bit of S equals 1, then both Q'[j, k] and
Q"[j, k] are assigned to be Q[j, k]. If the jth bit of S equals
0, then both Q'[j, k] and Q"[j, k] are assigned to be random
numbers, and the sum of Q'[j, k] and Q"[j, k] is equal to
Q[j, k].

Step T7 Compute T = {M1
-1Q′,M2

-1Q′′},where M1
-1 and M2

-1are
inverse matrices of M1 and M2 respectively.

Step T8Generate and submit the query with the trapdoor T to
the cloud server.

In Step T2, K includes search keywords and their fault
tolerant keywords. Each keyword of K is assigned a value of 1
in its corresponding element in Q. However, Steps 5–7 hide the
content of Qin the trapdoor for queries inspired by the kNN
technique. It is difficult for the cloud server to learn the real
search keyword based on the query. During the trapdoor phase,
the cloud server cannot learn which keywords appear in the
searched encrypted files, although the server receives the
ranked relevance scores of the encrypted files for each query.

C. Search Phase
The cloud server uses the trapdoor T to determine the

relevance score for a given query and encrypted file ci.
Subsequently, the server returns the ranked relevance score of
the encrypted files to the user.
Step S1 For T = {M1

-1Q', M2
-1Q"} and Ii = {M1

TPi', M2
TPi"}

of each encrypted file ci, the server retrieves h vector pairs
for each column of T and Ii.

Step S2 Compute the relevance score of ci of the query by
summing the inner products of each column vector of Ii and
T by applying (2).

∑ ଵܯ

்௛
௞ୀଵ ܲᇱሬሬሬԦሾ݇ሿ · ଵܯ

ିଵܳᇱሬሬሬሬԦሾ݇ሿ ൅ ଶܯ
்ܲ"ሬሬሬሬԦሾ݇ሿ · ଶܯ

ିଵܳ"ሬሬሬሬԦሾ݇ሿ (2)

Step S3 Return the encrypted files with higher relevance

scores to the user.
The server incrementally returns the encrypted files ranked

according to relevance to the user based on Step S2. Finally, the
ranked search is complete. During the search phase, the cloud
server cannot learn which keyword(s) appeared in the searched
encrypted files.

III. DISCUSSIONS
The proposed scheme tolerates queries in which the user

inputs incorrect keywords. This study proposes a technique for
constructing a similar keyword set [13]. For the keyword wj and
threshold d, the proposed scheme generates a similar keyword
set Aj

d, where any similar keyword w'∈Aj
d satisfies Δ(wj,

w') ≤ d. Here, Δ(wj, w') ≤ d implies that the number of
difference alphabet between words wj and w' is lower than d. In
addition, the proposed scheme uses a wildcard (“*”) to denote
any character. For example, where d = 1 and wj = “network”,
15 similar keywords {network, *network, *etwork, n*etwork,
n*twork,…,networ*, network*} exist. Conversely, 390 similar

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:7, 2014

1137

keywords are possible when the wildcard is not used. The space
requirement of the proposed scheme with the wildcard is
൫ଶλାଵ

ௗ ൯, where λdenotes the keyword length. Conversely, the
space requirement of a similar keyword set is൫ଶλାଵ

ௗ ൯ × 26dwhen
the wildcard scheme is not used. Thus, using the wildcard
enables storage space to be saved. All tables and figures you
insert in your document are only to help you gauge the size of
your paper, for the convenience of the referees, and to make it
easy for you to distribute preprints.

Table II presents a comparison of the functionality of the
multikeyword search, fault-tolerance search, and ranked
search. Cao et al.’s scheme [10] used the kNN-based scheme
for performing ranked multikeyword searches, but their scheme
does not support fault-tolerance searches. Consequently, when
a cloud user performs a keyword search by using incorrect
keywords, the user cannot retrieve the correct files. Wang et al.
developed a scheme [11] that supports a similarity search that is
similar to the fault-tolerance search. However, that scheme
does not support a ranked search method for determining the
relevance between keywords and encrypted files. Furthermore,
it supports only one similar keyword per query. Table II shows
that the proposed scheme is more functional than the schemes
proposed by Cao et al. and Wang et al.

TABLE II

FUNCTION COMPARISON

 Multi-keyword
search

Ranked
search

Fault tolerance
search (similar

search)
Cao et al.’s scheme [10] O O X

Wang et al.’s scheme [11] X X O
The proposed scheme O O O

IV. CONCLUSION
Cloud outsourced storage service reduces the hardware and

software maintenance costs of the cloud user. The outsourced
storage server is responsible for data management and access
control. To ensure the confidentiality of uploaded data, cloud
users encrypt their data before uploading them to the cloud
server. This study proposes a ranked fault-tolerant
multikeyword search scheme for outsourced cloud storage
services to support users accessing encrypted data on a cloud
server. The multikeyword search in the proposed scheme
provides fault tolerance in case users input incorrect keywords.
The similarity search is achieved. In addition, to enhance
system efficiency, the proposed scheme uses inner product
operations to evaluate the relevance scores of the files and
search keywords. The cloud server returns the files ranked from
highest to lowest, and relieves the network communication
costs and minimizes the number of files for the user to decrypt.
Thus, the ranked search is achieved. The proposed scheme is a
ranked search scheme featuring fault tolerance and satisfactory
security.

REFERENCES
[1] D. Song, D. Wagner, and A. Perrig, “Practical Techniques for Searches on

Encrypted Data,” in Proceedings of IEEE Symposium on Security and
Privacy’00, 2000, pp. 44-55.

[2] E.-J. Goh, “Secure Indexes,” Cryptology ePrint Archive, 2003, [Online].
Available: http://eprint.iacr.org/2003/216.

[3] Y.-C. Chang and M. Mitzenmacher, “Privacy Preserving Keyword
Searches on Remote Encrypted Data,” Applied Cryptography and
Network Security, LNCS 3531, Springer-Verlag, 2005, pp. 442-445.

[4] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky, “Searchable
Symmetric Encryption: Improved Definitions and Efficient
Constructions,” in Proceedings of 13 th ACM Conference on Computer
and Communications Security’06, 2006, pp.79-88.

[5] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano, “Public Key
Encryption with Keyword Search,” Advances in Cryptology -
EUROCRYP 2004, LNCS 3027, Springer-Verlag, 2004, pp.506-522.

[6] P. Golle, J. Staddon, and B. Waters, “Secure Conjunctive Keyword
Search over Encrypted Data,” Applied Cryptography and Network
Security, LNCS 3089, Springer-Verlag, 2004, pp. 31–45.

[7] J. Katz, A. Sahai, and B. Waters, “Predicate Encryption Supporting
Disjunctions, Polynomial Equations, and Inner Products,” Advances in
Cryptology – EUROCRYPT 2008, LNCS 4965, Springer-Verlag, 2008,
pp. 146-162.

[8] C. Wang, N. Cao, K. Ren and W. Lou ” Enable Secure and Efficient
Ranked Keyword Search over Encrypted Cloud Data” IEEE Transactions
on Parallel and Distributed Systems, Volume 23, Issue 8, pp.1467-1479,
Aug. 2012.

[9] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-Preserving
Multi-Keyword Ranked Search over Encrypted Cloud Data,” in
Proceedings of IEEE International Conference on Computer
Communications’11, 2011, pp. 829-837.

[10] W. K. Wong, D. W. Cheung, B. Kao, and N. Mamoulis, “Secure kNN
computation on encrypted databases,” in Proceedings of ACM SIGMOD
International Conference on Management Data’09, 2009, pp. 139-152.

[11] C. Wang, K. Ren, S. Yu, and K. Urs ” Achieving Usable and
Privacy-Assured Similarity Search over Outsourced Cloud Data” in
proceedings of IEEE International Conference on Computer
Communications’12, 2012, pp.451-459.

[12] I. H. Witten, A. Moffat, and T. C. Bell, Managing Gigabytes:
Compressing and Indexing Documents and Images, 1st Ed. San
Francisco: Morgan Kaufmann, 1999.

[13] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou, “Fuzzy Keyword
Search over Encrypted Data in Cloud Computing,” in Proceedings of
IEEE International Conference on Computer Communications’10, 2010,
pp. 1–5.

