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Residual Life Prediction for a System Subject to
Condition Monitoring and Two Failure Modes

Akram Khaleghei Ghosheh Balagh, Viliam Makis

Abstract—In this paper, we investigate the residual life prediction
problem for a partially observable system subject to two failure
modes, namely a catastrophic failure and a failure due to the system
degradation. The system is subject to condition monitoring and the
degradation process is described by a hidden Markov model with
unknown parameters. The parameter estimation procedure based on
an EM algorithm is developed and the formulas for the conditional
reliability function and the mean residual life are derived, illustrated
by a numerical example.

Keywords—Partially observable system, hidden Markov model,
competing risks, residual life prediction.

I. INTRODUCTION

ECENTLY, due to the advances in sensor development,

data measurement technology, and computer technology,
it became possible to implement -effective condition
monitoring systems for critical equipment in many companies’
information systems. This information can be utilized for the
assessment of the actual condition of the operating equipment
without any unwanted disruption or unplanned stopping
of the operation, which usually result in a high cost due
to lost production. A maintenance strategy referred to as
condition-based maintenance (CBM) can then be developed
and comparing with the traditional maintenance techniques,
CBM reduces the risk of catastrophic system failure as well
as the maintenance cost. It is obvious that the collected data
carries only partial information about the unknown, hidden
state of the equipment and the dimensionality of such data
is typically very large, with lots of redundancy, noise, and
substantial cross and auto correlation present.

Various approaches for processing and modeling of such
information have been proposed in the literature which
can be generally classified as nonparametric and parametric
techniques (see e.g. [1], [2], [3], [4], [5]). Although systems
with two failure modes appear in a variety of technical
applications, majority of existing CBM models consider
only single failure mode. In fact, [6] is the only reference
where CBM with multiple failure modes was developed for
continuously monitored degrading systems. However, this
assumption is no longer valid when the system state is
monitored at discrete times, which is the usual practice. Such
a drawback of existing models motivates us to consider a
CBM model with two modes of failures (competing risks)
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i.e., a catastrophic and degradation failures which arise quite
naturally and are of much interest in the reliability area.

In this paper, we focus on the application of a parametric
technique which can be used to extract useful information for
early fault detection and reliability estimation of a technical
system subject to both deterioration and sudden failures. The
system is subject to condition monitoring and data collection
at regular times. We assume that three types of data histories
are available: histories that end with observable system failure
caused by degradation, histories that end with observable
sudden failure, and suspension histories.

The evolution of the actual state of the monitored equipment
can be modeled in several ways, for example using the
proportional hazards model [7], [2], hidden Markov model
[8], [4] or hidden semi-Markov model [9], [10]. We assume
that the degradation process evolves as a continuous-time
homogeneous Markov chain (Z; : t € RT) with state
space Z = {1,2,3}, where states 1 and 2 are unobservable,
representing the healthy and unhealthy operational states
respectively, and state 3 represents the observable failure state.

There have been two approaches for a joint parameter
estimation of the hidden Markov model using the
expectation-maximization (EM) algorithm. The first approach
uses the pre-processed observation data directly and applies
a state-space representation of the observation process model
and Kalman filtering [11], which is computationally very
intensive. The second approach focuses on fitting a vector
autoregressive model to the pre-processed observation data,
then calculating the residuals using the fitted model for the
complete data histories and defining the observation process
as the residual process. This approach utilizes the results in
[12], where it was proved that such residuals are independent
and normally distributed, which simplifies the application
of EM algorithm for the joint HMM and residual process
parameter estimation [13].

In this paper, we develop a new model for a system with
two failure modes in Section II. The estimation procedure
based on the EM algorithm is developed in Section III, where
the observation process is defined as the residual process
obtained after data pre-processing and fitting the reference
model to the in-control portion of data histories. The formulas
for the conditional reliability (RF) and mean residual life
(MRL) function are presented in Section IV. The whole
procedure is illustrated by an example in Section V, followed
by conclusions in Section VI.
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II. MODEL FORMULATION

Assume that the degradation process of the system evolves
as a continuous-time homogeneous Markov chain (Z; : ¢t €
RT) with state space Z = {1,2}|J{3}, where states 1 and
2 are unobservable, representing the healthy and unhealthy
operational states respectively, and state 3 represents the
observable failure state. The system is assumed to start in
a healthy state and the sojourn times in states 1 and 2
have exponential distributions with parameters A; and As,
respectively. The transitions can only take place from each
state to the next higher state. We further assume that the
sudden failures may also occur during the system’s operational
time even when the system is working in a good condition.
Let the random variable £&; > 0 denote the time to failure
of a system if the sudden failure occurs, and & > 0
represents the observable time to failure if the system fails
due to degradation. We note that only the smaller of the &,
for [ = 1,2 is in fact observable, together with the actual
cause of failure. Suppose that at equidistance sampling times
A2A ... for A € (0,+0), vector data X7, Xo,... €
R? is collected through condition monitoring, which gives
partial information about the system state. We first identify
the healthy portions of the data histories. There exists a
variety of segmentation methods in the literature (see e.g.[14]
and [15] for segmentation of short and long nonstationary
time series). Next, a vector autoregressive (VAR) time series
model is fitted using the healthy portion of the data to
capture any dependencies among monitored variables. When
vector AR model is identified, parameters are estimated,
and the model adequacy is verified, the residuals of VAR
model are calculated using all data histories and utilized
to detect an early fault occurrence of an operating system.
Residual monitoring has been proposed and studied by several
authors (see e.g. [12], [16], [17]). The main advantage of the
proposed approach is that the residuals of the fitted model are
conditionally independent and normally distributed [12] which
are essential properties for tractable maintenance modeling and
fast parameter estimation. For successful application of the
residual approach using vibration data see e.g. [3], paper [4]
used spectrometric oil analysis data. Therefore the observation
process, residuals Y7, Y5, ... are assumed to be conditionally
independent given the state of the system, and for each n € N,
we assume that Y, given Z,A = 1,7 = 1, 2, has d-dimensional
normal distribution Ny(p;, ¥;) where p; € R% and &; € R4*¢
are unknown observation parameters.

III. PARAMETER ESTIMATION

Suppose we have collected N; sudden failure and
Ny degradation failure histories and we denote them as
Fi,...,F}, for | =1,2. Failure history F} fori=1,...,N,
is assumed to be of the form ¥; = (y3,...,y%) and & =t;,
where T;A < t; < (T; + 1)A. The history Y, represents the
collection of all vector data yjl € R?, j < T; which was
obtained through condition monitoring until system failure at
time ¢;. Suppose further that we have collected M suspension
histories, which we denote as St, ..., Sys. Suspension history

S; is assumed to be of the form }_)j = (y‘L...,y}j) and
& > T;A for both [ = 1,2.
Let A = {F,....F\ FE, ... F}, 5, ....,5u}

represent all observable data and L(A, ¥|A) be the associated
likelihood function, where A and W are the set of unknown
state and observation parameters, respectively. Because
the sample paths (Z;,t € R™) of the state process are
not observable, maximizing L(A,¥|A) analytically is not
possible. The EM algorithm resolves this difficulty by
iteratively maximizing the so-called pseudo likelihood
function [18].

A. Formula for the Likelihood Function

Let A = {F.. Fh F2.. . F3 ... Su}
represent the complete data set, in which each observable
data history for A has been augmented with the unobservable
sample path information of the state process. Before we derive
the formula for the complete likelihood function L(A, ¥|A)
for N1 and N, observed failure and M suspension histories,
we first consider the case with a single sudden failure history
for which A = {F'}. Let 7; denote the unobservable sojourn
time in the healthy state and f¢, (¢) represents the probability
density function of random variable & for [ = 1,2. The
complete likelihood function for the single sudden failure
history is given by,

Ly (A, OA) = Lpn (A, O)Y = 37,6 = t,6 > t, 71 = w)
= ¥ m.6, Glw, 1) P(&2 > t|m = w) fr, (w) fe, (t)

and for each w,t € R, p(§&2 > t|71 = w) represents the
conditional reliability function of &3 given 7 which is given
by:

e—)\g(t—w)

> in=u)={ | Lz

t<w M

We next consider the case where we have observed only a
single degradation failure history for which A = {F?}, i.e. we
have collected data ¥ = (ya,...,yar) and observed failure
time & > t,& = t. The complete likelihood function for the
observed single degradation failure history is given by,

Lp(A9]4) = LAY =§.6 > 16 =17 =w)

= e w0, ) fry e (w]t) fe, () P (€1 > 1)
where for any w € ((k — 1)AkKALE = 1,2,...,T,
I3 m & Wlw,t) = g(glw,t) (see 6). In order to be able to
compute the likelihood function, the distributional properties

of the sojourn time 77 and failure time & are given by the
following lemma.

Lemma 1. For each t € R™, the density function of & is
given by:

A1
t) =

féz( ) A=\

and for all non-negative w < t, the conditional density
function of T given & is:
(/\1 _ )\2)67>\2t7(>\17>\2)w

—_e— Mt + e— Azt

(e—)\Qt _ e—)\lt)

frije (wlt) =
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Proof: See Appendix A. ]

We next consider the case where we have observed only a

single suspension history S, i.e. we have collected data § =

(ya,--.,yar) and stopped observing the operating system

at time AT <t < A(T+ 1), & >t and & > t. Given the

observable data set A = {S}, the complete likelihood function
can be derived as:

Ls(A,O)Y = 7,6 > t,& > t, 7 = w)
= P(gl& > t,& > t, 1 = w)P (& > t|r = w)
le(w)P(£1 > t)v

where for any w € ((k — 1)AkALk = 1,2,...,T and
P(yl&r > t,& > t,71 = w) = g(ylw,t) and for w > AT,
P(gl&1 > t,& > t, 71 = w) = g(Ft,t) (see 6 and 7).

In general case when we observe IN; sudden failure, Ny
degradation failure, and M suspension histories, the associated
complete likelihood function L(A, W|A) is given by:

N1 No M

[[za@AN]] Ly (¥, AJA) ] Ls, (%, Al4)

i=1 j=1 k=1

L(U,A|A) =

B. Formula for the Pseudo log-Likelihood Function

For any fixed estimates A, U of the state and observation
parameters, and given observed failures and suspension
histories the formula for the pseudo log-likelihood function

QA U|A, ) = Em,(lnL(A, xp|A)|A) is given by:
~ A Nl A ~
QA WA, ¥) = " Qp (A.U|T, A) )
i=1
+ZQF2 AT|F,A) +ZQSk (A 0|, A)
i=1 =

Thus, to evaluate the pseudo log-likelihood function for
all available histories, it suffices to evaluate the pseudo
log-likelihood function for each individual history separately.

Lemma 2. Given a single sudden failure history F1', the
pseudo log-likelihood function is decomposed as:

Qﬁ‘l(Avqu\a@) ) +Q0b5( |A7 \ij)

Proof: See Appendix B. |

Qstate( ‘A

Lemma 3. Given a single degradation failure history F?, the
pseudo log-likelihood function is decomposed as:

Q= (A, WIA, ¥) = Q357 (AJA, ) + Q5 (V[A, )
Proof: See Appendix C. |

Lemma 4. Given a single suspension history S, the pseudo
log-likelihood function is decomposed as:

QS‘(Av \I/|A7 \il) = Q?ate(A‘Aa \il) +

Proof: See Appendix D. |
Using Lemmas 2, 3, and 4, the pseudo log-likelihood
function can be decomposed as,

Q(A7 \II‘A’ il) = Qstate( | )

Q%" (YA, ¥)

Qobs ( | \i,) (3)

where Qstat¢ (A|A W) is only a function of the state parameter
and Q°"(W|A,¥) is only a function of the observation
parameter. This means that the M-step can be carried out
separately for the state and residual observation parameters.
Using Egs. 6 and 7 and Lemmas 2, 3, and 4 we solve for the
stationary point of the observation parameter by setting:

0Q(A, IA, W) QA ¥|A, ¥)

=0

o Opa
QA WA, )  AQ(A, TIA, )
ot B o) o -

After some algebra, it is not difficult to check that there is a
unique stationary point ¥ = (ji1, fi2, 21, 32) of the pseudo
log-likelihood function given by,

N Ns M
E nié + E nih? + E nkik
i—1 j=1 k=1

H1 = N A,_ i N_ ~ - M .
Dol s) + 2252 (B, s1) + 30— (7, 87)
Ny Ny M
anéz + Znéh’ + Zn’;f"
$ i=1 j k=1
| g M.
2im 1<C 51>+Z L (W, S{>+Z L(7F, sF)
SRS WELES W
flo = N ; . .
>in 1(0 52>+2j:1<h]»52>+2k:1<7’ ;85)
N M
Zniéz + Znihj + Znifk
5, — i=1 j=1 k=1

N1 No /547 g M o ok
Do (€ s5) + 2202 (W, s5) + 305, (PR, s5)
For definition of s¢, sb, ni,nd, ni, ni see [19].

The state parameters A\; and A2 can be also estimated by
setting:

QA WA, ¥)  AQ(A, T|A, )
oM o 0o

The unique stationary points A = (A, \s) of the pseudo
likelihood function given explicitly by:

)+ 38+ 3

=0

Ny

> (@i +7

N i=1

)\1 f— N i
Zi:ll (042 + "7) + Z]’:l 52 + Zk:1 (72 + 77)
N A
5\ = 721':21 6J
2 = N Ny -
> 6k —tad) + D (3 - 1) + D65 - )
= 7=1 k=1
where ¥ = m

Since suddend failure and degradation failure occur
independently, and the collected data does not provide any
information about the system’s sudden failure, parameters of
the distribution of time to sudden failure can be estimated
independently by maximizing the corresponding likelihood
function.
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IV. CONDITIONAL RELIABILITY FUNCTION PREDICTION

Suppose sigma-algebra F,, = J(Yl, N NN
I {5§nA}) represents the information collected until sampling
epoch nA where £ = min(1,&2) and Ire<,ay is the indicator
random variable defined as

1 £<nA

Further assume that II,, denotes the posterior probability
that system is in the unhealthy state at nth sampling epoch.
Using Bayes’ rule for n > 1, the evolution of the posterior
probability II,, is given by:

I, = P(Zna=2|F,) ()
J(Yaluz, E2)U
F(Ya|p2, %2)U + f(Ya|p1,%1)D
where U = (Po(A)(1 —1,—1) + Pyo(A)L,—1),D =

P11(A)(1 — II,—1). where transition probabilities matrix
Pit) = (P (t))7 jez can be obtained by solving the
Kolmogorov backward differential equations.

Lemma 5. Let R, (t) be the reliability function for the sudden

failure. For any t > 0, the conditional reliability and the mean
residual life function at n" decision epoch is given by,

R(t]IL,) = Re, (t|&1 > nA)Re, (t|&2 > nA)
s = [ Be,(tl6s > n)Re (ta > nat)ae
0

where Re, (t|&1 > nA) = % and Re,(t|&2 > nA) =

Are ME e M2 Qo+ A~ Ao) (e~ M2 —e M1t
A1—As :

Proof: See Appendix E. |

V. NUMERICAL EXAMPLE

Assume that the system deterioration follows a
continuous-time homogenous Markov chain Z; : t € RT)
with the state space S = {1,2,3}. For the simulation
purposes, A; = .15, Ay = .35 are considered. We also assume
that the system may fail due to sudden failure, and the
corresponding failure time follows Weibull distribution with
scale parameter 5 = 1.5 and shape parameter o = 5.75. At
equidistant sampling times for A = 1, the observations are
collected through condition monitoring and they are assumed
to follow 2-dimensional normal distribution No(uq,%;) or
Ny(pe2,Y2), depending on whether the system is in the
healthy or unhealthy state, where

2 15 .5
‘“_(—.1)’21_<.5 1.5)

8 2.5 2.5
“2_<.6>’ E2_(2.5 3>

Using these parameters, 100 degradation failure, 100 sudden
failure, and 100 suspension histories were generated. Applying
the estimation procedure developed in Section II to the
generated data, the following parameter estimates were
obtained:

M =.13, o =.31, a=134, B=5.43

Lo 200\ g _ (143 .36
=1 )= 36 1.33

. [ 67 S 2.40 2.26

2= a5 )0 =27\ 226 283
The iterations of the EM algorithm took on average 15.24
seconds, which is extremely fast for the off-line computations.
This high computational speed is an attractive feature for
real applications. After obtaining the parameter estimates,
the model can be used for early fault detection based on
conditional RF and MRL.

VI. CONCLUSIONS

In this paper, we have applied a parametric signal processing
technique and a hidden Markov modeling for residual life
prediction of a system subject to two failure modes which
appear in a variety of technical applications. We have
assumed that vector observations are available at regular
sampling times through system condition monitoring. The
observations are related to the true underlying state of the
system which is unobservable. Three types of data histories
have been considered: data histories that end with observable
system failure caused by degradation, histories that end
with observable sudden failure, and suspension histories. The
system state process has been modeled as a 3-state hidden
Markov process and a new parameter estimation procedure has
been developed using the EM algorithm. It has been shown the
parameter updates in each iteration of the EM algorithm have
explicit formulas. Also, the explicit formula has been derived
for the conditional reliability as well as for the mean residual
life function of the system. A numerical example has been
developed to illustrate the estimation procedure. It has been
found that the procedure is both computationally efficient and
converges rapidly to good parameter estimates.

APPENDIX A

Let F; and F, denote the cumulative distribution function
of sojourn time in healthy and unhealthy states, respectively.

P& <t) :/0 P(& < t|m = u)dFi(u)

t
- / P(Zoo = 3|70 = 2)dFy (u)
0

)\1 (67/\1f, _ 67)\2t)

=1— —A1t
e + =
A1 A2 — Aot —\it
L(t) = 2 — b
ffz( ) )\1 _ )\2 (e € )
and also,

P(EQ S t7’7'1 S U}) = / P(Zt,u = 3|Zu = 2)dF1(u)
0

= /Ow Fy(t — u)dFy(u)

)\1€_>\2t_>\1w(—6)‘1w + e)\gw)

—1— —Aiw
¢t Y

thus,
f§2a7'1 (tu ’LU) = )\1)\2@_)‘2t_w()\1—)\2)
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and for all 0 < w < t, we define the conditional density

function f,, |, (w|t), " eGe=A)(k=DA _ [(A2=Ap)kA
e = = =
AL — A2
4 A A
e (wlt) = faom (b w) . eGe=3TAa _ (Ra=An)t
fea(8) & = -
(Ag — Ag)edat=Cu—Aa)w o ik L
= (Ro—R1)kA (Ra=31)(k—1)A
—e— Mt + e—Aat é; _ €1 — kAe' 2T A+ (ki 1)A6 2T
AL — A2
. &t _ te(ir:\l)z + TAe(S\Q—S\l)TA
: A= As
APPENDIX B " e~ M(k—1A _ —AikA
é3 = =
For a given single sudden failure history , the pseudo . A1 R
likelihood function can be derived as: ot — e MTA gt
3 - - <
PN _ A1
Qp (A UIA, W) = Eji 4(InL(A, W|F)|F) = Ae o for k=1, T = Spe 2t
= QFM(AIA D)+ QFF (VIA, ) &5 = Aue e for k=1,..,T,dy = he2él
8 = \éb for k = 1,...,T,dg = A&}
where, 7xlt(t N 5\_1)
. e -
t n = 7A1g(y|t,t)
state A O — —
F1 (A|A7 ‘IJ) - 0 1I1(P(€2 > t|T1 - w)le (w)ffl (t)) d = <d1’g> + Q(y”\t,t)eiht
fY|7'1 51( | ) &2 > t|Tl = w)le (w)f§1 (t) d Also,
= — w -
L Fe 0P = 0 @R O ) S n (o@148,0) + ¢ I (o310
k=
+ [Tl @) _ me
t
fY\Tl fl(ylw t)f'f'l( )ffl(t) dw where,
= = ) 5k
f 9 my 2 (@, 1) P& > tm1 = w) fr, () fe, (1) du &= %}g(g’mk,t) for k=1,..,T,
where for any w € (kK — D)A kAL k=1,2,....T , Wy = o e Mt Jeretet
_ Z ¢ = — + ———)g(ylt, t
(v = m)'S5 (= )y Wa = (y = 12)'S5 ™ (y = i) > g e
So1m e W, 1) = g(Glw, t) = g(FkA, t) (6)
APPENDIX C
exp < <Z Wi+ Z Wz)) For a given single failure history, the pseudo likelihood function
_ n=1 can be derived as:
Vv (@m)Tadet = e (5) Qr(MUIA, D) = By o (n L(A, U|F?)|F?)
and for any w > TA: = QEE(AIA V) + Q7F (VA ‘I/)
_ _ Let us assume for i=1,2, &; = (a},...,al,a!), 5 = %28 and
= 7t = t7t 7 " D Y n td (al , @
Foim e @) = gt 1) D R (TR, We have,
1 1 t
= ——ep( - W state 1R G
TR GE PO QA = [ (o I e (OP(E > 1)
- 0
and the notation fy‘n,gl (Flw, t), P(&2 > tlm1 = w), fry (w), fe, (t) X g(y‘iy’t)ffl‘@(w't)fgf (t)PA(él >?)
is used to indicate that the functions fy, . (§lw,t), P(& > t|r = Jooct 9@, 1) fry ey (ult) feo () P (€1 > t)du
w), fr, (W), fe, (t) are parameterized by fixed estimates A, W. = <[§2 _ t5’1> —MB2+InA +1Indo + In Re, (£)

To simplify the notation, for the remainder of the analysis we
denote vectors & = (§(71A, 1), ..., g(gj|TA,t),g(gj|t,t))/, Ing = where

(Ing(@A, 1), mgFTA, D, Ing(Flt 1) e = (@, &%, e), & = eMtgk for k=1,...,TAal = e 2t ¢t
d; (dll, .. d?,dt) G = 8% forj =1, 2,3, and for any vector Tk St Ak o CSwt At
d a; = e ~éy for k=1,...,TAay =€ - és
v,w, v'.w = (v, w) represents the inner product. - L
a = <al7g>
QU (AJA, W) = Xy (62 — tan) + In fe, (t) (41 + 3) and also,
. e—ilt . R R T
s d o g ) = A (62 4 4) QA D) = 3 In (atka, ) + ' In (o(71kA 1)
k=1
where for k =1,...,T, = (ﬁ,ln g)
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where,
k e 2t gk
h® = - (G| Ak, t)for k=1,...,T
a
. —Aat gt
o= (it )
APPENDIX D

For the given suspension history, the pseudo likelihood function
can be derived as:

QS‘(A7 \I/|A9 \ij)

Bz 4(n L(A, ¥|8)]3)
= QYMIAD) + QY (VA )

1,2,3,
) and

Let us assume £ = (7',...
(6%7""6?765)7;?7: =
QY (PIA, W)

%mmm®=/ (P& > tim = w) fry (w)P(&1 > 1))
w<t

§(glw,t)P (52 >t = w)fr, (w)P(&1 > t)
J(Fu,t)P

g
/ (&2 > t|m = u) fr, (W) P(&1L > t)du
/ P(& > tiri = w) fr, () P(&1 > 1))

y I)é@>ﬂﬁfMﬂd)ﬂ&>ﬂ
[ 8@l P(E > thn = w fry P(E > Ddu

#,7) and for i =
i) Then QF*(AlA,
will be decomposed by:

dw

sgtatc(AlA7 \i/) =\ (»3/2 — tfyl) +1In Re, (t) (’A}/l + 'AYS)

e—Xlt . . .
(@t t) | =M (B2 +1)

I\ (41 +

where fork=1,...,T andi = 1,2, 3, Ef:df,i)f :(if and b = d.

Also,
Q5" (VA D)

"Ing(FkA,t) + 7 In g (gt t),

[l
M=
<

1
= (t,Ing)

where for k=1,...,T and i = 1,2,3, 7t = &, 7k = ¢&F.

APPENDIX E

R(IL,) = P(E>t+nAlE>nAYi,...,Y,)
= Ri(tlé& > nd) - Ra(t§2 > nA, 1),

Re, (nA+t)
Re, (nA)

RQ(H&Z > nA,Hn) = P(Z7LA+t 7é 3|§2 > TlA,Yl, s 7Yn)
=1 -1n)(1 = Pi3(t) + (1 — Pas(t))

where Ri(t|&1 > nA) = and

e = dgem 2t 4 (Mg + A — o) (e7 2 — e M)
- A1 — A2
Finally,
HnA = E(£ - TLA'E > TlA,Yl, e ~7}/n)
= / 1—-P(¢ <nA+té >nA & >nAyr, ..., y1)dt
0

R(t|IL,,)d¢
0

:/ Ru(ter > nA) - Ra(t|és > nA, L)t
0
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