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Solving Single Machine Total Weighted Tardiness
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Abstract—This paper proposes an application of probabilistic
technique, namely Gaussian process regression, for estimating an
optimal sequence of the single machine with total weighted tardiness
(SMTWT) scheduling problem. In this work, the Gaussian process
regression (GPR) model is utilized to predict an optimal sequence of
the SMTWT problem, and its solution is improved by using an
iterated local search based on simulated annealing scheme, called
GPRISA algorithm. The results show that the proposed GPRISA
method achieves a very good performance and a reasonable trade-off
between solution quality and time consumption. Moreover, in the
comparison of deviation from the best-known solution, the proposed
mechanism noticeably outperforms the recently existing approaches.

Keywords—Gaussian process regression, iterated local search,
simulated annealing, single machine total weighted tardiness.

1. INTRODUCTION

HE single machine total weighted tardiness (SMTWT)
problem is a special case of scheduling problem that is
referred to be a strongly NP-hard problem [1]. This problem
deals with the scheduling of a set of independent jobs
N; ={L2,..,n;} to be processed without interruption on a

single machine that can handle only one job at a time. Each
job j has an integer processing time p j» @ due date d j» and
its priority established by weight w;. For a given order of the
jobs, the (earliness) completion time C; and their tardiness
T =max(Cj _dj,o) (ie., the job is completed after its

committed due date) are computed. The weighted tardiness
w,T; will occur when the job is not accomplished within its

due date. Therefore, the total weighted tardiness for a given
sequence 7z is computed as Z(x)=3 W) and it is
jen, 1]

minimized to achieve the goal of this problem.

The SMTWT problem becomes considerable in real-world
situations such as sequencing in production process,
sequencing of aircrafts takeoff and landing, and assigning the
sequence of stages in a construction project, delivering the
goods with the customer’s priority in supply chain, and so on
[2]. Throughout the last decade, many researchers have
proposed the approaches to solve the SMTWT problem. The
well-known exact method is branch and bounds algorithms
[3]-[5] to generate solutions that are guaranteed an optimality,
but these algorithms encounter the obstacle on restriction of
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computational time or computer storage requirements,
especially when the problem size exceeds 50 jobs [6].

Heuristics and meta-heuristics, in most published work, is
attractive due to it can be fast solved to obtain near-optimal
solution. Some of these schemes already used for the SMTWT
problem include local search techniques [6], polynomial-time
approximation algorithm [7], tabu search [8], [9], simulated
annealing [10], ant colony optimization [11], iterated
dynasearch [12], genetic algorithm [13], [14], GRASP with
path relinking [15], variable neighborhood search [16], and
variable structure learning automata [17]. Note that, the
iterated dynasearch [12] is one of iterative methods that
employs the dynamic programming combining with local
search. In the contribution of this paper, we present a method
that utilizes a probabilistic model (i.e., Gaussian process
regression model) incorporated with an iterated local search to
solve the SMTWT problem. In addition, the search
performance of proposed algorithms is considered in both
terms of solution deviation and computation time.

This paper is organized as follows. The conceptual
framework of Gaussian process regression (GPR) and its
applications are described in Section II. In Section III, the
proposed GPR-based algorithm for solving the SMTWT
problem has been presented. Next, Section IV provides the
computational results and comparison with some recent
methods. Finally, the overall result of this work is concluded
in Section V.

II. GAUSSIAN PROCESS REGRESSION

The Gaussian process regression (GPR) is known as a
probabilistic approach for a regression model due to its
practical and theoretical simplicity and excellent
generalization ability [18]. The applications of GPR are found
in many fields, for instance, the depth estimation of a point in
the camera’s image position [19], the optimization on the
sensor placements in the art-gallery problem [20], the quality
improvement in the wire-cut electrical discharge machining
process [21], and the traffic problem in Japan [22]. In addition,
it is applied to a well-known problem in operations research
field at first with the traveling salesman problem [23]. Hence,
the theoretical framework of GPR method is expressed as the
following subsections.

A.GPR Model

Gaussian process (GP) is a collection of random variables,
any finite number of which has a joint Gaussian distribution,
and it is specified by its mean functionm(x)and covariance
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function k(x,x') [18]. Usually the mean function is assumed
to be a zero function; thus, the Gaussian process can be
written as f (x) ~ GP[0,k(x,x")]-

Gaussian process regression (GPR) is a model to estimate
the value of a dependent variable or output by using some
observations of dependent variables at certain values of the
independent variable. Considering a training data set T, of n
observations, it is given as T, ={(x,,y,)|r=12,...,n}, where
X, denotes a column vector of the r— th sequence of n; jobs
and Y, denotes a scalar observation, i.e., the total weighted
tardiness obtained from the r — th sequence. For convenience,
let X=[x,,x,,..,x,] denote the inputs and let y=[y,y,,...y,]'
be the observations, so the training data set can be written as
T, = (X, y) .

The assumption of GPR is that the observation arises from
some unknown function of X, , and it may be corrupted by

unknown Gaussian noise &, . Thus, GPR model is given by

Yr :¢(xr)Tw+gr,

where w is the vector of weight parameters, &, is a white
Gaussian noise which follows an independent and identically
Gaussian distributed with zero mean and noise variance oﬁ ,

that is ngNormm(oﬁg), wherenis the number of

observations.

Over all inputs and observations in a training dataset, the
prior probability density of the observations given the
parameters is estimated. Then, it is used to compute the
posterior distribution over functions for making prediction
(See the theoretical framework in [18], [23]). The prediction is
done by the posterior mean and the posterior variance. Given a

single test input xg, let f; £ f(x;) be the function value at a
single test inputx,. The posterior mean (or the predictive

function value) is given by
f=kIKy, (1)

where K is the covariance matrix evaluated at all possible
pairs of training input, kz is the transpose of the vector of the
covariance between training and test inputs. In addition, the
(r.t) entry of the covariance matrix (or vector) is determined
by the covariance function (x x) [18]. Note that the

predictive variance is not considered because we make the
prediction at a single test input. Moreover, the graphical model
for GPR can be shown in Fig. 1.

Observations

Gaussian

Lx ] [x] |

JENYINNEN

Fig. 1 Pictorial of GPR approach [18], [23]

Inputs

B. Covariance Function

Many covariance functions can be used to define a GP
prior, for example, Matérn class of covariance function,
squared exponential (SE) covariance function, and radial basis
covariance function [18]. However, the SE covariance
function is applied in our proposed algorithm because it is the
most popular kernel, and it is given by

1
kse (X, %) = U% exp[—?(xr —X; )T (Xr — X )}

+cfﬁ5(xr,xt), )

where 5(x,,x,) is the Kronecker delta function which equals to
1 if and only ifr =tand O otherwise, /is the characteristic
length-scale, o7 is the signal variance of function, and Gﬁ is
the white noise variance.

C.GPR Parameter Estimation

Given a kernel, the hyperparameters of the covariance
function (i.e., the characteristic length-scale/, the signal

variance of function o7, and the white noise variance o ) are

determined by the maximum likelihood method [18]. The log
marginal likelihood function under the GP model is

1 1
log p(y | X,O) :EyTa—Elog‘K+oﬁI

—glog 27, 3)

where o =K 'yand @ is a vector of ¢, o7, and O'r% . The partial

derivative of (3) with respect to 0 is minimized by using a
gradient-based optimizer until converging to zero [18]. This
result gives a vector of optimized hyperparameters.

In this section, we give a concise explanation on the
theoretical framework of the GPR approach. The next section
delineates step-by-step on its implementation, which
incorporates with an iterated local search, for the SMTWT
problem.

III. PROPOSED ALGORITHM FOR THE SMTWT PROBLEM

This section aims to discuss on our proposed approach for
solving the single machine total weighted tardiness scheduling
problem. This fashion combines the Gaussian process
regression mechanism with the iterated local search technique
(i.e., simulated annealing), then we call it as the “GPRISA”
algorithm. The main procedure of proposed algorithm consists
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of three phases: data preparation, prediction, and improvement
phases, which are described respectively. In addition, the
pseudocode of this method is disclosed at the end of this
section.

A. Data Preparation Phase

This phase deals with the construction of sample sequences
that provide for training input of GPR. In order to diversify the
search space, four constructive rules and the double-bridge
swapping strategy are used to construct the sample sequences.
Initially, each constructive rule is employed to create the

initial sequence of N; jobs. These dispatching rules [13] are

compendiously explained as follows:

1) Weighted shortest processing time (WSPT): Jobs are
arranged to process on a machine in the ascending order
of the ratio S;, S; =p; /w; .

2) Shortest processing time (SPT): Each job j is scheduled

to process on a machine with the ascending order of its
processing time.
3) Biggest weighted first (BWF): Each job jis scheduled to

process on machine in the descending order of its weight.

4) The weighted modified due date (WMDD) is an effective
rule for jobs sequencing with the total weighted tardiness,
introduced by [24]. This dispatching rule outperforms
other ones, e.g., EDD, WSPT, and WEDD (weighted
EDD). The brief procedure is shown in Fig. 2:

Procedure Weighted modified due date (WMDD)

1. Sett=0, Seq =, and Job = {1.2_.3....__111}
2. Compute the value of y, for eachjob in Job , as follow.
maxip.d —t
- {pod 1

W,
J

3. Sortthe value of y, in ascending order, and select job
k having the minimum value of y,.

4. Addjob k in Seq, then remove it from Job .

5. Update 1 «1+p,.

6. Terminate the procedure if Job is empty; otherwise, go
to step 1.

Fig. 2 Pseudocode of the weighted modified due date rule

After constructing four initial sequences, an individual is
perturbed again by the double-bridge scheme, which randomly
selects four jobs in the given sequence and swaps those jobs
[25]. This leads to new (additional) sequences as in demand.
Here, we obtain various sample sequences (or observations) to
be an input of GPR.

In order to treat the sample sequences as an input of GPR,
they must be represented and they are available in convenient
situations. Several mechanisms have been presented to

represent a permutation of N; jobs (or cities in the traveling

salesman problem), for instance, path representation, binary
string representation, binary matrix representation [26].
However, our proposed algorithm employs the binary string

scheme to represent all sequences since it performs well when
making prediction. This method encodes each job in a given

sequence as a string of [log2 (n J )] bits, and then a complete

sequence becomes a string ofn; -[logz(nJ )]bits [26]; for
example, a string of [001 011 010 000]belongs to a

sequence2 >4 >3 —>1.

B. Prediction Phase
This phase concerns with the prediction of an optimal
sequence of N; jobs that process on the single machine. After

preparing the training dataset in Section A, the sample
sequences and their total weighted tardiness (TWT) values are
employed to make prediction through GPR model, in which
the sample sequences are treated as independent variables and
their TWT values are dependent variables. In order to select a
suitable model, the SE covariance function is computed over
all possible pairs of two sequences by using (2), and then it is
minimized the log marginal likelihood function (as defined in
(3)) to determine the hyper parameters of the kernel that are
consistent for the given training inputs.

In the prediction step, the optimized hyper parameters are
utilized to compute posterior distribution over functions. At
this step, a single test input is given and used to compute the
posterior mean (or the predictive function value) by using (1).
Note that the single test input in this step is a sequence that has
a minimum TWT value in training input. Later, the predictive
function value is employed to indicate the index valuer,
given by

r=argmrin{(yr - fAS)Z]

Consequently, the sequence (in training input) that
corresponds to rth index will be deputized an optimal
sequence, and it provides for an input of the next phase.
Moreover, in this step, we modify the GPR codes from their
original in the GPML toolbox [27].

C.Improvement Phase

Several local searches have been proposed to improve an
obtained sequence, e.g., descent methods, simulated
annealing, threshold accepting, genetic algorithm, and tabu
search [6], [13]. However, our proposed algorithm implements
the iterated local search based on the simulated annealing (SA)
algorithm (called the iterated SA or the ISA algorithm)
because it is one of the provably optimal local searches [25],
[28]-[30]. The ISA technique applies SA as a local search to
some initially given sequence at the beginning of the
algorithm, and then a main loop is iterated until some stopping
criterion is satisfied.

In each main loop of the ISA mechanism, the modification
step (“kick-move”) yields a new locally optimal solution
according to the SA local search and a previous solution, then
these two solutions are evaluated in the acceptance step before
starting the next loop. In addition, the SA scheme starts from
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an initially given sequence at a high temperature that is
gradually decreased. A new sequence is generated and the
difference in the TWT values between a current sequence and
a new candidate sequence is calculated; then the new sequence
is accepted to be a current sequence if it is better, or it is
accepted with some probability [29], [30].

In some practical aspects of ISA searching, the solution
may be stuck at some locally optimal solutions for a long time;
consequently, the ISA algorithm should restart with a new

Procedure GPRISA algorithm

Notation:

solution under some criterion. We apply the double-bridge
method (which is explained in the data preparation phase) for
restarting the solution of the ISA algorithm to escape from
current local optima.

In order to clarify, Fig. 3 shows the procedure of the
proposed GPRISA algorithm, which applies for solving a
single machine scheduling with total weighted tardiness
problem.

X (Predictive optimal-sequence). _1'[3':’) (Total weighted tardiness of x'). T, (Jmtial temperature). S (Cooling rate),

weZ” (Inner-loop number), U (Maximum number of « ), k € Z~ (Outer-loop mumber), K (Maximum number of &),

MaxCount _« (Stopping criterion of the unchanged TWT after u iterations), MaxCount % (Restarting criterion of

the mumutable TWT after & iterations), MaxCount resrars (Stopping criterion after employing multi-restart points

technique), Seg  bs (the number of generated sequences) . #, is the number of jobs in a sequence.

Initialize: %, % . y(%,. )« »(£7), Count _restart =0, Count =0, Count_k=0.

Main procedure:

%% Dataset Preparation phase %%

Construet the initially four sequences of n, jobs by using dispatching rules: WSPT, SPT, BWF. and WMDD.

Apply the double bridge method to each sequence for generating other different sequences as Seq _ Obs .
Encode all sequences as binarv and aggregate them into a matrix X.
Calculate the total weighted tardiness (TWT) of all sequences and aggregate into a vector y .

Identify a sequence correspond to a minimum TWT m X | and set 1t as a tes! input x, .

00 a0,

9% GPR prediction phase %%

Compute the SE covartance function of all possible pans (x, .x, ).

Minimize the log marginal likelihood function, and then make the prediction to obtain the predictive value ,F; .

Find the r—th bmary vector m X that corresponds to the minimum value of squared difference between each

member of yand £, . given by

. ]
r=arg 111.111[{_\;_ 7 ) [
"

Decode the obtained binary vector to a sequence in the jobs” (integer) number.

%% Jrerated simulated annealing phase %%

for k=110 K do

o

for =110 U do

0% Application of simulared annealing scheme %%

Generate a neighbor X~ by random 2-exchange swapping of x°.

Calculate the change in the TWT. A.. ...

Accept the solution X if A, . <0, then update a new best solution 3 (X" )= w(x.).

else accept with probability: RV, < c.\p[—_'s

e /1)

Count the number of unimproved iteration # 1f the best TWT is unaltered.
If the number of count reaches MaxCount _u , then end the exploration in loop u .

End for

Update the temperature: T, < ST, .
Update the new best solution of iteration k.

Count the number of unimproved iteration & if the best solution is unaltered.
If the number of count reaches MaxCount & and the nummber of restart is available ( Count _ resrarr =

MaxCount _ restart ), then perturb the solution with the double bridge technique, else terminate the search

in loop k.
End for

. est sequence &, its TWT value (ie. v(% )2+
Reqrn: the best sequence x,_ . and its TWT value (i.e., » {1.”“ ]— Viaar )

Fig. 3 Pseudocode of the GPRISA algorithm
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IV. COMPUTATIONAL EXPERIMENTS AND RESULTS

This section describes the experimental conditions that we
utilize to achieve the numerical results. In addition, we
provide the comparison of the obtained results from our
proposed method with the best-known (or optimal) solutions
taken from OR library [31]. Moreover, the results obtained
from some previous approaches are utilized to compare with
our proposed algorithm only on the common instances.

A. Experimental Settings

In this work, our proposed algorithm is implemented in
MATLAB program, and it is executed on three problem sets
(with 40, 50, and 100 jobs of the problem size), in which each
one contains 40 instances (i.e., 120 of total instances), taken
from the OR library [31]. In addition, the computation is done
on PC running Intel(R) Core(TM) i3-2100 CPU3.10 GHz.
processor with 4 GB of memory. For the GPR prediction, the
training dataset obtains from 20 sample sequences and initial
hyper parameters: (=2, o-% =1, and aﬁ =0 (by trial and

error).Moreover, the parameters used in our algorithm (in Fig.
3) are: Seq_Obs=4, T, =1000, £=097, U =20000,
K =20000, MaxCount _k =50, MaxCount _u =50,
MaxCount _ restart = 20 for n; <50
MaxCount _restart =30 for n; =100 jobs.

jobs, and

Because our algorithm needs a training dataset that we
create randomly, we repeat the GPRISA algorithm on each
SMTWT instance for five times. Then, the total weighted
tardiness values are averaged. Furthermore, the performance
of our proposed algorithm measures the deviation percentage
of its solution (i.e., an average of §, ., values achieved by our
GPRISA algorithm) from the best-known (or optimal) solution

(y") correspond to instance, given by

Ak *
Ypest =Y
*

y

% of deviation = x100, 4

and the computational time is evaluated over the problem size.

B. Computational Results

The results of the proposed algorithm correspond to the
average performance of five trials: the mean percentage of the
average deviation of its solution from the best-known
solutions for each problem set and the average running time
are shown in Table I. For an individual instance in each
problem set, the percentage of the average deviation among
five trials is calculated by using (4), and then for all 40
instances the mean percentage of average deviation (MAD) is
computed again.

Table I illustrates that the MAD values for the wt40, wt50,
and wt100 problem sets (which each of them contains 40
instances) are 0.0109%, 0.0231%, and 0.0570%, respectively.
These values indicate that the obtained solutions achieved by
the GPRISA algorithm is extremely close to the best-known
solutions (or optimal) solutions, which are provided in the OR

library. However, the effort of computation is spent much time
for searching, and it has an increasing time to achieve the
near-optimal solution when the size of dataset becomes large.
In our preliminary investigation, the GPRISA algorithm
quickly reaches the best-known solution within short-term
iterations, but it still executes until it meets the stopping
criteria. Consequently, it takes more computational time than
necessary to achieve the solution.

TABLEI
COMPUTATIONAL RESULTS FOR GPRISA ALGORITHM
Problem set MAD (%) Mean running time (seconds)
wt40 0.0109 313
wt50 0.0231 36.7
wt100 0.0570 67.9

For the precision and accuracy of searching, the median,
first quartile, and third quartile of percentage of the average
deviation occur with the same valueat zero while there is non-
zero percentage of the average deviation for some instances in
the wt40 problem (as in Fig. 4). For the wt50 problem, there
are only the median and first quartile of one that is absorbed at
zero. Lastly, for the wtl00 problem, the distribution of
percentage of the average deviation gets slightly away from
zero; however, the minimum percentage of that is still at zero.

0330 4
0300

0250 A

0130 1

0.100

Average deviation (o)

0.030 -

0.000

Wil wtil witl 00

Problem set

Fig. 4 Percentage of the average deviation obtained from each
problem set

== O

wiil wtil wil 00
Problem set

Average running time (seconds)
w
=1

Fig. 5 The average running time executed on each problem set

Fig. 5 shows the box-and-whisker plot of average running
time among three datasets (consisting of 40 instances in each
dataset) consumed by the GPRISA algorithm. This algorithm
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spends an increasing time as the exponential trend (depending
on the problem size). For the wt40 and wt50 problems, the
GPRISA algorithm spends approximately 31 seconds and 35
seconds of the executing time respectively while it consumes
roughly 70 seconds of the running time on the wt100 dataset.

C.Comparison

This section discusses the comparison of our proposed
GPRISA algorithm with two recent approaches: the backward
forward (BF) heuristics [2] and the variable structure learning

automata (VSLA) [17], on the common 26 instances
(belonging to three problem sets). The summary results for
comparison, including the common instance number in each
problem size, the best-known solution for each instance, the
mean percentages of average deviation obtained by GPRISA,
the percentages of average deviation achieved by BF
heuristics, and the amount of deviation percentages produced
by VSLA algorithm, can be seen in Table II.

TABLE II
COMPARISON OF THE SEARCH PERFORMANCE

Problem set Instance number Best—kpown Methods (unit: percent)
solutions BF heuristics [2] VSLA [17] GPRISA

wt40 1 913 0.0000 13.075 0.0000
(Problem size = 40 jobs) 9 16225 2.7304 2.648 0.0000
11 17465 0.5554 2.961 0.0000

24 119947 0.4911 0.211 0.0000

59 3784 0.0000 17.381 0.0000

89 25881 3.3306 5.227 0.0240

97 114686 0.3688 0.337 0.0000

119 66707 0.6461 1.665 0.0000

wt50 12 36378 0.4508 4.019 0.1792
(Problem size = 50 jobs) 59 3770 4.1379 16.769 0.1326
113 35106 4.7884 6.295 0.0000

120 101665 0.6433 1.189 0.0504

121 78315 0.6857 0.709 0.0743

wt100 14 157476 5.8060 9.401 0.0563
(Problem size = 100 jobs) 24 744287 2.7632 0.154 0.0005
31 24202 4.5327 25.276 0.1289

38 90440 9.3941 9.306 0.0621

42 425875 4.5537 0.797 0.0524

47 623356 4.2560 0.186 0.0028

60 19912 7.5331 38.129 0.0000

71 640816 2.8319 0.165 0.0050

89 54612 7.8096 6.427 0.0897

99 622464 4.8980 0.175 0.0058

111 159123 5.1243 2.431 0.0220

116 370614 7.3513 0.967 0.0403

123 397029 5.8991 0.379 0.0345

In Table II, for all the 26 common instances, our proposed
GPRISA algorithm performs remarkably better amount of
deviation percentages than both comparing methods. For the
wt40 problem, our GPRISA algorithm achieves definitely the
best-known solutions that belong to almost all instances,
except for the instance number 89 with 0.024% of deviation
from its best-known value). In addition, for the wt50 and
wt100 problems, there is only an instance of each problem that
the GPRISA innovation accomplishes the best-known
solution, i.e., the instance number 113 of the wt50 problem
and the instance number 60 of the wt100 problem.

In summary, our proposed GPRISA algorithm is the best
method, among three mechanisms. It admirably reaches the
best-known solutions of nine instances (out of 26). Finally,
almost all amounts of deviation percentages over 26 common
instances are lower than 0.1%, from the best-known solutions.

V.CONCLUSION

This paper develops a new algorithm, which combines a
probabilistic method (namely, Gaussian process regression)
with an iterated local search based on simulated annealing
scheme, for solving the single machine total weighted
tardiness-scheduling problem. It adopts many construction
heuristics: WSPT, SPT, BWF, and WMDD, to construct the
sample sequences, and then each of individuals are employed
to generate other sample sequences by using the double-bridge
method. These sequences and their sums of weighted tardiness
are treated as a training input of the Gaussian process
regression (GPR) for making a prediction of an optimal
sequence. After that, the iterated simulated annealing (ISA)
technique is called for improving the obtained solution.
Hence, we call this method: GPRISA algorithm.

In order to investigate on the search performance, we
provide the numerical experiments on various problem sizes
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with the 120 benchmark instances (40 instances for each
problem size of 40, 50, and 100 jobs) taken from OR library.
As a result, the proposed GPRISA algorithm performs an
efficiency performance. In addition, for all three problem
sizes, it achieves very close to the best-known (or optimal)
solutions within 0.1% of average deviation percentages, and
the computational time spent to achieve solution is reasonable.
Moreover, we compare the search performance of the
GPRISA algorithm with two existing methods: the backward
forward (BF) heuristics and the variable structure learning
automata (VSLA), on the common 26 instances (belonging to
three problem sets). The results show that our proposed
GPRISA algorithm clearly outperforms the comparing
approaches for all 26 common instances.

The future work aims to improve the performance of our
proposed GPRISA algorithm to reduce the computational time
that spends to acquire the optimal values. Furthermore, the
application of the proposed algorithm will be considered for
implementing to other optimization problems.
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