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Abstract—The effect of mass transfer on MHD mixed convective 

flow along inclined porous plate with thermodiffusion have been 

analyzed on the basis of boundary layer approximations. The fluid is 

assumed to be incompressible and dense, and a uniform magnetic 

field is applied normal to the direction of the flow. A Similarity 

transformation is used to transform the problem under consideration 

into coupled nonlinear boundary layer equations which are then 

solved numerically using the Runge-Kutta sixth-order integration 

scheme together with Nachtsheim-Swigert shooting iteration 

technique. The behavior of velocity, temperature, concentration, local 

skin-friction, local Nusselt number and local Sherwood number for 

different values of parameters have been computed and the results are 

presented graphically, and analyzed thereafter. The validity of the 

numerical methodology and the results are questioned by comparing 

the findings obtained for some specific cases with those available in 

the literature, and a comparatively good agreement is reached. 

 

Keywords—Mass transfer, inclined porous plate, MHD, mixed 

convection, thermodiffusion.  

I. INTRODUCTION 

HD flow for an electrically conducting fluid has 

attracted the interest of many researchers due to its 

important applications in many engineering fields such the 

magnetic behavior of plasmas in fusion reactors, liquid-metal, 

cooling of nuclear reactors, electromagnetic casting, 

petroleum industries, boundary layer control in aerodynamics, 

MHD generators, crystal growth, Ship propulsion, Jet printers 

and so on. Moreover the study of MHD is largely concerned 

with the flow, heat and mass transfer characteristics in various 

physical situations. An analysis of heat and mass transfer in 

MHD flow by natural convection from a permeable, inclined 

surface with variable wall temperature and concentration is 

investigated by [1]. Reference [2] studied the problem of 

combined free-forced convection and mass transfer flow over 

a vertical porous flat plate, in presence of heat generation and 

thermal diffusion. Reference [3] also investigated the effects 

of chemical reactions and thermophoresis on 

magnetohydrodynamics mixed convective heat and mass 

transfer flow along an inclined plate in the presence of heat 

generation and (or) absorption with viscous dissipation and 

joule heating. The author, in [3] considered the chemical 

reaction but the chemical reaction effect has been neglected 
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from the momentum equation. Also the similarity solutions 

were presented neglecting the effects of Grashof number or 

Richardson number for mixed convection. MHD mixed 

convective heat transfer about a semi-infinite inclined plate in 

the presence of magneto and thermal radiation effects has been 

examined by [4]. Reference [5] analyzed a steady two-

dimensional MHD free convection and mass transfer flow past 

an inclined semi-infinite vertical surface in the presence of 

heat generation in a porous medium. Reference [6], 

investigated the effect of conjugate heat and mass transfer on 

magnetohydrodynamic mixed convective flow past inclined 

plate in a porous medium. 

As mentioned above, it is more reasonable to include the 

thermophoretic effects on the concentration to explore the 

impact of the momentum, heat and mass transfer 

characteristics with a transverse applied magnetic field. 

Therefore, in the light of above literatures, the aim of the 

present work is to investigate the effect of mass transfer on 

MHD mixed convictive flow along inclined porous plate.  

II. MODEL AND MATHEMATICAL FORMULATION 

The schematic view of flow configuration and coordinates 

system is shown in Fig. 1.  
 

 

Fig. 1 Schematic view of flow configuration 

 

A steady two-dimensional MHD laminar mixed convective 

flow of a viscous, incompressible electrically conducting fluid 

along a semi-infinite inclined porous plate with an acute angle 

α to the vertical is considered. The physical coordinates (x,y) 

are chosen such that x is measured from the leading edge in 

the streamwise direction and y is measured normal to the 

surface of the plate. The velocity components in the directions 
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of flow and normal to the flow are u and v respectively. A 

magnetic field of uniform strength B0 is applied normal to the 

direction of flow. The external flow with a uniform velocity 

U∞ takes place in the direction parallel to the inclined plate. It 

is assumed that T and C are the temperature and concentration 

of the fluid which are the same, everywhere in the fluid. The 

surface is maintained at a constant temperature Tw, which is 

higher than the constant temperature T∞ of the surrounding 

fluid and the concentration Cw, is greater than the constant 

concentration C∞.  

Under the usual Boussinesq approximation, the governing 

equations such as continuity, momentum, energy and 

concentration equations for steady, two-dimensional, laminar 

boundary layer flow with the above assumptions can be 

written as: 
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In the above equations, ν is the kinematics viscosity, g is 

the acceleration due to gravity, β is the volumetric coefficient 

of thermal expansion, β* is the volumetric coefficient of 

expansion with mass fraction, σ is the electrical conductivity, 

K* is permeability of the porous medium, ρ is the density of 

the fluid, k is the thermal conductivity of the fluid, cp is the 

specific heat at constant pressure, Q0  is the heat generation 

constant, D is the mass diffusivity and VT is the 

thermophoretic velocity. The appropriate boundary conditions 

for the flow field of this investigation are as follows: 

 

0, ( ), , at 0w w wu v v x T T C C y= = ± = = =    (5.1) 

, , as u U T T C C y∞ ∞ ∞= = = → ∞
     (5.2) 

 

In addition, U∞ is the free stream velocity and vw(x) 

represent the permeability of the porous plate where its sign 

indicates suction (< 0) or blowing (> 0), subscripts w and ∞ 

refer to the wall and boundary layer edge, respectively. In (4) 

the thermophoretic velocity VT can be expressed in the 

following form as: 

 

 T
ref

T
V

T y

κν ∂
= −

∂
   (6) 

 

where Tref is some reference temperature and κ is the 

thermophoretic coefficient which is defined by [7]. To 

facilitate the analysis, the governing differential equations are 

to be made nondimensional with suitable transformations and 

the following dimensionless variables defined by [8] are 

introduced: 
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where, ψ (x, y) is the stream function defined by  

and u y v xψ ψ= ∂ ∂ = −∂ ∂ , such that the continuity 

equation (1) is satisfied automatically. In terms of these new 

variables, the velocity components can be expressed as: 
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        (8.1)
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Here, the prime stands for ordinary differentiation with 

respect to similarity variable η. Using dimensionless variables, 

the transformed momentum, energy, and concentration 

equations together with the boundary conditions can be 

written as: 
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with the boundary conditions: 

 

, 0, 1, 1   at   0wf f f θ φ η′= = = = =
    (12.1) 

1, 0, 0   as   f θ φ η′ → → → → ∞
    (12.2)

 

 

where, Grt is the local thermal Grashof number, Grm is the 

local mass Grashof number, M is the magnetic field parameter, 

K is the permeability parameter, Pr is the Prandtl number, Q is 

the heat generation parameter, Sc is the Schmidt number, τ is 

the thermophoretic parameter and ( ) ( )w wf v x x Uν ∞= − is the 

nondimensional wall mass transfer coefficient such that 

0wf >
 
indicates wall suction and 0wf < indicates wall 

injection or blowing. The corresponding dimensionless groups 

that appear in the nondimensional form of governing 

equations are defined as: 
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By employing definition of wall shear stress 

( )
0w y

u yτ µ
=

= ∂ ∂  along with Fourier’s law ( )
0w y

q k T y
=

= − ∂ ∂
 

and Fick’s law ( )
0s y

J D C y
=

= − ∂ ∂
 
the nondimensional 

forms of local skin-friction coefficient is   
1
22Re (0)fC f

−
′′= , 

local Nusselt number is  
1
22Re (0)uN θ ′= −  

and local Sherwood 

number is 
1
22Re (0)hS φ ′= − ), where Rex xU ν∞=

 
is denoting 

the local Reynolds number. 

III. NUMERICAL PROCEDURE AND COMPARISON 

The system of transformed nonlinear ordinary differential 

equations (9), (10) and (11), together with the boundary 

conditions (12.1) and (12.2) have been solved numerically 

using Nachtsheim-Swigert shooting iteration technique along 

with sixth order Runge-Kutta initial value solver. The 

numerical methods are described in details, referring to [9]. 

For the accuracy of the numerical results, the present 

investigation is compared with the previous investigation by 

[5] as shown in Fig. 2 while Grt = 2.0, Grm = 2.0, M = 0.5, Q = 

0.5, K = 0.5, α = 30
0
, Pr = 0.71,fw = 0.0, Sc = 0.6 and τ = 0.0. 

It is observed that the present result is in good agreement with 

that of [5]. This favorable comparison leads confidence in the 

numerical results to be reported in the next sections. 
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Fig. 2 Comparison of velocity distribution 

IV. RESULTS AND DISCUSSIONS  

The effect of various physical parameters on the flow field 

are examined and discussed in this section. The numerical 

solutions have been carried out using different values of 

various physical parameters which are appeared on the 

nonlinear ordinary differential equations. The following set of 

considered values for the key parameters in the numerical 

solutions were adopted, unless otherwise stated; Grt = 0.87, 

Grm = 0.87, M = 0.001, Q = 0.50, K = 0.01, α = 30
0
, Pr = 0.71, 

fw = 0.50, Sc = 0.60, τ = 0.10 and U∞ / ν = 1.0. Figs. 3 (a)–(c) 

display the influence of different Schmidt number Sc on the 

flow field. The values of Schmidt number Sc are taken to be 

0.22, 0.60 and 1.76 which are corresponding physically to 

hydrogen (H2), water vapour (H2O) and benzene (C6H6). In 

Fig. 3 (a), it is observed that when the Schmidt number Sc 

increases, the velocity of the flow field decreases because in 

presence of heavier diffusing species. The temperature 

distribution in Fig. 3 (b) changes insignificantly comparing 

with the velocity on the flow field. As the Schmidt number Sc 

increases, the concentration of the flow field decreases which 

is observed in Fig. 3 (c). This causes the concentration 

buoyancy effects to decrease yielding a reduction in the fluid 

velocity. As indicated in Figs. 4 (a) and (b), an increase in the 

Schmidt number Sc produces a decrease in the local skin 

friction coefficient Cf as well as the local Nusselt number Nu. 

However, on the basis of Fig. 4 (c), it is found to increase the 

local Sherwood number Sh due to increase in the Schmidt 

number Sc. The effects of different local thermal Grashof 

number Grt on the flow field are displayed in Figs. 5 (a) and 

(b). It can be seen from Fig. 5 (a) that the fluid velocity 

increases due to the development of the thermal buoyancy 

force. The increase of the local thermal Grashof number Grt, 

the peak values of the velocity increases rapidly near the plate 

and then decreases smoothly to approach the free stream 

velocity. From the dimensionless temperature distribution in 

Fig. 5 (b), it is found that an increase in the local thermal 

Grashof number Grt, decrease the temperature of the flow 

field. This is because of the positive values of local thermal 

Grashof number Grt correspond to cooling of the porous plate. 

From the Figs. 6 (a) and (b), it is seen that both of local skin 

friction coefficient Cf and local Nusselt number Nu increase 

due to increase in the local thermal Grashof number Grt on the 

flow field. The behavior of the flow field for different values 

of heat generation parameter Q and thermophoretic parameter 

τ are shown in Figs. 7 (a) and (b) respectively. As observed in 

Fig. 7 (a), the dimensionless temperature distribution is found 

to increase due to increase in the heat generation parameter Q 

because the presence of a heat source on the flow field, the 

thermal state of the fluid increases causing the thermal 

boundary layer to increase. The velocity and concentration 

distribution of the flow field for different values of heat 

generation parameter Q change insignificantly comparing with 

the temperature distribution. Therefore the graphical 

representations of velocity, concentration and local skin 

friction as well as local Sherwood number are not presented in 

this paper. It is seen that the concentration distribution in Fig. 

7 (b) decreases with increase of the thermophoretic parameter 

τ. The effect of increasing thermophoretic parameter τ is 

limited to increasing the wall slope of the concentration 

distribution but decreasing the concentration of the flow field. 

This is true for small values of Schmidt number Sc for which 

the Brownian diffusion effect is large compared to the 

convection effects. As observe in Fig. 8 (a), it is reported that 
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the local Nusselt number Nu decreases with increase in heat 

generation parameter Q. However, it can be seen in Fig. 8 (b) 

that the local Sherwood number Sh increases with the increase 

of thermophoretic parameter τ. 
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Fig. 3 Representative (a) velocity; (b) temperature; (c) concentration 

distributions for different values of  Schmidt number Sc 
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Fig. 4 Effects of Sc on (a) local skin friction coefficient; (b) local 

Nusselt number; (c) local Sherwood number against the streamwise 

distance 
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Fig. 5 Representative (a) velocity; (b) temperature distributions for 

different values of local thermal Grashof number Grt 
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Fig. 6 Effects of Grt on (a) local skin friction coefficient; (b) local 

Nusselt number against the streamwise distance 
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Fig. 7 Representative (a) temperature distribution for different values 

of Q; (b) concentration distributions for different values of τ 
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Figs. 8 Effects of (a) Q on local Nusselt number; (b) τ on local 

Sherwood number against the streamwise distance 

V. CONCLUSION 

In this investigation, a mathematical model for MHD mixed 

convective flow along inclined porous plate has been 

developed and then solved numerically. The numerical results 

are presented graphically and excellent agreement is obtained. 
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This investigation is carried out to find the effects of Schmidt 

number Sc, local thermal Grashof number Grt, heat generation 

parameter Q and thermophoretic parameter τ on the flow field. 

On the basis of the results, the conclusions can be drawn as; as 

the local thermal Grashof number Grt increases, the 

temperature tends to decrease whereas an increase in heat 

generation parameter Q and Schmidt number Sc, increase the 

temperature of the flow field. Due to increase in local thermal 

Grashof number Grt, Schmidt number Sc and thermophoretic 

parameter τ, decrease the concentration of the flow field. In 

the presence of increasing Schmidt number Sc, decrease the 

local skin friction coefficient Cf while increase the local skin 

friction coefficient Cf with the increase of local thermal 

Grashof number Grt. Increase in the heat generation parameter 

Q and Schmidt number Sc has the effect to decrease the local 

Nusselt number Nu, while increase the local Nusselt number 

Nu with the increase in local thermal Grashof number Grt. 

According to the increase in Schmidt number Sc and 

thermophoretic parameter τ, increase the local Sherwood 

number Sh. 

REFERENCES   

[1] C.-H. Chen, Yunlin, and Taiwan, “Heat and mass transfer in MHD flow 

by natural convection from a permeable inclined surface with variable 

wall temperature and concentration”, Acta Mechanica, vol. 172, 2004, 
pp. 219-235. 

[2] M.S. Alam, M.M. Rahman, and M.A. Samad, “Numerical study of the 

combined free-forced convection and mass transfer flow past a vertical 
porous plate in a porous medium with heat generation and thermal 

diffusion”, Nonlinear Analysis: Modeling and Control, vol. 11, no. 4, 

2006, pp. 331-343. 
[3] M.S. Alam, and M.M. Rahman, “Effects of thermophoresis and 

chemical reaction on unsteady hydromagnetic free convection and mass 

transfer flow past an impulsively started infinite inclined porous plate in 
the presence of heat generation/absorption”, Thammasat International 

Journal Science Tech., vol. 12, no. 3, July-September 2007, pp. 44-53. 
[4] O. Aydin, and A. Kaya, “MHD mixed convective heat transfer flow 

about an inclined plate”, Heat Mass Transfer, vol. 46, 2009, pp. 129-

136. 

[5] M.G. Reddy, and N.B. Reddy, “Mass transfer and heat generation 
effects on mhd free convection flow past an inclined vertical surface in a 

porous medium”, Journal of Applied Fluid Mechanics, vol. 4, no. 3, 

issue-1, 2011, pp. 7-11. 
[6] Md. Nasir Uddin, M.A. Alim and M.M.K. Chowdhury, “Effect of 

Conjugate Heat and Mass Transfer on MHD Mixed Convective Flow 

past Inclined Porous Plate in Porous Medium”, International Journal of 
Mechanical, Industrial Science and Engineering, vol. 08, no. 03, 2014, 

pp. 1870-1875. 
[7] L. Talbot, R.K. Cheng, R.W. Schefer and D.R. Willis, Thermophoresis 

of particles in a heated boundary layer, J. of fluid Mechanics, vol. 101, 

part 4, 1979, pp. 737-758. 

[8] T. Cebeci, and P. Bradshaw, “Physical and computational aspects of 
convective heat transfer”, Springer, New York, 1984. 

[9] P.R. Nachtsheim, and P. Swigert, “Satisfaction of asymptotic boundary 

conditions in numerical solution of systems of nonlinear equations of 
boundary-layer type”, NASA TND 3004, 1965. 


