
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:8, No:6, 2014

899

Myung-Gon Yoon, Jung-Ho Moon, Tae Kwon Ha

Abstract—This paper deals with a stabilization problem for
multi-agent systems, when all agents in a multi-agent system receive
the same broadcasting control signal and the controller can measure
not each agent output but the sum of all agent outputs. It is
analytically shown that when the sum of all agent outputs is bounded
with a certain broadcasting controller for a given reference, each agent
output is separately bounded: stabilization of the sum of agent outputs
always results in the stability of every agent output. A numerical
example is presented to illustrate our theoretic findings in this paper.
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I. INTRODUCTION

BOTH theoretically and practically, control problems of
multi-agent systems have attracted much attention from

control community. This is quite understandable because many
important physical systems appearing in diverse fields can be
described as multi-agent systems and therefore developments
of appropriate control methodologies for those systems can
have significant impacts.

As many multi-agents systems are composed of huge
number of agents such as a flock of birds and a school of fish,
for examples, in most multi-agent systems studied in literature,
only a small number of agents are directly controlled in order
to avoid the formidable cost and complexity in handling all
agents. Desirable changes in the collective behaviors of a
multi-agent system are induced by inter-agent communication
of multi-agent systems.

The single agent control (SAC) approach is extremal in that,
as the naming says, only a single agent of a given multi-agent
system is directly controlled [1], [2]. The fundamental idea
of the pinning control is similar but it is more focused on
nonlinear multi-agent systems in time domain [3]–[7], whereas
the SAC is a frequency domain approach. Another well
known approach is the leader-follower scheme in which some
leader agents serve as controllers effectively [8]–[11]. In the
aforementioned control approaches for multi-agent systems,
the problem of agent selection is critically important but
rigorous justification for a certain way of selection is very
hard in general.
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In this work we note that there are many dynamical
multi-agent systems in which all agents are inherently capable
of receiving some kind of external signals. For instance, all
birds in a flock can simultaneously hear the same sound from
a distance, not some of them. In this sort of multi-agent
systems, one does not need to limit the number of directly
controllable agents. There remains only the question of
how to generate the signal monitored by all agents, call
it a broadcasting control signal, for a desirable collective
behaviors of multi-agent systems. In fact, several control
methodologies in literature involve a broadcasting control
input similar to ours, including [12] for mobile robots and
[13]–[15] for biological applications.

For a better illustration of our focus in this work, let us
consider a multi-agent system in Fig. 1, composed of eight
identical agents labelled 1, · · · , 8. Suppose we wish to design
a broadcasting controller whose output, that is, the control
signal, is transmitted to all agents at the same time. As the task
of measuring all agent outputs simultaneously is impractical
particularly for a large multi-agent system, we assume that the
broadcasting controller can measure only the sum of outputs
y1 + · · ·+ y8.

For a given linear time-invariant agent dynamics and a
fixed configuration of inter-agent communication under our
consideration in this paper, the task of controller design can
be done by making use of any existing controller synthesis
method. Leaving such a controller synthesis as a routine
task, in this work, we wish to investigate whether or not the
stabilization of output sum y1 + · · ·+ y8 with a broadcasting
controller will result in a stable (bounded) agent output yi for
every i, given a bounded reference signal r in Fig. 1.

II. PROBLEM STATEMENT

This paper deals with multi-agent dynamic systems
composed of identical agents, denoted by {1, 2, · · · , n}, whose
dynamics is given by a possibly unstable, strictly proper
rational transfer function

yi(s)

ui(s)
=

b(s)

a(s)
(1)

where yi(s) and ui(s) denote the Laplace transform of agent
output yi(t) and input ui(t) of agent i. In the representation
(1) the polynomials b(s), a(s) are are chosen to be coprime
and a(s) is monic, i.e., its leading coefficient is one. Here we
have used the same names for functions in time-domain and
their Laplace transforms in frequency domain for notational
simplicity.
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Fig. 1. Broadcasting Control of a Multi-agent System

We suppose that each agent receive an input

ui(s) = uc
i (s) + ue

i (s) (2)

where uc
i (s) is inter-agent communication signal and ue

i (s)
denotes an external input. In many multi-agent system uc

i (s)
is given as a linear combination of the outputs of other agents,
i.e.,

uc
i (s) = −Hy(s), y :=

[
y1 · · · yn

]T
(3)

for some matrix H .
For the external input ue

i (s), we assume that all agents in a
multi-agent system receive the same broadcasting signal uB

generated by an exogenous broadcasting controller, that is,

ue
i = uB . (4)

Moreover, we assume that the controller can measure only
the output sum of all agents

yB = y1 + · · ·+ yn, (5)

instead of agent outputs {yi}, because of measurement cost.
For a given reference signal r(s), the broadcasting controller

generates a control input of the form

uB = c(s)(r − yB) (6)

for some controller c(s) and reference signal r.
Remark 1: For presentational simplicity, we assume that the

controller measures output sum yB . Our results however can
be straightforwardly modified for the case of measuring the
average output yB/n, instead of yB .

The overall dynamics of a multi-agent system subject to a
broadcasting controller, can be written as

a(s)

b(s)
y = −H y + 1uB , 1 :=

⎡
⎢⎣
1
...
1

⎤
⎥⎦ (7)

yB = 1T y, (8)

where 1 is commonly called as the all-one vector.

Now let us suppose a controller c(s) for the broadcasting
controller is chosen to stabilize the transfer function from
the reference r(s) to the output yB(s). Then, the following
problem will be investigated in this paper :

Problem 1: Is it sufficient for a broadcasting controller to
stabilize the output sum yB = y1 + · · ·+ yn, measured by the
controller, in order to stabilize each agent output ?
In other words, can it be possible that several agent outputs
diverge while their sum remains bounded as time goes ?

A complete answer to this question will be developed in
this paper.

III. MAIN RESULTS

A. Broadcasting Control

We assume that every communication between agents in a
multi-agent system is always bi-directional :

Assumption 1: The matrix H describing inter-agent
communication is symmetric, i.e., HT = H .

From this assumption we have a spectral decomposition

H = μ1P1 + · · ·+ μmPm (9)

where μk denotes the distinct (real) eigenvalues of H and Pk

is the orthogonal projection onto μk-eigenspace.
Making use of (9), it can be easily shown that the transfer

function of the multi-agent system (7) is given by

gi(s) :=
yi
uB

=
m∑

k=1

(
a(s)

b(s)
+ μk

)−1

eTi Pk1 (10)

=
m∑

k=1

b(s)

a(s) + μkb(s)
eTi Pk1 (11)

where {ei; i = 1, · · · , n} denotes the standard orthonormal
basis of n-dimensional vector space. Moreover, as yB = 1T y
and 1 =

∑
i ei, we have

gB(s) :=
yB
uB

=
m∑

k=1

b(s)

a(s) + μkb(s)
1TPk1. (12)

Let us rewrite those transfer functions as

gi(s) :=
Ni(s)

Di(s)
and gB(s) :=

NB(s)

DB(s)
(13)

with coprime polynomial pairs {Ni, Di} and {NB , DB} and
monic polynomials Di, DB . Similarly, let us represent the
controller as c(s) = X(s)/Y (s) with coprime polynomials
{X,Y } with monic Y .

Then the closed loop transfer function from the reference
r(s) to outputs can be written as

yB(s)

r(s)
=

cgB
1 + cgB

=
XNB

NBX +DBY
, (14)

yi(s)

r(s)
=

cgi
1 + cgB

=
DB

Di
· XNi

NBX +DBY
. (15)

As we have chosen a broadcasting controller c(s) stabilizing
the transfer function gB = NB/DB , from (14), it is obvious
that the polynomial NBX+DBY is stable, that is, its all roots
are in the left half plane of the complex plane.
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Therefore, in order to investigate the closed loop stability
of transfer function yi(s)/r(s) considered in Problem 1, we
have only to check if the polynomial Di might have unstable
roots which are not cancelled out by the roots of polynomial
DBXNi.

Lemma 1: Di is a factor of DB for every i = 1, · · · , n.
Proof: (Sketch) The coprimeness of a(s), b(s) gives that

Di, DB are products of the term
∏

k(a+μkb) for k’s such that
either eTi Pk1 �= 0 or 1TPk1 �= 0. Being a projection, P 2

k =
Pk holds and therefore 1TPk1 = 1TP 2

k1 =< Pk1, Pk1 >=
‖Pk1‖2. As a result 1TPk1 = 0 implies eTi Pk1 = 0, meaning
that every factor a+ μkb of Di is also a factor of DB .

This lemma reveals that DB/Di is merely a polynomial
for every i and thus the closed loop stability of yi(s)/r(s)
follows from that of yB(s)/r(s). It is important to notice
that our developments up to now were independent of a
network topology (configuration of agent connections) of a
given multi-agent system.

To sum up, we obtain the following main result as a
complete answer to our question stated in Problem 1 :

Theorem 1: A broadcasting controller can stabilizes every
agent output separately, irrespectively of network topology, for
any multi-agent system with purely bidirectional inter-agent
communication.

In many control applications of multi-agent systems, the
matrix H is an adjacency matrix or the Laplacian matrix of a
mathematical graph describing the configuration of inter-agent
communication channel and a network protocol, see e.g., [1],
[16]. In a study of the broadcasting controllability of [17], for
example, H was an adjacency matrix.

This paper makes no restrictions on H except that it is
symmetric. Thus, for example, our results can be applied to a
multi-agent system in which only some agents are equipped
with a consensus protocol while others are not, as is the case
of the following example.

IV. A NUMERICAL EXAMPLE

Consider the multi-agent system in Fig. 1, assuming that
the agent dynamics is given by a second order system

g(s) =
1

s2 + 10s+ 5
. (16)

Let us suppose that agents {1, 2, 3, 4} employ a linear
consensus protocol while agents {5, 6, 7, 8} are not. Then,
from the inter-agent communication topology in Fig. 1, we
have the following matrix

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1 0 1 0 0 0 0
1 −3 1 0 1 0 0 0
0 1 −1 0 0 0 0 0
1 0 0 −2 1 0 0 0
0 1 0 1 0 1 1 0
0 0 0 0 1 0 1 1
0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

in which the non-zero diagonal elements (bold) show that only
agents {1, 2, 3, 4} are subject to a linear consensus protocol.

Numerical calculations give that H has eight distinct
eigenvalues {μk} and the parameters 1TPk1 and eTi Pk1 in the
transfer function representations (11) and (12), as in Table I.
For example, the transfer functions gB(s) and g1(s) are given
in (18) and (19), respectively, where the bold numbers are
matched with the corresponding bold numbers in Table I.

Note from Table I that DB = Di holds for every i =
1, · · · , 8 in this particular example.

With the following proportional-integral type controller

c(s) =
1

2

(
1 +

1

s

)
, (20)

stabilizing the transfer function gB(s) and zero initial outputs,
numerical simulations give the step responses (r(s) = 1/s) of
yB = y1 + · · · + yn and all {yi} in Fig. 2. As theoretically
expected, all agent outputs converge to constant numbers.
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Fig. 2. Step Response of Multi-agent System with a Broadcasting Controller

It is impressive in Fig. 2 that most outputs {yi} vary slowly
but their sum yB changes rather quickly. This interesting result
however is not surprising as the broadcasting controller (20)
was design exactly for that purpose.

V. CONCLUSION

We have found the transfer functions of a multi-agent
system combined with an exogenous broadcasting controller.
Making use of special structures in the representation of
the transfer functions, we was able to show that when
the sum of all agent outputs is bounded with a certain
broadcasting controller for a given bounded reference input,
each agent output is also separately bounded. In other
words, the broadcasting controller can achieve the stability of
every agent, irrespectively of network topology, provided that
every inter-agent communication in the multi-agent system is
bidirectional.
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TABLE I
TRANSFER FUNCTION PARAMETERS

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
μk 2.3180 0.5011 -0.1855 -0.7707 -1.3438 -1.5755 -2.6495 −4.2941

1TPk1 5.1020 0.0547 1.6795 0.3323 0.6054 0.1757 0.0125 0.0379
0.1443 0.0424 0.4394 -0.0643 0.3371 0.2314 -0.0400 −0.0903
0.2882 0.0497 0.4254 0.1076 0.0278 0.0116 -0.0550 0.1447
0.0869 0.0331 0.5222 0.4694 -0.0809 -0.0202 0.0334 -0.0439

Pk1 0.3348 0.0563 0.3720 -0.1867 0.1934 0.0866 0.0810 0.0625
1.3015 0.0985 0.2355 -0.1652 -0.2102 -0.1946 -0.0126 -0.0530
1.2802 -0.0846 -0.0976 0.0269 -0.3721 0.2323 0.0041 0.0106
1.1138 0.0279 -0.7434 0.1794 0.4333 -0.0239 0.0032 0.0099
0.5523 -0.1688 0.5260 -0.0350 0.2769 -0.1474 -0.0016 -0.0025

gB(s) =
yB
uB

=
5.1020

(s2 + 10s+ 5) + 2.3180
+

0.0547

(s2 + 10s+ 5) + 0.5011
+ · · ·+ 0.0379

(s2 + 10s+ 5)−4.2941
(18)

g1(s) =
y1
uB

=
0.1443

(s2 + 10s+ 5) + 2.3180
+

0.0424

(s2 + 10s+ 5) + 0.5011
+ · · ·+ −0.0903

(s2 + 10s+ 5)−4.2941
(19)
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