
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:8, No:6, 2014

929

 

 

  
Abstract—In this paper, we consider the application of Extreme 

Value Theory as a risk measurement tool. The Value at Risk, for a set 
of indices, from six Stock Exchanges of Frontier markets is 
calculated using the Peaks over Threshold method and the 
performance of the model index-wise is evaluated using coverage 
tests and loss functions. Our results show that “fattailedness” alone of 
the data is not enough to justify the use of EVT as a VaR approach. 
The structure of the returns dynamics is also a determining factor. 
This approach works fine in markets which have had extremes 
occurring in the past thus making the model capable of coping with 
extremes coming up (Colombo, Tunisia and Zagreb Stock 
Exchanges). On the other hand, we find that indices with lower past 
than present volatility fail to adequately deal with future extremes 
(Mauritius and Kazakhstan). We also conclude that using EVT alone 
produces quite static VaR figures not reflecting the actual dynamics 
of the data.  

 
Keywords—Extreme Value theory, Financial Crisis 2008, 

Frontier Markets, Value at Risk. 

I. INTRODUCTION 
HE impact of the financial crisis on developed and 
emerging markets has been such that investors may need 

in a near future to look to other potential investment platforms 
such as Frontier Stock Markets (FSM).In the light of such 
developments, a proper framework is required for measuring 
risk on FSM.  

Value at Risk (VaR) was developed as a response to the 
financial crashes of institutions during the 1990s. Since then, 
VaR has become a standard for measuring market risks of 
assets, largely due to its simplicity of understanding although 
accurate calculation may prove quite tedious. The VaR of an 
asset represents in a single number, the largest possible loss 
over a given time horizon with a given confidence interval. 
This measure is also recommended by the Basle Committee 
for Banking Supervision for use by banks for calculating the 
risk exposure of the investment portfolios and subsequently 
for the calculation of capital requirements. In fact, The Basel 
II Accord allows for the use of internal models for calculating 
VaR on a daily basis assuming a 99 percent confidence level.  

However, an accurate calculation of VaR entails the use of 
proper models catering for distributional characteristics of the 
data being used. Financial returns are often assumed to have a 
Normal distribution.Pickands[12] discusses various 
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characteristics of financial time series and observes the 
presence of skewness and excess kurtosis in a set of selected 
indices and stocks. The assumption of normality may lead to 
flawed VaR figures. Other distributions such as the Student’s t 
or Skewed t have also been considered. However, a notable 
comment regarding this type of procedure is that the VaR is 
found in the tail of the distribution, so that the need to fit a 
distribution to the whole data is, in a sense, wasteful. Instead, 
we may concentrate on the left tail of the distribution 
particularly. This leads to the use of Extreme Value Theory in 
the calculation of market risk. 

Extreme Value Theory is a suitable for modeling and 
studying the usually fat tails of financial time series. The aim 
of focusing only on the tail of the data using Extreme Value 
Theory (EVT) is twofold. First, it avoids having to assume a 
single distribution for the whole evaluation sample and 
secondly, it provides a parametric fit to the targeted region of 
the data hence allows for adequate extrapolation beyond the 
range of the data. EVT provides more accurate fits to heavy 
tailed data as discussed in [6] and [7]. Regarding applications 
in estimation of VaR, the literature is quite extensive. In [9]it 
is found that EVT outperforms other modeling techniques 
such as GARCH, historical simulation and variance - 
covariance in estimating VaR using the daily closing prices of 
the Istanbul Stock Exchange index. Reference [8] compares 
the same techniques as in [9] but this time using daily closings 
of stock market indices for nine different emerging economies. 
The authors model both the upper and lower tails of the 
distributions using EVT based on the Generalised Pareto 
Distribution (GPD). EVT has also been used to calculate VaR 
in Asian Stock Markets by [5]. Ten Asian Stock Markets, 
comprising emerging as well as developed economies, are 
analyzed using the Generalised Extreme Value distribution. 
Results show that EVT VaR model produces conservative 
VaR figures as compared to a Normal distribution based VaR 
model. In [13], the final conclusion is that the FTSE/JSE 
TOP40 index returns series is clearly non normal and is best 
fit using EVT. They also point out that although 
implementation of Extreme Value Theory is more tedious than 
relying on the normal distribution, “the results obtained are 
worth the effort" and that “appreciation of the true distribution 
of returns not only presents us with trading opportunities but 
also a clearer picture of the risk involved in an investment 
decision". In another empirical study, [1] examines the 
relevance of EVT when applied to the S & P 500 in the 
context of the recent financial crisis. The author concludes that 
the left tail of the index shows how great an impact, the crisis 
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has had. One weakness of using a GPD fit is that it does not 
cater for the dynamically evolving returns series. 

This paper aims at assessing the predictive ability of using 
EVT for measuring VaR for a set of six indices from FSM. 
We consider the Mauritius Stock Exchange, Tunisia Stock 
Exchange, Colombo Stock Exchange, Karachi Stock 
Exchange, Kazakhstan Stock Exchange and Croatia Stock 
Exchange. Model evaluation is performed using hypothesis 
tests and loss functions. The paper is structured as follows: we 
first provide the necessary theoretical aspects of EVT using 
the Peaks over Threshold method. We then present in Section 
III the descriptive statistics of the data being used. The 
application to the SEMDEX (Mauritius Stock Exchange) is 
discussed in detail. The same procedure is adopted for each of 
the other indices. Section IV deals with the backtesting 
exercise and we conclude in Section V. 

II. EXTREME VALUE THEORY 
For the purpose of our study, all prices series are converted 

to returns. For a series of prices {X୲}, the return r୲ is obtained 
using 

 
r୲ ൌ ln X౪

X౪షభ
 .                                     (1) 

 
Extreme Value Theory pertains to the behavior and 

occurrence of extreme observations of a random variable. It 
allows for the modeling of rare events and subsequently for 
the calculation of tail-related risk measures. There may be two 
possible ways of using EVT: either by considering maxima or 
minima over determined observation periods of equal length 
or by considering the behavior of extreme value above a 
sufficiently high threshold value. The former is the Block 
Maxima Method and the latter the Peaks over Threshold 
(POT) method. Our study makes use of the Peaks over 
Threshold. The POT method based on the Picklands – 
Balkema - De Haan theorem (see [3] and[12]), presents a more 
efficient way for modeling the extreme data available. The 
observations above a determined threshold value are used to 
fit a Generalised Pareto Distribution. VaR is extracted from 
the tail of losses. We thus need to model the lower tail of the 
returns distribution. 

A. The Peaks over Threshold Method 
Prior to discussing the POT method, we consider the tail of 

negative returns. We first make the negative returns positive 
and denote itሼܴ௧ሽ. Thus an extreme loss would be the 
maximum of sequenceሼܴ௧ሽ. The cumulative distribution of the 
losses isܨሺݎሻ ൌ ܲሺܴ௧ ൑  ,ݑሻ. For a sufficiently high thresholdݎ
the excesses aboveݑ are given byݕ ൌ ݎ െ  The distribution .ݑ
function of ݕ is 

 
ሻݕ௨ሺܨ ൌ  ܲሺܴ௧ െ ݑ ൑ ௧ܴ|ݕ ൐  ሻ,                      (2)ݑ

 
which may be rewritten as 

 

ሻݕ௨ሺܨ ൌ  ிሺ௥ሻିிሺ௨ሻ
ଵିிሺ௨ሻ

 .                               (3) 

Further rearrangement of (3) leads to the equation 
 

ሻݎሺܨ ൌ ሻݑሺܨ  ൅ ሾ1 െ  ሻ.                   (4)ݕሺݑܨሻሿݑሺܨ
 
The estimation ofܨሺݎሻis based on the Picklands - Balkema 

– De Haan theorem. In [12], it is stated that for a sufficiently 
high ݑ, the distribution of y approximately belongs to the 
Generalised Pareto family which is defined as 
 

ሻݕక,ఓ,ఙሺܩ ൌ  ቐ1 െ ቀ 1 ൅ ߦ  ௬ିఓ
ఙ

ቁ
ିభ

഍ ߦ݂݅ ് 0 

  1 െ ݁ି೤షഋ
഑ ߦ݂݅ ൌ 0   

     (5) 

 
where ߦ is the shape parameter, ߤ, a location parameter and ߪ, 
a scale parameter. When ߦ ൌ 0, the distribution is thin tailed. 
The case of interest is when ߦ ൐ 0. Then ܩక,ఓ,ఙ is the 
cumulative distribution function of a heavy tailed Pareto 
distribution. A key step for proper use of the POT method is 
the choice of ݑ. In the next section, we discuss the tools to be 
used in choosing the threshold.  

B. Threshold Selection 
A threshold needs to achieve balance between bias and 

variance. When choosing ݑ, one wishes to include a sufficient 
number of observations in the tail so as to have a reliable 
approximation to the distribution of excesses. A very high 
threshold would be problematic in the sense that, we would be 
left with too few observations for estimating the parameters of 
the GPD. Similarly, a low threshold value might yield an 
asymptotic distribution that does not converge to a GPD. In 
order to help us in choosing a threshold, we make use of three 
graphical tools: the Mean Excess Plot, the Hill plot and 
Maximum Likelihood Estimates of the scale parameter with 
different number of observations in the tails. 

For a set of independent and identically distributed 
observationsܺଵ, … , ܺ௡, the mean excess above a given 
threshold ݑ is defined as 

 

ሻݑሺܧ ൌ  
∑ ሺ௑೔ି௨ሻூ೉೔ಭೠ

೙
೔సభ

∑ ூ೉೔ಭೠ
೙
೔సభ

,                                (6) 

 
where  I is an indicator function. The set of pointsሼሺX୧, EሺX୧ሻሻሽ 
makes up the Mean Excess plot. A correct threshold is 
identified by determining a portion of the graph that is linear. 
Moreover, a positively sloped plot indicates a heavy tailed 
distribution. We also consider the Hill Plot which is based on 
the Hill estimator for ߦ provided ߦ ൐ 0. The set of data is first 
ordered such that ଵܺ

ሺ௡ሻ ൐ ܺଶ
ሺ௡ሻ ൐ ڮ ൐ ܺ௡

ሺ௡ሻ and the Hill 
estimate is calculated as 

 

መߦ ൌ  ଵ
௡

∑ ln
௑ೕ

ሺ೙ሻ

௑ೖ
ሺ೙ሻ

௞
௜ୀ௝ .                                        (7) 

 
The Hill plot is constructed using the set of points ቄቀ݇ , ଵ

క෠
ቁቅ. 

A suitable threshold may be chosen based on the criterion of 
stability of the estimated shape parameter. Stability would 
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imply a relatively flat part of the graph where the parameter  
is fairly stable.  

Along similar lines as the Hill plot, we consider a plot of 
Maximum Likelihood Estimates of  against the number of 
upper order statistics included in the estimation. According to 
the Balkema and de Haan Picklands theorem, if the GPD 
provides a satisfactory fit at a given threshold, then using the 
same shape parameter, the excesses of a higher threshold 
should also follow a GPD. As with the Hill plot, we choose 
the number of observations to be used in the GPD fit based on 
the portion of the graph, where the shape parameter remains 
stable. 

C. Value at Risk Using POT 
From (4) and (5), we obtain for a chosen thresholdݑ, 

 
ሻݎሺܨ ൌ ሻݑሺܨ  ൅ ሾ1 െ ݎక,ఓ,ఙሺܩሻሿݑሺܨ െ  ሻ.         (8)ݑ

 
By substituting for ܩక,ఓ,ఙ and using the estimator  ܨሺݑሻ෣ ൌ

 ௡ିே
௡

, where݊ is the sample size and ܰ is the number of 
exceedences above ݑ, we obtain the equation 

 

ሻ෣ݎሺܨ ൌ  1 െ ே
௡

ቀ1 ൅ መߦ  ௥ି௨
ఙෝ

ቁ
ିଵ

క෠ൗ
 .                (9) 

 
A simple rearrangement of (9) yields 
 

ሺఈሻݎ ൌ ݑ  ൅  ఙෝ
క෠

ቆቀ௡
ே

 ሺ1 െ ሻቁߙ
ିక෠

െ 1ቇ ,            (10) 

 
from which the  100ߙ percent quantile may be obtained, hence 
the VaR. 

III. DATA AND METHODOLOGY 
We use as data, the daily closing prices of the indices from 

the Stock Exchanges mentioned. The prices series start at 
various dates but end in 2009. We thus use data pre and post 
2008 financial crisis. The time series are also of different 
lengths due to each Stock Exchange having different closing 
dates. Plots of the returns series are shown in Fig. 1 where we 
may observe the relative dynamics of the indices. Indices from 
same continents have comparative dynamics. Mauritian and 
Tunisian indices have generally lower volatility as compared 
to their European (Croatian and Kazakh) counterparts. Table I 
shows the descriptive statistics of the indices. We see that all 
the return series are close to zero. The unconditional standard 

deviations of the different series are relatively comparable. 
The Tunisia and Mauritius indices resemble each other in 
terms of mean and standard deviation. The Kazakhstan index 
has highest standard deviation. The six returns series 
considered all exhibit kurtosis above 3. Another feature of the 
returns series is the presence of skewness. In fact, four of the 
indices (Mauritius, Sri Lanka, Tunisia and Kazakhstan) are 
positively skewed. These indicate that the returns series are 
non-normal. We confirm this non normality via the 
JarqueBera test performed at 5% level. The test statistics 
obtained lead to the rejection of the null hypothesis of 
normality. We further illustrate the fattailedness of the data by 
observing the QQ plots in Fig. 2. The data is plotted against 
quartiles of the thin tailed standard exponential distribution. 
We observe that for most of the returns series, there is a 
concave departure from the straight line thus confirming the 
fattailedness of the data. The Karachi index is the only of the 
indices considered that does not clearly show concave 
departure. However, a slightly concave shape may be 
observed at higher quantiles.  

For the purpose of applying a GPD fit to the tails of the 
different returns series, we determine the threshold values 
using the methods described in Section II (C). The plots 
discussed are used in order to determine the number of upper 
order statistics to be used in the GPD fit. To illustrate the 
threshold selection procedure, we present the results obtained 
for the SEMDEX returns. The mean excess plot in Fig. 3 
shows a positively sloped graph further establishing the fat 
tailed nature of the data. A clear cut choice for the shape 
parameter is difficult to identify clearly from this graph. We 
next consider the Hill plot and identify here a relatively flat 
portion. The Hill estimates are seen to be rather stable when 
the number of observations used in the tail index is between 
300 and 370 (Fig. 4). Finally, we attempt to justify the number 
of losses to be used in the tail index estimate using a plot of 
Maximum likelihood estimates of the latter against the number 
of observations included for estimation (Fig. 5). The region 
where the data is fairly stable is seen to be within the range 
360 to 440. It is worth pointing out that the choice of threshold 
based on the graphical tools described is a subjective exercise 
as the threshold choice is up to the user. 

The same exercise is performed on the other indices. The 
losses are extracted and satisfactory thresholds are decided 
upon based on the plots mentioned. Table II shows the ranges 
we identify in each case. 

 
TABLE I 

DESCRIPTIVE STATISTICS OF THE RETURNS SERIES 
 Colombo Karachi Tunis Kazakhstan Zagreb Mauritius 

Mean 0.00048 0.00058 0.00049 0.00121 0.00031 0.00055 
Std. Dev 0.01506 0.01797 0.00494 0.03268 0.01844 0.00790 

Minimum -0.29677 -0.13213 -0.05004 -0.48644 -0.19423 -0.06383 
Maximum 0.30535 0.12762 0.03613 0.48759 0.17575 0.07655 
Kurtosis 123.29601 7.68352 11.42786 51.99664 18.38701 20.64550 

Skewness 0.30971 -0.35397 0.02877 0.59299 -0.03498 0.23177 
JarqueBera 1806527.192 2832.617 8855.338 237305.206 31854.771 31573.302 
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(a)  Colombo 

 

 
(b) Pakistan 

 

 
(c) Tunisia 

 

 
(d) Mauritius 

 

 
(e) Zagreb 

 
(f) Kazakhstan 

Fig. 1 Plots of returns for the different indices considered 
 

TABLE II 
RANGE OF OBSERVATIONS OVER WHICH TAIL INDEX ESTIMATES ARE STABLE 

 Hill Plot MLE estimates plot 
Colombo 250 – 300 260 – 290 
Karachi 60 -100 60 - 80 
Tunisia 400 – 450 400 – 440 

Mauritius 300 – 370 330 – 440 
Zagreb 420 – 480 350 – 420 

Kazakhstan 400 – 450 440 – 500 

 
The number of observations to be included in the tail for 

satisfactory tail estimation, represent about 10 % of the whole 
set of observations except for the Karachi Stock Exchange. 
These figures confirm that the returns from the Karachi Stock 
Exchange index may not be appropriately modeled by a GPD. 
We nevertheless consider an EVT VaR model for this index 

for the sake of consistency and for comparison purposes with 
the other indices. 

The next step consists in calculating the VaR with the 
estimated tail index, using (10). In our case, the 99 % VaR is 
found. The returns series is first split into two parts. We 
consider an estimation and an evaluation sample of length 
500. The estimation sample is used to find the tail index using 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:8, No:6, 2014

933

 

 

the predetermined threshold. One VaR figure is forecasted. 
The estimation sample is next updated with a new return and 
the procedure of recalculating the tail index and subsequently 
the VaR is performed. This process is carried out 500 times to 
produce 500 VaR forecasts for the purpose of backtesting. By 
considering an updated returns series at each step, we ensure  
that the tail index estimated, reacts to potential new extreme 
events and we expect that this is reflected in the VaR. 

IV. BACKTESTING 
In order to evaluate the predictive ability of the model, we 

count the number of exceptions occurring. The actual returns 
are used as a substitute for the actual profit or loss and we 
consider a negative return less than a VaR forecast, a 
violation. The number of violations N occurring over an 
evaluation period of length T may be defined as  

 

ܰ ൌ  ෍ ॱ௜,
்

௜ୀଵ

 

 
where, 

ॱ௜  ൌ  ቄ1
0

௜ݎ݂݅ ൏ ܸܴܽ௧,
.݁ݏ݅ݓݎ݄݁ݐ݋

 
 
The fittingness of the model considered in forecasting VaR 

is determined using a two step approach. We first use 
statistical tests in order to assess the adequacy of the model 
considered and secondly use loss functions to determine which 
models produce VaR figures closer to actual losses. The 
statistical tests used are the test of Kupiec (see [10]) and the 
Christofferson test (see [4]).  

 

 
(a) Colombo 

 

 
(b) Pakistan 

 

 
(c) Tunisia 

 

 
(d) Mauritius 
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(e) Croatia 

 
(f) Kazakhstan 

Fig. 2 QQ plots of returns data for each series against standard exponential quantiles 

 

Fig. 3 Mean Excess Plot for SEMDEX losses 
 

 
Fig. 4 Hill estimates for tail index of the SEMDEX returns series 
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Fig. 5 Maximum Likelihood Estimates of shape parameter using SEMDEX losses data 

 
The Kupiec test is a test of unconditional coverage while 

the Christofferson test also confirms for independence in the 
exceptions. The proportion of exceptions is ݌ ൌ  ே

்
 and the 

unconditional coverage test statistic is given by 
 

௨௡௖ܴܮ  ൌ  െ2 ln
ே ሺ1݌ െ ሻ்ିே݌

ே ሺ1ߙ െ   , ሻ்ିேߙ

 
which has a ߯ଶሺ1ሻ distribution. The test is performed under 
the null hypothesis that݌ ൌ  Given a confidence level of 99 .ߙ
% and an evaluation sample of length 500, the target number 
of violations is 5. The Christofferson test extends the test for 
unconditional coverage by considering the clustering of 
exceptions. The variable ݊௜௝ denotes the number of days on 
which transitions from state i to j occur. The associated 
probabilities are 

 

଴ଵߨ ൌ  
݊଴ଵ

݊଴଴ ൅  ݊଴ଵ
ଵଵߨ݀݊ܽ ൌ  

݊ଵଵ

݊ଵ଴ ൅  ݊ଵଵ
   . 

 
The likelihood ratio test statistic for independence is 

calculated as follows: 
 

௜௡ௗܴܮ  ൌ  െ2 ln
௡బభା ௡భభ ሺ1ߨ െ ሻ௡బబା௡భభߨ

଴ଵߨ
௡బభ ሺ1 െ ଵଵߨ଴ଵሻ௡బబߨ

௡భభ ሺ1 െ ଵଵሻ௡భబߨ
 , 

 
where 

ߨ ൌ  
݊଴ଵ ൅ ݊ଵଵ

݊଴଴ ൅ ݊଴ଵ ൅ ݊ଵ଴ ൅ ݊ଵଵ
. 

 
 ௜௡ௗalso has a chi squared distribution with 1 degree ofܴܮ

freedom.The conditional coverage test statistic is ܴܮ௖௖ ൌ
௜௡ௗܴܮ   ൅  .௨௡௖ and has a ߯ଶሺ2ሻ distributionܴܮ 

Both tests are performed at 5 % significance level. The 
critical values for the test are 3.841 for a ߯ଶሺ1ሻ distribution 
and 5.991 for a ߯ଶሺ2ሻ distribution.If the model, when applied 
to an index, does not produce any violations, the test statistics 
cannot be calculated and we consequently reject the model for 
the particular index. 

The second stage of our backtesting procedure consists in 
using loss functions. A loss function assigns a score to the 

model based on the difference between an actual loss and the 
VaR forecast when an exception occurs. We consider four loss 
functions in this study namely the quadratic (QL), absolute 
(AL), asymmetric linear (ASL) and quantile loss (QuL) 
functions. The loss functions have the following forms: 

 

௧ܮ    :ܿ݅ݐܽݎ݀ܽݑܳ  ൌ  ൜ሺݎ௧ െ ܸܴܽ௧ሻଶ

0
௧ݎ݂݅ ൏ ܸܴܽ௧,
.݁ݏ݅ݓݎ݄݁ݐ݋

 
 

ݐܮ     :݁ݐݑ݈݋ݏܾܣ  ൌ  ൜|ݐݎ െ |ݐܴܸܽ
0

ݐݎ݂݅ ൏ ,ݐܴܸܽ
.݁ݏ݅ݓݎ݄݁ݐ݋

 
 

ݐܮ     :ݎܽ݁݊݅ܮܿ݅ݎݐ݁݉݉ݕݏܣ  ൌ  ቊ
ሺߙ െ 1ሻሺݐݎ െ ሻݐܴܸܽ

ݐݎሺߙ െ ሻݐܴܸܽ
ݐݎ݂݅ ൏ ,ݐܴܸܽ
.݁ݏ݅ݓݎ݄݁ݐ݋

 

 

ݐܮ     :݈݁݅ݐ݊ܽݑܳ  ൌ  ቊ
ሺݐݎ െ ሻ2ݐܴܸܽ

ሺܴ െ ሻ2ݐܴܸܽ
ݐݎ݂݅ ൏ ,ݐܴܸܽ
.݁ݏ݅ݓݎ݄݁ݐ݋

 

 
With reference to the QuL function, R corresponds to the 

ݐ  percentile of the returns data available at time ߙ100 െ 1. 
The QL and AL functions do not penalize a model when 
exceptions do not occur while the ASL and QuL assign a score 
to the model whenever this is the case. A smaller loss function 
score indicates that the model is performing well. 

A. Backtesting Results and Discussions 
We present in Table III the test statistics of the 

unconditional and conditional coverage tests as well as the 
scores that the EVT model produces index-wise. Two clear cut 
observations are that the EVT model does not work out for the  

Mauritian and Karachi Indices: In the case of the former, 
the model produces 18 violations which are well above the 
target of 5. Moreover, the model gets rejected for 
unconditional and conditional coverage tests. The LRIND of 
9.2546 is a further indication that the violations produced are 
clustered. Regarding the Karachi Stock Exchange index, the 
results confirm the diagnostics established in Section III 
regarding the unsuitability of the EVT model. No violations 
occur and so we reject the model for this particular index. The 
EVT model also proves inappropriate for the Kazakhstan 
index. Only one violation happens and the model is rejected 
for unconditional coverage. 
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On the other hand, the model provides satisfactory results in 
the case of the Tunisia, Colombo and Zagreb Stock Exchange 
indices with 8, 3 and 4 violations respectively. The model is 
not rejected in any of the coverage tests while producing 
independent violations. We note that the violation rate for the 
Colombo and Zagreb indices are very close to the target rate 
of 1 %. Given that the model is not rejected statistically for 
these indices, we further analyze the accuracy of the VaR 
forecasts by looking at the loss function scores. We first 
consider the QL and AL scores and find that the EVT model 
works best for the Zagreb index with lowest scores. However, 
the asymmetric loss function scores are not the best. This may 
imply relatively high VaR forecasts when losses are not 
occurring. Regarding the Sri Lankan index, we may observe 
the loss scores are comparatively high. Finally, the EVT 
model for VaR of the Tunisian index scores well in terms of 
all loss functions. The scores obtained are better than for the 
Zagreb index with respect to the ASL and QUL functions. 

We illustrate the relative performance of the EVT model for 
each index by producing plots of the predicted VaR figures 
alongside actual returns (Figs. 6 and 7). The plots may be used 

to understand the loss function scores produced. Fig. 6 shows 
the plots for the indices where the model is rejected. The 
violations are seen to occur quite frequently in the case of 
Mauritius (Fig. 6 (a)) while the VaR forecasts are seen to be 
well below for the Karachi index (Fig. 6 (b)). 

Referring to Fig.7 is most relevant to understand the loss 
function scores produced. In the case of the Colombo Stock 
Exchange index, we see that the model fails to capture the 
peak occurring midway between the 350th and 400th forecasts. 
The magnitude of the difference is visible and this accounts 
for rather high loss function scores. The low loss function 
scores for the EVT model when applied to the Tunisian index 
may be explained by the fact that the VaR forecasts remain 
close to the actual returns. Finally, the same may be said for 
the Zagreb index where the VaR forecasts remain rather close 
to the returns data and the magnitude of the difference when a 
violation occurs is not as consequent as for the Colombo 
index. A general observation for all the indices considered is 
that despite updating the estimation sample and reevaluating 
the tail index constantly, the VaR forecasts remain fairly 
static. 

 
TABLE III 

BACKTESTING RESULTS – COVERAGE TEST STATISTICS AND LOSS FUNCTION SCORES 
Vio. LRUNC LRIND LRCC QL AL ASL QUL 

Mauritius 18 20.4581 9.2546 29.7126 0.005272 0.2387 0.3709 0.0502 
Tunisia 8 1.5383 2.5662 4.1044 0.001958 0.0886 0.1670 0.0092 

Colombo 3 0.9431 0.0000 0.9431 0.061248 0.2506 0.5035 0.2197 
Karachi 0 0.0000 0.0000 0.0000 0.000000 0.0000 0.3259 0.1825 
Zagreb 4 0.2169 0.0000 0.2169 0.001885 0.0712 0.4196 0.1690 

Kazakhstan 1 4.8134 0.0007 4.8141 0.000023 0.0048 0.6291 0.9629 
 

 
(a) Mauritius
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(b) Karachi 
 

 
(c) Kazakhstan 

Fig. 6 Plots of VaR forecasts and actual returns for indices where EVT model is rejected 

Colombo 
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Tunisia 

Zagreb 

Fig. 7 Plots of VaR forecasts and actual returns for indices where EVT model is not rejected 
 

V. CONCLUSIONS 
We have considered in this paper Extreme Value Theory as 

a tool for calculating VaR for a set of Frontier markets. With 
reference to the indices used, we saw that all were fat tailed, 
except for the Karachi Stock Exchange index and according to 
our diagnostics, would be well modeled by a GPD. As 
expected, the EVT VaR model did not properly estimate VaR 
for the Karachi index. However, we also found that the model 
was not particularly useful when applied to the Mauritius (too 
many violations) and Kazakhstan (too few violations) indices. 
Concerning the Mauritius index, the inability of the EVT VaR 
model to work correctly may be explained by the very 
behavior of the returns data. The index has relatively low 
volatility which however increases during the financial crisis 
period. The data used in the estimation of the tail index does 
not contain enough extreme values that would allow the model 
to cope with future extremes. This explains the large number 
of violations. The Kazakhstan index on the other hand has 
quite a few extremes occurring within the estimation sample. 
The returns within the evaluation sample, on the other hand, 
are relatively less volatile. This may account for the frequent 
overestimation of the VaR. 

Out of the six indices, the model gave satisfactory results 
for the Colombo, Tunisia and Zagreb indices. Again, we may 
explain these by the behavior of the data. Low and high 
volatility periods occur quite regularly for the Colombo index. 
Based on past data, the model is able to capture other extremes 
satisfactorily.. However, a notable extreme occurs which the 
model fails to capture resulting in high loss function scores. 
The Tunisia index also has quite consistent volatility as 
compared to the Mauritius index. This consistency may 
account for the acceptable results obtained. We last consider 
the Zagreb index where VaR was very well modeled by EVT. 
Here our results agree with those obtained by [2] and [11]. 

In general, we may conclude that the application of Extreme 
Value Theory to these indices should be done with caution. 
We observe that the past behavior of the data impacts on the 
VaR forecasting ability of the model. An existing history of 
extreme returns helps a model cope well with future extremes. 
This is particularly important for Frontier markets which are 
characterized by increasing volatility as the market develops. 
Our study provides an insight as to how well Extreme Value 
Theory might suit Frontier Market indices. Such studies are 
generally not very common especially for African markets 
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where the most literature pertains to South Africa whose 
market is more developed than Mauritius or Tunisia. One such 
study by [14] on the FTSE/JSE TOP 40 index showed that 
unconditional EVT works best in this case. Finally, one major 
drawback of relying solely on EVT to estimate VaR is that the 
forecasts produced are quite static and by no means react to 
volatility. A worthy consideration in the context of VaR 
modeling would be the use of a combo of Extreme Value 
Theory and volatility models such as Generalised Auto 
Regressive Heteroscedasticity models.  
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