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Abstract—A new elastic-viscoplastic (EVP) constitutive model is 

proposed for the analysis of time-dependent behavior of clay. The 

proposed model is based on the bounding surface plasticity and the 

concept of viscoplastic consistency framework to establish 

continuous transition from plasticity to rate dependent viscoplasticity. 

Unlike the overstress based models, this model will meet the 

consistency condition in formulating the constitutive equation for 

EVP model. The procedure of deriving the constitutive relationship is 

also presented. Simulation results and comparisons with experimental 

data are then presented to demonstrate the performance of the model. 

 

Keywords—Bounding surface, consistency theory, constitutive 

model, viscosity.  

I. INTRODUCTION 

IME-DEPENDENT behavior of geomaterials such as clay 

has widely been recognized experimentally [1], [2]. Many 

different classes of constitutive models have been introduced 

to capture the time-dependent viscous phenomena observed in 

soils [3]. Most of these models are based on empirical, 

rheological and general stress-strain-time concepts [4].  

Elastic-viscoplastic (EVP) models have been developed 

because the elastoplastic models are not capable of predicting 

the time-dependent behavior of soils such as creep, stress 

relaxation and strain rate dependency. Most of the existing 

EVP models are based on the concept of Perzyna’s overstress 

theory [5], [6] and the critical state framework, e.g. models 

developed by Adachi & Oka [7], Oka et al. [8], Kaliakin & 

Dafalias [9], [10], Kutter & Sathialingam [11] and Yin & 

Graham [12]-[15] . However, the main feature of the Perzyna-

type models is that the rate-independent yield function used 

for describing the viscoplastic strain can become larger than 

zero, which is known as ‘overstress’. If the external loading 

remains constant, the stresses return to the yield surface as a 

function of time. Another concern is that most of these models 

are complex and a number of parameters are required to be 

determined. 

In this study, an alternative viscoplastic model is developed 

within the consistency viscoplastic framework using a rate-

dependent yield function. Unlike the overstress based models, 

this model will meet the consistency condition in formulating 

the constitutive equation for EVP model. In addition, it will 

provide a convenient and easy way to apply model for 

numerical implementation. It will also allow smooth transition 

from elastoplasticity to viscoplasticity.  
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The proposed model is based on the bounding surface 

plasticity [16] and the concept of viscoplastic consistency 

framework [17], [18] to establish continuous transition from 

plasticity to rate dependent viscoplasticity. The approach 

adopted in this study concentrates on constitutive equations 

with a new hardening parameter and hardening rule. Based on 

the formulation, a numerical program has been developed to 

simulate the rate-dependent behavior of soils. Simulation 

results and comparisons with experimental data of remolded 

Fukakusa clay are presented to demonstrate the application of 

the model.  

II. A BOUNDING SURFACE VISCOPLASTIC MODEL 

The model is developed using bounding surface plasticity 

[16] with a seamless transition from rate-independent 

plasticity to rate dependent viscoplasticity. The strain-rate 

contribution (viscosity) is implemented through a rate-

dependent yield surface [17]. The yield function and the 

consistency condition for a rate-dependent material are written 

as functions of strain and strain rate parameters [18]. Similar 

to a traditional bounding surface plasticity model, the 

following essential ingredients are described: elastic 

properties, yield surface or bounding surface, flow rule for 

viscoplastic potential and a hardening rule.  

In the proposed elastic-viscoplastic model, the total strain 

increment is decomposed into elastic part (�) and viscoplastic 
part (��) 

 �� � ��� � ��	

 (1)  

A. Elastic Properties 

The elastic part ��� is expressed in relationship with the 
stress increment as 

 �� � ����� (2)  
 

where ���
 is the elastic strain increment, �� is the stress 

increment, �� is the elastic stiffness matrix 

 �� � � 00 3�� (3)  

 

and � and � are bulk and shear moduli, respectively. 

The moduli are then defined as 

 

� � ����  
(4)  

� � 3�1 � 2��2�1 � �� ����  
(5)  
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where � is the specific volume (� � 1 � �
ratio,  �� is the mean effective stress and 

elastic unloading-reloading line in  ��: ���
In the bounding surface theory, it is common to define a 

purely elastic region as a region bounded by the loading

surface. However, deformation of clays is not purely elastic

[19]. Thus in this study, a purely elastic region is omitted 

that all deformation is viscoplastic. 

B. Viscoplastic Properties 

The main components of the bounding

model are:  

- The loading surface 

- The bounding surface 

- The flow rule 

- The hardening rule 

In the present model, viscoplastic strain occurs when the 

stress state lies on or within the bounding surface. The image 

point is selected using a mapping rule such that the unit 

normal vectors to the loading surface and the bounding surface 

are the same.  

1. Bounding Surface 

The bounding surface has a tear drop shape and always 

encloses the loading surface, see Fig. 1. In 

mean stress plane, the bounding surface is

as  ��!", $%, �!�&� � 0. Stress conditions on the bounding surface 
are denoted using a superimposed bar throughout.

The function adopted for the bounding surface is in the 

form 

 

 ��!", $%, �!�&� � ' $%(&)�!�*
+ � ln��!�& �!�⁄ ���/

 

where (&) is the slope of the critical state line (CSL) in the �$~�"� plane. (&) may be one of two constants, depending on 

whether compressive ($% 1 0) or extensive (
occurring. 

The parameter  �!�& controls the size of 
of viscoplastic volumetric strain �
	

volumetric strain rate �2 
	


, the material constant 

the ratio between �!�& and the value of �!" 
with the CSL in the �$~�"� plane, and the material constant 

controls the curvature of the surface.  

2. Loading Surface 

The effective stress �� is always located on the loading 
surface. For the first time loading, the loading surface is of the 

same shape with the bounding surface and homologous to the 

bounding surface about the origin of the 

function for the loading surface takes the form

 

3��", $, ��&� �  ' $(&)��*+ � ln ���& ��⁄ ���/
 

where ��& is the hardening parameter controlling the size of 

the loading surface and is a function of �
	


 

�), � is the Poisson’s 
stress and � is the slope of the ����� plane. 

In the bounding surface theory, it is common to define a 

purely elastic region as a region bounded by the loading 

surface. However, deformation of clays is not purely elastic 

. Thus in this study, a purely elastic region is omitted such 

The main components of the bounding surface viscoplastic 

model, viscoplastic strain occurs when the 

stress state lies on or within the bounding surface. The image 

point is selected using a mapping rule such that the unit 

normal vectors to the loading surface and the bounding surface 

The bounding surface has a tear drop shape and always 

. In the deviatoric and 

, the bounding surface is expressed 

. Stress conditions on the bounding surface 

using a superimposed bar throughout. 

bounding surface is in the 

! � � 0 (6) 

is the slope of the critical state line (CSL) in the 

be one of two constants, depending on 

) or extensive ($% 4 0) loading is 
controls the size of   and is a function 	


 and viscoplastic 

he material constant / represents !  at the intercept of   

and the material constant 5 

is always located on the loading 

surface. For the first time loading, the loading surface is of the 

face and homologous to the 

the �$~�"� plane. The 
function for the loading surface takes the form 

� � 0 (7) 

is the hardening parameter controlling the size of 	

 and �2 
	


. 

Fig. 1 Bounding surface, loading surface and mapping rule for the 

first time loading (

3. Image Point 

The image point (�6�) is selected using a radial mapping rule

such that a straight line through the centre of homology and 

intersects the bounding surface at 

normal vector as �� on the loading surface
The unit normal vector at the image point defining the 

direction of loading is given as

 

n � 73 78�⁄973 78�⁄ 9 � 9
 

Differentiating (8) with respect to 

 7 7�!� � � 5�!� ' $%(&)�!7 7$% � 5 ' 1(&)�!�*
+ $%+:; �

 

The components of < �  =�
 �
 �  √?�@ �  √?
 

For 3-D stress state, the vector 

 7 7�6� � 7 7�!� 7�!�7�6� � 7 7
 

where 7 7�!" ,⁄ 7 7$%  ⁄  and

differentiating the generalized

and A! as 
 

 

surface, loading surface and mapping rule for the 

time loading (after [16]) 

) is selected using a radial mapping rule 

such that a straight line through the centre of homology and �� 
intersects the bounding surface at �6� having the same unit 

on the loading surface [20].  

The unit normal vector at the image point defining the 

direction of loading is given as 

7 78%�⁄97 78%�⁄ 9 (8) 

with respect to �!� and $% , we obtain 
' % !�*

+ � 1�!���/ � ? (9) 

% � 5(&)�!� ' $%(&)�!�*
+:; � B (10) 

=�
, �@CD
 at �� are defined as 

??E � BE (11) 

B?E � BE (12) 

, the vector 7 7�6�⁄  is written as 

6 7 7$% 7$%7�6� � 7 7A! 7A!7�6� (13) 

and 7 7A!  ⁄  are evaluated by 

generalized form of (6) with respect to �!", $% 
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7 7�!� � � 5�!� F $%(&)�A!��!�G
+ � 1�!���/ (14) 

7 7$% � 5(&)�A!��!� F $%(&)�A!��!�G
+:;

 
(15) 

7 7A! � 7 7(&)�A!� 7(&)�A!�7A! � � 354 F $%(&)�A!��!�G
+ F �1 � IJ�KLM3A!1 � IJ � �1 � IJ�MN�3A!G (16) 

 

where (&)  is a function of  A! 
 

(&)�A!� � (OPQ F 2IJ
1 � IJ � �1 � IJ�MN�3A!G

;/J
 

(17) 

4. Flow Rule 

The flow rule describes the inelastic deformation. The 

viscoplastic strain increment ��	
 is expressed by the flow 
rule as 

 

��	
 � �ST � �S 7U7�� (18) 

 

where �S is the viscoplastic multiplier, T is the direction of 

the viscoplastic flow, governed by the gradient of the 

viscoplastic potential and U is the viscoplastic potential 
defining the direction of viscoplastic strains.  

The viscoplastic potential defines the direction of 

viscoplastic strain increments. It is the ratio between the 

incremental viscoplastic volumetric strain and the incremental 

viscoplastic shear strain 

 

V � ��
	

��@	
 � W̃!Y '(&) � $��* (19) 

 

where Y is a material constant dependent on the mechanism 

and amount of energy dissipation, W̃! is the loading direction 
multiplier with W̃! � �1 for compression ($% 1 0) and W̃! � �1 
for extension ($% 4 0). 

The viscoplastic potential U is obtained by integrating (19) 
with respect to �� and  $.  

For Y � 1:  
 

U��", $, �Z� � W̃! [$ � (&)���� F���ZG\ (20) 

 

For Y ] 1:  
U��", $, �Z� � W̃! ^$ � Y(&)��Y � 1 _F���ZG`:; � 1ab (21) 

 

in which �Z is a dummy variable controlling the size of the 

viscoplastic potential. 

Vectors of viscoplastic flow (at stress point  ��) c � =d
, d@CD
 with its components are defined as    

 

d
 � 7U 7��⁄97U 7��⁄ 9 �  V√1 � VEe  
(22) 

d@ � 7U 7$⁄97U 7��⁄ 9 �  W̃!
√1 � VEe  

(23) 

5. Hardening Rule 

The hardening rule of conventional plasticity satisfies 

consistency condition. In this study, the consistent 

viscoplasticity follows the mathematical framework and 

strategies of classical plasticity formulations. That means the 

stress point is always on or inside the yield surface and 

viscoplastic deformation occurs when the stress point lies in 

the yield surface.  

The hardening parameter �!�& is a function of the 

viscoplastic strain tensor (�	
) and the viscoplastic strain rate 
tensor (�2 	
). Consequently, it can be written as  �!�& ��	
, �2 	
�. 
Applying consistency condition to the yield surface, we have 

 

� � ' 7 7�6�*
D ��6" � 7 7�!�&

7�!�&7�	
 7U7�� �λ � 7 7�!�&
7�!�&7�2 	
 7U7�� �λ2  (24) 

 

Set  

gh � � 7 7�!�&
7�!�&7�	
 7U7�� (25) 

ih � � 7 7�!�&
7�!�&7�2 	
 7U7�� (26) 

 

Substitute back to (24), we have the differential equation 

  � � jD��6" � gh�λ � ih�λ 2 � 0 (27) 
 

Following the conventional approach in bounding surface 

plasticity, the viscoplastic strain hardening modulus g is split 
into two components:  

 g � gh � gk (28) 

 

Similarly, the viscoplastic strain rate hardening modulus i 
is defined as 

 i � ih � ik (29) 

 

where gh and ih are the viscoplastic strain modulus and the 

viscoplastic strain rate modulus at stress point �6" on bounding 
surface, respectively; gk and ik are some arbitrary strain 

modulus and strain rate modulus at �", defines as a function of 
the distance between �6" and �". 

The strain hardening moduli are defined by applying 

consistency conditions to bounding surface 

 

gh � � 7 7�!�&
7�!�&7�
	
 T
97 7�6�⁄ 9 (30) 

gk � W̃! 7�!�&7�
	
 ���!�& [�!�&��& � 1\ lOmn
 � no (31) 

 

where �!�& and ��& define the sizes of the bounding surface and 
loading surface, respectively. gk is defined such that it is zero on the bounding surface 
and infinity at the point of stress reversal. 

Each of components of differential values is expressed as 

follow  

 



International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:8, No:6, 2014

612

 

7 7�!�& � � 1�!�&��/ (32) 

7�!�&7�
	
 � ��!�&S � � (33) 

 

Substitute back to (31), we obtain  

 gh � ��S � ����/ T
97 7�6�⁄ 9 (34) 

 gk is an arbitrary modulus at ��, defined as a function of the 
distance between �� and �6�. It is assumed in the following 

form  

 

gk � W̃! 7�!�&7�
	
 ���!�& [�!�&��& � 1\ lOmn
 � no (35) 

 

where �!�& and ��& define the sizes of bounding surface and 
loading surface, n
 is the slope of the peak strength line in �$~�"� plane, lO is material parameter controlling the 

steepness of the response in the �$~p@� plane, l is material 

parameter to define the peak strength line. 

Similarly, the strain rate hardening moduli are defined as 

follow 

 

ih � � 7 7�!�&
7�!�&7�2 	
 T
97 7�6�⁄ 9 (36) 

ik � W̃! 7�!�&7�2 
	
 ���!�& [�!�&�� � 1\ lOmn
 � no (37) 

C. Stress-Strain Relationship 

The numerical solution for the constitutive equations 

requires integration of the nonlinear differential equation (27). 

The finite difference approximation of the rate of change of 

the viscoplastic multiplier �S2  can be written as 
 

�S2 � δλrstr � δλrΔW  
(38) 

 

in which, ΔW is the time increment, δλr and   δλrstr are the 
viscoplastic multipliers at the previous and current time steps, 

respectively. 

From (1), (2) and (18), we have  

�� � ����� � ����� � ��	
� � ����� � δλ 7U7�� (39) 

 

Substitute (38) and (39) into (27) yields 

 

� � 73D7� �� '�� � δλrstr 7U7�* � gδλrstr � i δλrstr � δλrΔW � 0 (40) 

 

Hence, the solution for (40) can be expressed as 

 

δλrstr � 73D7� ���� � iΔW δλr
73D7� �� 7U7� � g � iΔW 

(41) 

 

or equivalently, 

δλrstr � jD���� � iΔW δλr
jD��T � g � iΔW 

(42) 

 

Substitute (42) into (39) and after some algebra, we have 

 

�� � v�� � ��TjD��
jD��T � g � iΔWw �� � ��T iΔW δλr

jD��T � g � iΔW 
(43) 

 

Defining 

�	
 � �� � ��TjD��
jD��T � g � iΔW 

(44) 

 

and 

�	
 � ��T iΔW δλr
jD��T � g � iΔW 

(45) 

 

The incremental elasto-viscoplastic stress-strain relation 

becomes  

 �� � �	
�� � �	
 (46) 

 

Equation (46) is expressing the incremental stress-strain 

relationship for the new proposed EVP model. 

III. VALIDATION RESULTS 

To demonstrate the performance of the proposed model in 

predicting time-dependent behavior of soils, the simulation 

results are compared with experimental data from the 

literature. Remoulded Fukakusa clay is analyzed. The physical 

properties and experimental data of remoulded Fukakusa clay 

were published in 1982 by Adachi & Oka [7]. The test 

specimens were preconsolidated at 49 kN/m
2
 and isotropically 

consolidated under 392 kN/m
2
 of effective cell pressure. The 

material constants used in the simulations were: � �  0.02, � � 36300 kPa, (&)  �  1.5, SZ  �  0.1, 5 �  2.3, 5z{ � 1.45, /z{ �  1.85, l �  2.0, l}  �  1.0, Y �  1.0, 
and  lO  �  0.0. The initial conditions were �" � 392 kN/m

2
 

and  � �  0.72. The strain rate hardening parameter,  i, is 
assumed to be a linear function of the strain hardening 

modulus, g. By using the proposed model, simulation results 

for constant strain rate and creep tests are presented.  

A. Strain-Rate Effects 

The tests were carried out by using two different constant 

strain rates, 0.0835% and 0.00817%. The stress-strain curves 

and effective stress paths of 1 day consolidated samples under 

strain-rate controlled undrained triaxial conditions are shown 

in Figs. 2 and 3, respectively. 

The strain rate hardening parameters, i, are 1000 and 200 
times more than the strain hardening modulus,  g, for constant 
strain rates of 0.0835% and 0.00817%, respectively. It can be 

seen from Fig. 2 that the maximum deviatoric stress increases 

with increase in the rate of straining. Fig. 3 shows that the 

lower the strain rate, the flatter the undrained stress path. It 
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can be observed that there is a good agreement between the 

experimental and numerical results. The results show increase 

in stiffness and strength of clay with increase in strain rate. 

 

 

Fig. 2 Effect of strain rate on stress-strain response  

 

 

Fig. 3 Effect of strain rate on undrained stress path  

B. Undrained Creep Test 

The undrained creep behavior of Fukakusa clay is 

demonstrated in Fig. 4. First, specimens were isotropically 

consolidated to 392 kN/m
2
. Then undrained creep tests were 

performed after sheared up to prescribed deviatoric stress 

levels of 0.2, 0.3, 0.4, 0.5 and 0.6 times of the value of  �" � 

392 kN/m
2
. All creep tests were conducted for about 10000 

minutes at each stress level.  

The strain rate hardening parameters,  i, are 800, 180, 100, 
72 and 55 times more than the strain hardening modulus, g, 
for the creep tests with creep loadings of 0.2, 0.3, 0.4, 0.5 and 

0.6 times of the ultimate value, respectively. Comparison 

between the experimental data and model simulations shows 

good agreement between experimental results and simulation 

results, demonstrating applicability of the proposed bounding 

surface viscoplastic model to describe the creep behavior of 

clay.  

 

 

 Fig. 4 Model simulation and experimental data of undrained creep 

tests on Remoulded Fukakusa clay with  �Z  � 392 kN/m2 and creep 

loadings of 0.2, 0.3, 0.4, 0.5 and 0.6 of �" � 392 kN/m2  

IV. CONCLUSION 

A bounding surface viscoplastic constitutive model is 

proposed for the analysis of time-dependent behavior of clay. 

The application of the model is demonstrated using several 

numerical examples. It is shown that the constitutive model 

proposed can successfully predict the time-dependent behavior 

of clay including strain rate dependency and undrained creep.  
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