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On Phase Based Stereo Matching and Its Related

Issues
András Rövid, Takeshi Hashimoto

Abstract—The paper focuses on the problem of the point
correspondence matching in stereo images. The proposed matching
algorithm is based on the combination of simpler methods such as
normalized sum of squared differences (NSSD) and a more complex
phase correlation based approach, by considering the noise and other
factors, as well. The speed of NSSD and the preciseness of the
phase correlation together yield an efficient approach to find the best
candidate point with sub-pixel accuracy in stereo image pairs. The
task of the NSSD in this case is to approach the candidate pixel
roughly. Afterwards the location of the candidate is refined by an
enhanced phase correlation based method which in contrast to the
NSSD has to run only once for each selected pixel.
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I. INTRODUCTION

NOWADAYS the utilization of visual information plays

crucial role in many applications, e.g. navigation, safety,

security, medical systems, etc., but still with many open

problems. It is well known that based on the information

contained in digital images different type of objects and

patterns can be detected, recognized and tracked, furthermore,

in case of utilizing stereo images 3D measurement can be

performed and thus the shape of objects or that of the whole

scene can be reconstructed and modeled. There are many

related to stereo vision based 3D measurement, especially on

the correspondence matching problem.

The field of stereo vision represents an active research area,

many methods and algorithms have been developed in the

last decades aiming to solve the stereo matching problem.

It still represents an open issue thus new approaches are

highly welcome. In the followings let us briefly mention

some methods related to matching problem. The matching

problem can easily be resolved by projecting a given type

of coding pattern onto the surface of the target, however such

approaches (first of all the projector-camera based systems due

to relatively low intensity of the illumination or systems based

on infrared light projection) are usually efficient for indoor

applications only, i.e. where the lighting conditions are suitable

for being able to unambiguously identify the pixels trough

pattern detection and decoding. Although 3D measurement

systems based on laser light illumination are suitable for both

indoor and outdoor applications, they have still limitations in
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acquiring moving objects. The approaches mentioned until

now - due to utilization of some type of external pattern

- belong to the category of active measurement devices.

With the help of these devices high accuracy measurements

can be performed (few dozen of microns), thus they are

highly welcome in reverse engineering related applications

[1]-[4]. The second category relates to systems which are

utilizing only images taken from different camera positions

without any external pattern projection. In this case the point

correspondence matching, i.e. finding the corresponding point

to a given one chosen from the reference image represents

the most crucial task. Many methods have been proposed for

correspondence matching, which can be split into two main

categories, i.e into local and global searching methods. Local

methods are based on searching the candidate point trough

calculating some kind of similarity metric (normalized cross

correlation (NCC), sum of squared differences (SSD), sum of

absolute differences (SAD), etc.) between two patterns. The

pattern is usually considered over a rectangular window sliding

along a scan-line (epipolar line). These methods estimate

each corresponding pairs (the source image point and its

corresponding one) independently, therefore they are called

local. Many methods have been proposed for this problem, as

for example methods based on selective multiple windows or

changing the window size [5],[6].

On the other hand the global methods are attempting to

minimize a global cost function (considering the piece-wise

smooth property of disparities) usually composed from a

data term and a smoothness term (discontinuity preserving).

Such energy functions are often difficult to minimize (for

example minimizing the Potts energy is NP-hard)[7], therefore

only locally optimal solutions are utilized. As examples of

this category graph-cut based methods can be emphasized,

which can yield suitable results by finding the minimum

cut of a special-purpose graph[7],[8]. The mean field

annealing together with the dynamic programming and belief

propagation, etc. are another popular approaches to find

a particular solution to the above mentioned minimization

problem [9],[11],[10].

In the present paper a local matching approach for point

correspondence matching is introduced based. Although the

computational complexity of the method (depending on the

window size) is relatively high, many of its components can

be run simultaneously.

III and IV a detailed analysis of the proposed approach can

be followed. In Section V model evaluation and experimental

correlation, SVD, NSSD.

applications where the image processing plays crucial role;

however, in this paper we are going to focus on the problematic
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The paper is organized as follows: In Section II the basic

principle of the proposed method is described while in Sections

results are discussed. Finally Section VI reports conclusions.
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II. BASIC PRINCIPLE OF THE PROPOSED ALGORITHM

In the followings let us to give a closer insight into details of

the proposed algorithm. First of all let us emphasize the main

principle together with the related problems. Let us refer to

the stereo image pair as left and right images.

As well known, when using local matching techniques,

usually during the search for the best candidate point the

neighborhood of many pixels along a scan line has to

be examined by using some kind of similarity metric. In

some specific cases the neighborhood of several hundred of

templates has to be matched to a source template in the left

image (depending on the baseline length, target’s distance,

etc.). Thus the complexity as well as the accuracy issues of the

chosen metric are crucial in the matching process. On one hand

simple methods are preferred because of their computational

simplicity, but on the other hand in most of the cases their

robustness to factors such as noise, pattern characteristics,

illumination, occlusion, etc. is relatively weak compared to

their counterpart methods, which are usually more robust to the

mentioned factors, but are computationally more expensive.

The proposed approach is based on the combination of simpler

and more complex methods.

The algorithm can be divided into two main steps:

In the first step the corresponding candidate’s location

is approximately determined by using a simpler matching

approach (executed many times per search), followed by the

refinement of the found candidate’s position by a more robust

and efficient technique (executed once per search). During the

search for the candidate it is crucial to consider the influence

of noise on the result.

After the corresponding points have been identified the 3D

coordinates are determined by triangulation. The cameras were

calibrated by the method proposed in [15]. Based on the

obtained intrinsic and extrinsic parameters all rays starting

from the camera center and going through the given pixel are

determined in advance for both cameras. Since the location

of the corresponding point is going to be determined with

sub-pixel precision, the corresponding camera rays should be

estimated accordingly.

III. LOCATING THE CANDIDATE

In this section let us briefly summarize the consequences

obtained trough the analysis of the response of four

window based similarity metrics, namely the sum of absolute

differences (SAD), sum of squared differences (SSD),

normalized sum of squared differences (NSSD) and the

histogram of oriented gradients (HOG)[12].

According to our experiments – depending on the window

size – the responses of the above metrics differ in general

however in most of the cases the peak near the best candidate

can be easily identified in their response. Depending on the

texture it may happen that the response will contain more

than one peak having near the same value (especially in case

of repetitive patterns). In order to reduce such cases it is

reasonable to consider metrics with high sensitivity on textural

changes. At the same time it is also important to take into

account their computational costs, since in case of each pixel

these metrics should be evaluated more than once (depending

on the disparity) in order to approach the location of the best

corresponding candidate pixel. According to our experiments

the NSSD and HOG reflect the highest sensitivity on textural

changes, their response offer the most easily identifiable peak

near the candidate pixel. Since the HOG is based on edge

orientation histograms it is not advantageous for matching

smoothly textured patches in the image. From computational

complexity aspects it is the most expensive among all the

above mentioned metrics. On the other hand the NSSD can

offer useful response in either case, i.e. smooth textures as

well as patches containing sharp edges. Hence in the upcoming

sections let us assume that the location of the best candidate

is estimated by NSSD. The most suitable window size may

vary depending on the resolution and texture level of images,

however the size of 32n × 32n pixels, where n = 1, 2, ... is

promising. In case of camera resolution 1280× 960 pixels the

most adequate window size for textures like skin or natural

objects is 64× 64 pixels (see Section V).

IV. SUB-PIXEL ACCURACY REFINEMENT OF THE

LOCATED CANDIDATE

Let us assume that our M × N sized stereo images are

related by IR(x, y) = IL(x + tx, y + ty), where t = (tx, ty)
stand for the displacement of two images. Our task is to

determine tx and ty with sub-pixel accuracy. Let us note, that

in this step the rough estimate of the corresponding point’s

location is already known (from the previous step). To refine

the estimated location of the candidate, correlation techniques

are utilized. Instead of estimating the correlation in spatial

domain, it is much more efficient and computationally less

expensive to get the translation vector trough the normalized

cross power spectrum (NCPS) of IL and IR.

Fig. 1 Illustration of the two step based matching
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A. Phase Correlation

Based on the convolution (how the convolution in the

spatial domain relates to the multiplication in the frequency

domain) and shift theorem (shift in the spatial domain

results a linear phase difference in the frequency domain)

of Fourier theory t can be estimated as follows: Let UR

and UL stand for the Fourier transforms (FT) of IR and

IL respectively, i.e. UR(u, v) = F{IR(x, y)}(u, v) and

UL(u, v) = F{IL(x, y)}(u, v). Based on the shift property

of FT UR and UL are related as follows:

UR(u, v) = UL(u, v)e
−j2π(utx

M
+

vty

N
) (1)

The NCPS of IL and IR can be expressed as follows:

S(u, v) = UL(u, v)UR(u, v)
∗

| UL(u, v)UR(u, v)
∗ | =

=
UL(u, v)UL(u, v)

∗

e
−j2π

(
utx
M

+
vty

N

)
| UL(u, v)UL(u, v)

∗ | = e
−j2π

(
utx
M

+
vty

N

)
)

(2)

The inverse FT of the above complex exponential in

continuous case yields the shifted Dirac delta impulse δ(x −
tx, y − ty). In order to reduce the noise, the frequencies are

weighted by a Gaussian weighting function centered at the DC

component. In this case S(u, v) can be expressed as follows:

S(u, v) = G(u, v)e−j2π( utx
M

+
vty

N
), (3)

where G(u, v) = e
−

(
u2

2σ2
u

+ v2

2σ2
v

)
. Based on the convolution

theorem of FT, the inverse FT of complex exponential

multiplied by a Gaussian is equivalent to the convolution of

the Dirac delta with a Gaussian.∫
∞

−∞

∫
∞

−∞

g(p, q)δ(x−tx−p, y−ty−q)dpdq = g(x−tx, y−ty),

and g(x, y) stands for the inverse FT of G(u, v), which is

also a Gaussian function. Based on these considerations it is

clear that in continuous case the model for s(x, y) (the inverse

FT of S(u, v)) is a Gaussian function (with proper parameters)

centered at (tx, ty). Since we are dealing with discrete images,

let us examine the above relations for discrete case and find the

best model to approximate s(x, y). Let us discretize S(u, v)
over a two dimensional rectangular grid, having equidistant

grid nodes. Let us denote the matrix element corresponding to

grid point with coordinates u, v as S[u, v]. The discrete inverse

Fourier transform of S[u, v] can be expressed as follows:

s[x, y] =

M−1∑
u=0

N−1∑
v=0

S [u, v] ei2π(
ux
M

+ vy

N ). (4)

After substitution it can

s[x, y] =

M−1∑
u=0

N−1∑
v=0

e
−j2π

(
utx
M

+
vty

N

)
ej2π(

ux
M

+ vy

N ). (5)

Let us express the above sum as the multiplication of two

geometric series, i.e.

s[x, y] =

M−1∑
u=0

(
ej

2π
M

(x−tx)
)u

N−1∑
v=0

(
ej

2π
N

(y−ty)
)v

.

After applying the rules for geometric series followed by

simple rearrangements we get

s[x, y] = ejπ(x−tx)(1− 1
N ) sin (π (x− tx)) sin (π (y − ty))

sin
(

π
M

(x− tx)
)
sin

(
π
N
(y − ty)

) .
and for the normalized magnitude we get [14]:

mag{s[x, y]} = 1

MN

sin (π (x− tx)) sin (π (y − ty))

sin
(

π
M

(x− tx)
)
sin

(
π
N
(y − ty)

) .
(6)

The plot of the above function can be seen in Fig.2. Under

mild conditions the above function can be approximated by the

2D sinc function. All the above considerations are true only

for the ideal case, i.e. when the input images are noiseless.

However in case of measurements, data are corrupted by

noise and distortion, thus the obtained NCPS S will not fully

reflect the properties of S(u, v) and hence its inverse FT will

yield a noisy peak, which makes it difficult to estimate [tx, ty]
with sub-pixel accuracy. Thus, it is crucial to eliminate the

noise and to guarantee that the constraints of S(u, v) are met.

Let us take a closer look at the properties of S(u, v). Based

on (2) it is clear that S can be expressed as the outer product

of two complex valued vectors as follows (introduced in [13]):

S = pq
T,

where p[u] = e−j2π utx
M and q[v] = ej2π

vty

N . Based on (2) in

ideal case (i.e. noise free case) S is a rank-1 matrix. This

approach can be applied efficiently to estimate tx and ty
directly in the frequency domain [13]. Usually images are

corrupted by noise, thus the obtained NCPS will not fulfill

the rank-1 constraint. Hence we are searching for the best

rank-1 approximation S̃ of S. The best rank-1 approximation

of S giving the minimal Frobenius norm ‖S − S̃‖F can be

obtained by singular value decomposition (SVD) as follows:

S̃ = σ1w1,1w
T
2,1, (7)

where w1,1 and w2,1 stand for the left and right singular

vectors of S corresponding to its largest singular value denoted

Fig. 2 The plot of s[x, y]. The discrete Fourier transform of a complex

exponential
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by σ1, respectively. By using these notations S can be

expressed similarly as follows:

S =

M∑
i=1

N∑
j=1

σi,jw1,iw
T
2,j . (8)

In Fig. 4 the phase of the noisy NCPS and its rank-1

approximation can be followed. Although the rank-1

approximation clearly reflects the phase information of S, it

is still corrupted by noise in the high frequency region of the

spectrum. Thus it is adequate to suppress the influence of these

higher frequency components. For this purpose weighting by

Weighting the frequencies by a Gaussian G having the form

of

G[u, v] = e−
σ2(u2+v2)

2 (9)

corresponds – as described for the continuous case – to the

FT of

s[x, y]∗ 1

σ
√
2π

e−
(x2+y2)

σ2 , (10)

where * denotes convolution. It is crucial to properly choose

the variance σ2 of the Gaussian. In case of such a suppression

of higher frequencies the shape of the surface obtained by

inverse FFT fits the exact model (6) more accurately (see Fig.

3).

However form computational complexity aspects applying

SVD has strong negative impact on the processing time, since

it has to run once for each image pixel followed by the inverse

Fourier transformation of S̃. Thus in case of using S instead

of S̃ and applying Gaussian weighting the Gaussian model is

suitable, however at the expense of accuracy. In order to obtain

the relative shift [tx, ty] between IL and IR, the following error

function has to be minimized:

min
tx,ty,A

{
∑
x,y

(C[x, y]−Model(x, y, tx, ty, A)}, (11)

where matrix C denotes the inverse FT of S̃ and Model

represents (depending on the applied filter) As[x, y] or

Ae−σ2((x−tx)
2+(y−ty)

2)

In order to reduce the spectral leakage caused by the edge

discontinuities (i.e. if the pixel values at the opposite edges of

the image are different) the image is multiplied by the Hann

window, defined as follows:

W (x, y) = 0.25

(
1− cos

(
2πx

M

))(
1− cos

(
2πy

N

))
.

(12)

Algorithm 1 contains the pseudo-code of the proposed

method.

V. MODEL EVALUATION AND EXPERIMENTAL RESULTS

In this section we would like to show the efficiency of

the Gaussian and sinc model as well as the suitability of

the proposed matching method for passive 3D measurement.

Based on two images related by a known horizontal and

vertical translation t∗ = [tx∗
, ty∗

] the suitability of the models

discussed in the previous section have been validated in case of

˜

unfiltered as well as filtered NCPS. In Tables I and II the true

and the estimated values of tx and ty as well as the residual

mean square error (RMSE) can be followed.

x y

11.5pixels

In ideal case the location of the maximal value of S

corresponds to t∗, however when dealing with noisy data this

assumption will be not true, i.e we have to improve the location

of the best candidate by model fitting. Let us choose the

starting point [tx0
, ty0

] for the optimization (11) to be equal the

location of the maximal value of NCCS. Let us show how the

models perform in such a t0 in case of filtered and non-filtered

spectra, as well. As the data reflect, both models (the Gaussian

as well as the s(x,y)) are suitable for practical use, however in

case of the Gaussian model, the value of the σ parameter is

crucial. If σ is to small, i.e. the Gaussian hump is narrower,

we can easily get nipped in a local minimum. We examined

the effect of a smaller and a greater σ, as well (see Table I

Fig. 3 Illustrating the flow of refinement.

Gaussian function yields promising results (see Section V).

Fig. 4 The phase of S (left) and its rank-one approximation S (right)

Fig. 5 Two templates relatively shifted by t = 11.5pixels, t =
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Algorithm 1 Matching

1: Let assume a rectified stereo image pair IL,IR
2: [w, h]← Template size

3: pL = [xL, yL]
4: for all pixels pR = [xR, yR] in IR do

5: pL ← pR

6: TL(pL) ← rectangular template centered at pL

7: TR(pR) ← rectangular template centered at pR

8: TR ←W ◦ TR

9: UR ← FFT (TR)
10: d← threshold

11: N ← step size

12: repeat

13: min
Δx
{NSSD(TR(xR, yR),TL(xL +Δx, yL)))}

subject to Δx mod N = 0; 0 < Δx < d

14: xL ← xL +Δx−N

15: d← N

16: N ← N − 1
17: until N = 0
18: TL ←W ◦ TL(pL)
19: UL ← FFT (TL)
20: S← NCPS(UR,UL)
21: S̃← best rank-1 approximation of S.

22: S̃← G ◦ S̃ (◦ denotes the Hadamard product)

23: C = IFFT (S̃)
24: min

tx,ty,A
{∑
x,y

(C[x, y]−Model(x, y, tx, ty, A, σ))}
25: end for

TABLE I
MODEL EFFICIENCY IN CASE OF ORIGINAL, RANK-1 AND SMOOTHED

NCPS
NCPS s(x,y) Gaussian (σ = 0.5)

tx ty RMSE tx ty RMSE

S̃ 11.34 11.13 0.0009 11.37 11.12 0.0000

G ◦ S̃ 11.12 11.38 0.0010 11.48 11.48 0.0000
G ◦ S 11.08 11.35 0.0584 11.00 11.01 0.0659
S 11.51 11.07 0.9767 11.01 11.01 0.9948

t∗ 11.50 11.50 11.50 11.50
t0 11.00 11.00 11.00 11.00

and II). If Gaussian model fitting is performed on the inverse

FT of the best rank-1 approximation of NCCS, the results are

less sensitive to the σ value. However in case of S and G ◦ S

the σ value is much more crucial. Regarding the model s(x, y)
we can say that it performs better on SVD filtered data, and it

does not need any additional parameter to tune the model. The

Gaussian model is promising for both the SVD as well as the

Gaussian filtered case, however depending on the σ parameter.

From the fitting accuracy point of view the rank-1

approximation of the NCCS gives the best results, as its shape

characteristics are close to the ideal model s(x, y) (see Figs. 2

and 3). In order to show the performance and suitability of the

method for passive 3D reconstruction, a human face has been

measured (see Figs. 7-10). As the method does not require

any pattern projection for the measurement it is suitable for

measuring moving objects. Furthermore in contrast to the most

of active scanners it is adequate for outdoor applications, as

TABLE II
MODEL EFFICIENCY IN CASE OF ORIGINAL, RANK-1 AND SMOOTHED

NCPS
NCPS s(x,y) Gaussian (σ = 1.0)

tx ty RMSE tx ty RMSE

S̃ 11.34 11.13 0.0009 11.27 11.29 0.0001

G ◦ S̃ 11.12 11.38 0.0010 11.35 11.41 0.0002
G ◦ S 11.08 11.35 0.0584 11.25 11.32 0.0632
S 11.51 11.07 0.9767 11.37 11.28 0.9893

t∗ 11.50 11.50 11.50 11.50
t0 11.00 11.00 11.00 11.00

well. The limitation of the method is, that the surface should

contain at least a small amount of texture in order to be able

to find the best candidate by NSSD and phase correlation in

contrast to the active measurement methods.

Fig. 6 The stereo image pair used for reconstruction

Fig. 7 Reconstructed face surface by the proposed method (view-1)

Fig. 8 Reconstructed face surface by the proposed method (view-2)
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VI. CONCLUSION

In this paper a passive stereo vision based 3D measurement

approach was proposed. The method is based on approaching

the best candidate by a simple NSSD based method followed

by a phase correlation based refinement step which locates the

best candidate with sub-pixel accuracy. As the results reflect,

the method is suitable to reconstruct low textured areas, as

well. The rank-1 approximation of the noisy NCPS makes

the method more robust to noise. Although the computational

complexity of the method is high, it can efficiently be

parallelized.
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