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MHD Stagnation Point Flow towards a Shrinking
Sheet with Suction in an Upper-Convected Maxwell
(UCM) Fluid

K. Jafar, R. Nazar, A. Ishak, I. Pop

Abstract—The present analysis considers the steady stagnation
point flow and heat transfer towards a permeable shrinking sheet in
an upper-convected Maxwell (UCM) electrically conducting fluid,
with a constant magnetic field applied in the transverse direction to
flow and a local heat generation within the boundary layer, with a

heat generation rate proportional to (T —Tw)p.Using a similarity

transformation, the governing system of partial differential equations
is first transformed into a system of ordinary differential equations,
which is then solved numerically using a finite-difference scheme
known as the Keller-box method. Numerical results are obtained for
the flow and thermal fields for various values of the
stretching/shrinking parameter A, the magnetic parameter M, the
elastic parameter K, the Prandtl number Pr, the suction parameter S,
the heat generation parameter Q, and the exponent p. The results
indicate the existence of dual solutions for the shrinking sheet up to a
critical value 4, whose value depends on the value of M, K, andS. In

the presence of internal heat absorption (Q<O), the surface heat

transfer rate decreases with increasing P but increases with
parameters Q and S, when the sheet is either stretched or shrunk.

Keywords—Magnetohydrodynamic (MHD), boundary layer
flow, UCM fluid, stagnation point, shrinking sheet.

[. INTRODUCTION

HE study of flow and heat transfer near a stagnation point,

where fluids flow impinging normally or obliquely to
plane surfaces, has applications in many practical situations.
Theories on the stagnation flow and associated heat transfer
characteristics have been used to enhance many technological
developments. Since the development of an exact solution for
the two dimensional stagnation flow by Hiemenz [1] and an
exact similar solution for the corresponding thermal field by
Eckert [2], studies on the flow and heat transfer near a
stagnation point has produced extensive theoretical and
numerical results for stagnation point flow and heat transfer.
Stagnation point flow and related heat transfer problems are
also encountered in problems involving stretching or shrinking
sheets. Some recent examples of these studies can be found in
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the works of Ishak et al. [3], [4], Hayat et al. [5], and Jafar et
al. [6]. All previous studies on the flow over a shrinking
surface such as that by Miklavc¢i¢ and Wang [7], and Wang
[81, [9], reported some interesting differences in the flow and
heat transfer characteristics of a shrinking sheet as compared
to a stretching sheet, specifically in the existence and non-
uniqueness of solutions.

In the studies on convective heat transfer, the flow is
usually driven by either a natural or a mixed convection.
Alternatively, a convective flow may also develop due to
internal heat generation or absorption within the flow. Mealey
and Merkin [10] studied the natural convection boundary layer
flow on a vertical surface with heat generated within the
boundary layer, by assuming a local heat generation rate

proportional to (T -T, )p where T is the local temperature, T,
is the ambient temperature and p>1,a constant. They found
that for 2< p <4, the local heating has significant effect.

Using the same assumption on the rate of heat generation,
Merkin [11] considered a similar study, with a further
assumption of a thermally insulated surface. It was found that
the development of the flow from the leading edge depend
critically on the exponent p, with singularity developing in the

boundary layer solutions for 2 < p<5. More recent studies

on convective flow with internal heat generation can be found
in the work of Merkin and Pop [12] and Merkin [13].

The objective of the present paper is to investigate the
stagnation point flow and heat transfer over a permeable
stretching/shrinking sheet in an upper convected Maxwell
fluid (UCM), with an externally applied magnetic field, in the
presence  of  wall suction and internal  heat
generation/absorption. The same form of heat generation rate
used by Mealey and Merkin [10] is assumed. The upper
convected Maxwell (UCM) fluid model is favored by many
researchers to represent the viscoelastic fluid, which is an
important class of non-Newtonian fluid encountered in many
engineering and industrial processes today. Recent studies on
the stagnation point flow of a UCM fluid was done by
Sadeghy et al. [14], Kumari and Nath [15], Hayat et al. [16]
and Jafar et al. [17]. The present paper will include both the
stretching and shrinking sheets, and will include the effects of
the exponent of the heat generation rate, on the flow and heat
transfer characteristics.
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II. MATHEMATICAL FORMULATION

Consider a steady stagnation point flow towards a
permeable stretching/shrinking sheet in an upper-convected
Maxwell (UCM) electrically conducting fluid. It is assumed
that the velocity of the shrinking sheet isu,(X)=CX, while
the flow velocity outside the boundary layer(inviscid fluid) is
U, (X) =ax, wherea(>0)and Care constants, withc >0 for a
stretching sheet, and ¢ <0for a shrinking sheet. It is also
assumed that the constant mass transfer velocity isv,,, with

v, <Ofor suction andv, >Ofor injection (withdrawal).
Further, it is assumed that the uniform temperature of the sheet
isT,, whereas that of the ambient fluid isT . The fluid is
bounded by the stretching/shrinking sheet at y = 0 and the flow
occupies the spacey>0. A constant magnetic field of
strength By is applied in the transverse direction to flow. The

electric and induced magnetic fields are negligible. Following
Merkin [11] and Hayat et al. [16], the basic equations for the
problem under consideration which, on applying the boundary
layer approximations can be written as

ou 6V_0 (1)

+ =
ox oy
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with the boundary conditions,

u=u,(x), v=v,, T=T, at =0
W0 y @

Uu—-u,(x), T->T, as y-—omo,

where U and V are the velocity components along the X—
and Yy — axes, respectively, Vis the kinematic viscosity, k, is

the elastic parameter of the UCM fluid, «is the thermal
diffusivity, p is the density, o is the electrical conductivity

and C, is the specific heat at a constant pressure.The term
Q,(T-T,)*, where p is a constant, assumed to be the amount
of heat generated or absorbed per unit volume, for whichQ,
may take on either positive or negatives values. IfQ, > 0, then
it represents heat generation and on the other hand when
Q, <0, it represents heat absorption.

In order to solve (1)—(3) with the boundary conditions (4),
we consider the following similarity variables:

1/2

y=(va) xf@m), n=@/wv"*y, Op=T-T)/T,-T.), Q)

wherey is the stream function defined as u=0w/dy, and
v =-0y /0x, which identically satisfies (1). Substituting (5)

into (2) and (3), we obtain the following nonlinear ordinary
differential equations

7 f7 1= f2 4w K(F2 67 =20 /") =M (f'=1-K f £")=0 (6)

Losto+00r =, 7
Pr

where primes denote differentiation with respect to 7. The
boundary conditions (4) now become

f(0)=s, f'(0)=c/a=41, 6(0)=1

' ®)
f'm)—>1, () —>0 as n—>ow

Here K = ak, (Z 0) is the dimensionless elastic parameter
also known as Deborah or Weissenger number, Pr = v/« is the

Prandtl number, Ais the stretching(/1>()) or shrinking

(/1 < 0) parameter, S = —VW/({:U/)I/2 is the mass transfer

parameter with s> 0 for suction and s<0 for injection, and
Q=Q,(T,-T, )/(apcp) is the
generation (Q > 0) or absorption (Q < 0) coefficient. We notice

that forK=s=4=M =0, (6) reduces to the classical

Hiemenz [1] problem.
The quantities of physical interest in this problem are the
skin friction coefficientC,, and the local Nusselt number

dimensionless  heat

Nu,, which are defined as

_ TZW ’ Nux:"iqw, 9)
PU(X) k(T,-T.)

f

where 7, is the wall shear stress,and q,, is the surface heat flux
and are given by

TWZﬂ(l-FK)[%] , qwz—k(%\} , (10)
y=0 y=0

where 1 is the dynamic viscosity. Substituting (5) into (10)
and using (9), we get

Re)’C, =(1+K) f"(0), Re)*Nu,=-6'(0), (11
where Re!? = u, (X) X / v is the local Reynolds number.

III. RESULTS AND DISCUSSION

The nonlinear ordinary differential equations (6) and (7)
subject to the boundary conditions (8) have been solved

numerically using the Keller-box method. The velocity f’(r])
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and temperature H(n)proﬁles are obtained for various values
of the governing parameters, namely the magnetic parameter
M, the elastic parameter K, the stretching/shrinking
parameter 4, the Prandtl number Pr, the mass transfer
parameter S, the heat generation parameter Q, and exponent

p of the heat generation term. The values of the skin friction
coefﬁcient(l + K) f "(0) and the local Nusselt number —9'(0)

for various values of the governing parameters are also
computed to investigate the effects of these parameters on the
surface shear stress and the surface heat transfer. In order to
assess the accuracy of the numerical method used, we have
compared some of our results on the flow for the non-
magnetic case for a non-permeable surface(M =S=A1= 0),
with those obtained in an earlier work on UCM fluid, Jafar et
al. [17]. The values of the surface velocity gradient f"(O)

obtained are found to be in very good agreement. We have
also compared the values of f"(0) and —6'(0)obtained to

those computed using a shooting method, and found good
agreement. Therefore, the developed code can be used with
confidence. For the present study we will focus on the case of
heat absorption, that is the case Q < 0. The main reason for this
restriction is because the results for the case Q <0are more
consistent and show better convergence. Since (6) and (7) are
uncoupled, the flow field is not affected by the thermal field,
thus the Prandtl number, the heat absorption parameter Q and
the exponent p has no influence on the skin friction coefficient
and the velocity profiles.

Table 1 presents values of the skin friction coefficient
(l + K) f ”(O) and the local Nusselt number —6”(0) for various
values of the magnetic parameter M, the elastic parameter
K, and the parameter A (for both the stretching and shrinking
sheets), when the other parameters are fixed at

Pr=1,s=2,p=4, and Q=-2.As seen from Table I, both
the skin friction coefficient (1 + K) f "(0) and the local Nusselt

number—H'(O) increase with the increase of the magnetic
parameter M but decrease with increasing values of the elastic
parameter K. However the increase/decrease in the local
Nusselt number is small compared to that of the skin friction
coefficient. This trend holds for both the stretching and
shrinking sheets.

Figs. 1 to 5 present the variations of the velocity profiles

f’(f]) with the magnetic parameter M, the stretching
parameter A, the elastic parameter K, and the mass transfer
parameter S(for the shrinking and stretching sheets),
respectively. Figs. 6-10 present the variations of the
temperature profiles 6’(?7) with the stretching parameter A, the
Prandtl number Pr, the exponent p, the heat generation
parameter Q,and the mass transfer parameter S, respectively.

All the sample profiles satisfy the far field boundary
conditions (8) asymptotically, thus supporting the numerical
results obtained. From Figs. 1 and 2, we see that increasing the
value of M and A result in a decrease in the boundary layer

thickness and an increase in the fluid velocity f'(?]) and the

velocity gradient at the wall f"(O), whereas Fig. 3 indicates
the opposite trend for the elastic parameter K. Figs. 4 and 5
show that for both the shrinking and stretching sheets, the
velocity profiles f'(l]) and the velocity gradient at the wall

f ”(0) increase with Sfors <0, but decrease for s> 0. Since

S < 0 signifies injection at the wall and S > 0signifies suction
at the wall, an increase in either suction or injection will result
in a decrease in the fluid velocity and the skin friction
coefficient.

TABLEI
VALUES OF f7(0) AND —¢'(0) FOR VARIOUS VALUES OF M AND K WHEN Pr=1,s=2,p=4 AND Q=-2
M (1+K)f"(0) -0'(0)
2=05 A=-05 2=05 A=-05
K=01 K=02 K=01 K=02 K=01 K=02 K=01 K=02
0 1.0292 0.8253 3.0176 2.6238 24750 24638 2.2911 2.2606
05  1.1303 0.9466 33510 3.0230 24782 2.4682 23030 2.2769
1 1.2244 1.0596 3.6553 3.3870 2.4809 24720 23129 2.2902
15 13131 1.1667 3.9384 3.7270 2.4834 24753 23215 23014
2 1.3975 1.2692 42053 4.0493 2.4856 2.4783 23291 23112
TABLEII
CRITICAL VALUES A, AND CORRESPONDING VALUES OF f7(0) AND 79'(0) FOR DIFFERENT VALUES OF M WHEN Pr=1,K=02,p=4 AND Q=-2
M 2 (1+K) £"(0) -0'(0)
s=1 s=2 s=1 s§=2 = —
0.5 s=1 s=2
-2.37038 -3.821 3.3161 7.8181 1.0485 1.4001
1 -2.75518 -4.40327 43081 103505 1.0152 1.3432
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Fig. 4 Velocity profiles f '(77), for various values of the mass transfer

Fig. 1 Velocity profiles f '(77) for various values of the magnetic
parameter s <0, for the shrinking sheet with 4 =—0.5, when

parameter M when K =0,4=0.5Pr=1,s=1,p=4,and Q =-2
M =0.5, and K=0.2
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Fig. 2 Velocity profiles f’(f]), for various values of the stretching Fig. 5 Velocity profiles f '(77), for various values of the mass transfer

parameter A, when M =0.5,K =0.2, and s=2 parameter S >0, for the shrinking sheet with 4 =—0.5, when

M =0.5, and K=0.2
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Fig. 6 Temperature profiles 6(77), for various values of the stretching

Fig. 3 Velocity profiles f’(f]), for various values of the elastic
parameter A, whenM =0.5,K=0.2,Pr=1,p=4,5=2,and Q =-2

parameter K, when M =0.2,4=0.5, and s=2
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Fig. 7 Temperature profiles 9(77), for various values of the Prandtl

number Pr,whenM =0.5,K=0.2,4=0.5,p=4,5=2,and Q =-2
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Fig. 8 Temperature profiles 19(77), for various values of the exponent
p, whenM =0.5,K =0.1,Pr=1,4=0.5,s=2,and Q =-1
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Fig. 9 Temperature profiles 9(1]), for various values of the heat
generation parameter Q, when M =0.5,K =0.1,Pr=1,
A=05,5=2,andp=4
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Fig. 10 Temperature profiles §(77), for various values of the mass
transfer parameter S, forthe stretching (Z = 0.5) sheetwhen
M =0.5K=02,Pr=1,Q=-2

Figs. 6-10 show that the temperature profiles 9(77), increase
with the parameters p but decreases with the increasing
values of 4,Pr, and S. Furthermore, as the value of A,Pr, and
S increases, the thermal boundary layer thickness decreases.
This implies that the local Nusselt number—@'(O)increases
with 4,Pr and S. Our computations indicate that the local

Nusselt number —6'(0)decreases with the increase in p but

increases with |Q| Thus increasing the exponent p will
decrease the surface heat transfer rate, while increasing the
magnitude of the heat absorption coefﬁcientlQl increases the
surface heat transfer rate. Fig. 6 indicates that increase
stretching will also increase the local Nusselt number —9'(0),
hence enhancing the heat transfer rate at the surface, while

increase shrinking reduces it. On the other hand, Fig. 10 shows
that, for both shrinking and stretching sheets, increasing the

magnitude of the mass transfer parameter|5| will decrease the
thermal boundary layer thickness and increase thelocal Nusselt
number —9'(0) fors >0,
thickens the boundary layer and decreases thelocal Nusselt
number —9’(0).Thus in general, suction enhances the heat

whereas fors <0, increasing|s|

transfer rate at the surface while injection reduces it.

TABLE III
CRITICAL VALUES A, AND CORRESPONDING VALUES OF {”(0) AND -&'(0)

FOR DIFFERENT VALUES OF K WHEN s=2,M =0.5,p=4 AND Q=-2

K A, (1+K)f"(0) -0'(0)
0.1 -3.6013 5.8907 14318
0.2 -3.821 7.8181 1.4001

Figs. 11-13 present the variations of the skin friction
coefficient (1+K)f"(0), with A for various values of the

magnetic parameter M, the mass transfer parameter S, and
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the elastic parameter K.In the case of the stretching sheet
(/1 > 0), the figures show that for all values of the M, K, and
A considered, the magnitude of the skin friction coefficient
|(1 + K) f ”(0)| decreases when 0 < A <1, is zero at A =1, and

increases when A>1. Furthermore, |(1 +K) f "(0)| also

increases with the magnetic parameter M, but decreases
slightly with K and Sfor all values of the stretching
parameter A. For the case of the shrinking sheet (1 <0),we

found that dual solutions exist and there is a minimum value

A, of the shrinking parameter for which solution exists, and

its magnitude |/”LC| increases as the value of M,K, and S
increases. At A=/1_the solution is unique, while dual
solutions exist for some range of A, <A <0.The critical
values A and the corresponding values of the skin friction
coefficient (l + K) f "(0), and the local Nusselt number —6”(0)

for different values of the magnetic parameter M and K are
given in Tables II and III. As seen from the tables, the value of

|lc| and the corresponding value of (1+K) f”(O),increase
with the parameters M,K, and S.Thus the presence of

suction, magnetic field and fluid elasticity expands the
solution domain. However these three parameters differ in
terms of their effects on the wall shear stress. It is observed
that, for both the stretching and shrinking sheets, the magnetic
field increases the wall shear stress. In contrast, the presence
of suction and fluid elasticity reduces the wall shear stress, as
indicated by the decrease in the values of the skin friction
coefficient as the values of S and K increase. The results
observed on the flow characteristics agree with most earlier
studies on the effect of magnetic field on the momentum
transfer over a flat plate. For the shrinking sheet, the value of
the skin friction coefficient initially decreases with S and K,
but the trend changes when the shrinking magnitude becomes
larger. Thus for large shrinking magnitude, both the suction
and the fluid elasticity increase the wall shear stress.

(1+K) 17 (0)

= -4 -3 -2 -1 0 1 2

Fig. 11 Variations of the skin friction coefficient (1+K)f"(0) asa

function of 2, with the magnetic parameter M, when K =0.2,p =4,
and s=2

f"(0)

24 -3 -2 -1 0
A

Fig. 12 Variations of the skin friction coefficient (1+K)f"(0) asa

function of A, with the mass transfer parameter S, when
K=0.2,and M =0.5

10 T T T T

NM=0.5, s=2

(1+K) £ (0)

-2F

_114

Fig. 13 Variations of the skin friction coefficient (1+K)f"(0) asa

function of A, with the elastic parameter K, when K =0.2,M =0.5,
and s=2

Figs. 14 to 17 show the variations of the heat transfer rate at
the surface, represented by the local Nusselt number —6'(0)
(as a function of A ) with the heat generation parameter Q,
the mass transfer parameter S, the exponent p, and the elastic
parameter K, respectively. As seen from these figures, the
values of —6”(0) increases for the stretching sheet(/”t > 0) but

decreases for the shrinking sheet(/l < 0) for both the first and
second branch of solutions. Figs. 14 to 16 indicate that
—6"(0) decreases with increasing p but increases with
parameters Q and S, for both the stretching and shrinking
sheets. The trend is the same for both the first and second
branch of solutions. In Fig. 17,—9’(0) shows very little

variations with M when the sheet is stretched, but when the
sheet is shrunk, the first branch of solutions increases quite

significantly with M. In comparison, the variations of —6"(0)

with the elastic parameter K show a more complicated
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pattern, as seen in Fig. 18. For the stretching sheet, the values
of —0'(0) decreases as K increases when 0<A<1, but

increases with K when A >1. A similar pattern is observed in
the first branch of solution for the shrinking sheet, with the

values of —9'(0)initially decreasing as K increases, and

eventually changing to the opposite trend as the shrinking
magnitude gets closer to the critical value A.. For the second

branch of solutions, —0'(0) increases with K. Therefore,

increasing the heat absorption, suction at the wall and the
Prandtl number will result in a thinning of the thermal
boundary layer and enhance the surface heat transfer rate,
while increasing the exponent p reduces the surface heat

transfer rate. The magnetic field enhances the surface heat
transfer rate of the shrinking sheet but has very little effect on
stretching sheet. When the stretching velocity of the sheet is
less than the free stream velocity, the fluid elasticity slightly
decreases the surface heat transfer rate. When the stretching
velocity exceeds the free stream velocity, the effect of the
fluid elasticity is reversed.

3.2 T T T T T
M=0.5, K=0.2, p=4, s=2, Pr=1
| |

2.8

L]

Fig. 14 Variations of the local Nusselt number -¢'(0) as a function of
2, with the heat generation parameter Q, when
K=0.2,M=0.5p=4, and s=2

28 T T T T T
M=0.5, K=0.2, Pr=1, p=4, Q=-2

-67(@)

Fig. 15 Variations of the local Nusselt number -¢'(0) as a function of

2, with the mass transfer parameter S, when K =0.2,M =0.5,p =4,
and Q=-2

3 T T T T T
K=0.2, M=0.5, s=2,
Pr=1,Q=-2

271

2.2fF

- 610

-4 -3 -2 -1 0 1 2

Fig. 16Variations of the local Nusselt number -¢'(0) as a function of
A, with the exponent p, when K =0.2,M =0.5,p=4, and Q=-2

2.8 : : . . .
[K=0.2,Pr=1,p=4,5=2, Q=-2 |

f(0)

Fig. 17 Variations of the local Nusselt number -¢'(0) as a function of

2, with the magnetic parameter M, when K =0.2,s=2,p =4, and
Q=-2

M=0.5, Pr=1, p=4, s-2, Q= -2 |

aal /

-67(0)

Fig. 18 Variations of the local Nusselt number -¢'(0) as a function of
2, with the elastic parameter K, when M =0.5,5 =2, p =4, and
Q=-2
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Fig. 19 Velocity profiles f'(r) for the first solution (full line) and

second solution (dotted lines) solution when
M=05,s=2,p=4, and 1 =-3.7

M=0.5, K=0.2, Pr=1, p=4, s=2, \=-3.7
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Fig. 20 Temperature profiles 6(r) for the first solution (full line) and

second solution (dotted lines) solution when
M =0.5,s=2,p=4, and 1 =-3.7
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Fig. 21 Temperature profiles 0(7), supporting the existence of

multiple solutions of the energy equation when
M =05K=0.2,5=2,p=4, and 1 =-0.5

Figs. 19-20 present the velocity f'(r]) and temperature

6’(77) profiles supporting the existence of dual solutions when
M=05K=02 p=4,s=2,Pr=1 and 1=-0.82.We
mention here that, in the case of the shrinking sheet, multiple
solutions for the temperature profiles can be found for each
velocity profile obtained. Fig. 21 gives samples of such
solution  when M =0.5,K=0.2,p=4,5=2,Pr=1 and
A=-0.5.

IV. CONCLUSION

In this paper, we have considered similarity solutions for
the steady stagnation flow and heat transfer towards a
permeable shrinking sheet in an upper-convected Maxwell
(UCM) electrically conducting fluid, with a constant magnetic
field applied in the transverse direction to flow and a local
heat generation within the boundary layer. We investigated the
effects of the stretching parameter 4, the magnetic parameter
M, the elastic parameter K, the Prandtl number Pr,the mass
transfer parameter S, the heat generation coefficient Q, and the
exponent p of the heat generation term in the energy equation,

on the flow and heat transfer characteristics. For the present
study, the Prandtl number is fixed at Pr =1 and the analysis is
focused on the case of wall suction and heat absorption. It is
found that the solution for the stretching sheet exists and is
unique for all values of the stretching parameter A while
solutions for the shrinking sheet only exist when the

magnitude of the stretching parameter is less than|/lc| for

some limiting value 4, with dual solutions found for some
ranges of A. It was shown that the solution is unique for A > 0,
and dual solutions are found for some A > 4 of the shrinking

parameter. Furthermore, it is found that the increasing the
magnetic parameter M, the elastic parameter K,and the
suction parameter S expands the solution domain. For both the
stretching and shrinking sheets, the magnetic field increases
the wall shear stress, for large shrinking magnitude, both the
suction and the fluid elasticity also increase the wall shear
stress. However for the stretching sheet, the wall suction and
fluid elasticity reduces the wall shear stress. In the presence of

internal heat absorption (Q < 0),the surface heat transfer rate
decreases with increasing p but increases with parameters Q
and S, when the sheet is either stretched or shrunk. Increasing
the magnetic parameter has little effect on the surface heat
transfer when the sheet is stretched, however for the shrinking
sheet, it causes a significant increase in the surface heat
transfer rate. When the sheet is stretched with a velocity less
than the free stream velocity, the surface heat transfer rate
slightly decreases as the fluid elasticity increases, and vice-
versa.
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