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Abstract—Sudoku is a logic-based combinatorial puzzle game 

which is popular among people of different ages. Due to this 
popularity, computer softwares are being developed to generate and 
solve Sudoku puzzles with different levels of difficulty. Several 
methods and algorithms have been proposed and used in different 
softwares to efficiently solve Sudoku puzzles. Various search 
methods such as stochastic local search have been applied to this 
problem. Genetic Algorithm (GA) is one of the algorithms which 
have been applied to this problem in different forms and in several 
works in the literature. In these works, chromosomes with little or no 
information were considered and obtained results were not 
promising. In this paper, we propose a new way of applying GA to 
this problem which uses more-informed chromosomes than other 
works in the literature. We optimize the parameters of our GA using 
puzzles with different levels of difficulty. Then we use the optimized 
values of the parameters to solve various puzzles and compare our 
results to another GA-based method for solving Sudoku puzzles. 

 
Keywords—Genetic algorithm, optimization, solving Sudoku 

puzzles, stochastic local search. 

I. INTRODUCTION 
UDOKU is a Japanese word consisting of two parts, su 
and doku, where the first part means number and the 

second means single. It has been originally called Number 
Place which indicates the nature of the game, in which 
numbers should be placed in appropriate places in a grid. 
Indeed, it is a logical game which has attracted both young 
and old people. 

The first Sudoku was published in a puzzle magazine in 
USA, 1979 [1]. Having a very challenging and addictive 
nature, it has spread wildly all over the world. The objective of 
the game is to take a 9×9 grid and fill in the open spots with 
numbers from 1 to 9 so that each column and each row of the 
grid contains each of the numbers only once. Furthermore, 
each of the nine 3×3 sub-grids that together compose the total 
9×9 grid (also called boxes, blocks, regions, and sub-squares) 
must contain all of the digits from 1 to 9 only once.  

Fig. 1 is an example of a Sudoku puzzle where 21 of the 
cells initially contain a number. Fig. 2 represents the solution 
to the Sudoku puzzle in Fig. 1. 

As in Fig. 1, grids come with partially filled columns and 
rows depending on the difficulty level of the puzzle. For 
instance, in a beginner puzzle several numbers will be already 
in the grid. In more advanced puzzles, only a few numbers are 
in the grid. But this is not the only factor for determining the 
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level of difficulty. There are also other factors such as the 
number of occurrences of each number in the initial grid, the 
position of numbers in the initial grids, etc. which are very 
effective in the difficulty level of a Sudoku puzzle.  

In this paper, we will examine the problem of proposing an 
algorithm to solve Sudoku puzzles. We will introduce genetic 
algorithms and then propose a way of applying this algorithm 
to the problem of solving Sudoku puzzles efficiently. We 
evaluate out model on Sudoku puzzles having different 
difficulties and compare our results with another GA-based 
method in the literature. 

The rest of the paper is organized as follows: Section II 
reviews the works available in the literature. Section III 
describes our formulation of genetic algorithm to solve 
Sudoku puzzles. Section IV is devoted to optimizing the 
parameters of the GA. In Section V, we represent our 
experiments and results and compare them to another existing 
work which also uses genetic algorithm. Finally, Section VI 
concludes the paper and points out some future directions. 

II. LITERATURE REVIEW 
Solving the generalized Sudoku problem is NP-complete, as 

has been shown in [2]. Therefore, we cannot hope to find an 
algorithm with polynomial time for all puzzles, unless P = NP 
[3]. This means that there will be possibly many instances that 
cannot be solved without one kind of search also being 
necessary [4]. Researchers have tried to propose heuristic 
algorithms or use existing local search methods such as 
Genetic Algorithm (GA) to solve Sudoku puzzles. 

 

 
Fig. 1 An example of a Sudoku puzzle 
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Fig. 2 The solution to the Sudoku puzzle in Fig. 1 
 
Pencil and pen [5] algorithm is one of the proposed methods 

in the literature for solving Sudoku puzzles. This algorithm is 
a tree-based search algorithm which backtracks on a tree until 
a solution is found. Another well-known work in the literature 
uses a meta-heuristic technique [4]. It is a stochastic search 
based algorithm, which uses simulated annealing and is able to 
solve logic-solvable puzzle-instances efficiently. Stochastic 
optimization is another approach which researchers have tried 
to apply to this problem. In this approach, the Sudoku puzzle 
is solved using stochastic local search techniques. Cultural 
Genetic Algorithm (CGA), Repulsive Particle Swarm 
Optimization (RPSO), Quantum Simulated Annealing (QSA) 
and the Hybrid method that combines Genetic Algorithm with 
Simulated Annealing (HGASA) [6] are some of the methods 
which use stochastic optimization approaches. 

One of the methods to solve Sudoku puzzles, as well as any 
other problem which requires searching a huge state space, is 
genetic algorithm [7]. Genetic algorithms are computing 
algorithms based on Darwinian evolution [8] which are 
constructed in analogy with the process of evolution [9]. They 
seem to be useful for searching very general and poorly 
defined spaces. It is not, however, completely known for what 
kinds of spaces they work best, but there are efforts to figure it 
out [10]. First pioneered by John Holland in the 60s, GA has 
been widely studied, experimented and applied to many fields 
in the real world [11]. Not only does GAs provide alternative 
methods to solve problems, they consistently outperform other 
traditional methods in most of the problems. Many of the real 
world problems involve finding optimal parameters, which 
might be quite difficult for traditional methods, but ideal for 
GAs.  

KedarNath Das [12] has used GA to solve Sudoku puzzles. 
In his paper, he proposed a GA algorithm, in which he models 
his fitness function in a way that considers the puzzle-
character-dependant constraints and used GA to solve the 
problem. He called his method retrievable GA, or simply ret-
GA, because after a certain number of iterations, the 

population is reinitialized in his method. Since we also use this 
idea of reinitializing the population, like in [12], we also use 
the term retrievable for our GA method.  

Timo Mantere and Janne Koljonen [1] also used GA to 
solve Sudoku puzzles. In their paper, they create 
chromosomes of the size of the Sudoku puzzle with two 
special conditions. The first condition is that the numbers 
initially given in the grid should be fixed in their 
corresponding positions in the chromosome. The second one is 
that no number can appear twice in each row. While these two 
conditions cause chromosomes to contain some information, 
they didn’t get promising results. One possibility for this may 
be the fact that their chromosomes are not sufficiently 
informed. Generating more-informed chromosomes may help 
solving Sudoku puzzles using GA more efficiently. 

In this paper, we try to generate chromosomes containing 
more information. We add one more condition to the 
conditions specified in [1] which is, in addition to each of the 
rows; chromosomes are also forbidden to have common 
numbers in each 3×3 sub-square.  

In the next section, we represent how different genetic 
algorithm operations, such as crossover and mutation, can be 
applied to these chromosomes. We use some parameters in 
different operations and try to optimize our parameters 
empirically so as to make the proposed genetic algorithm more 
efficient. 

III. PROPOSED METHOD 
In this section, we describe how we use genetic algorithm to 

solve a Sudoku puzzle. We explain different functions and 
operations which are required to specify how genetic 
algorithm is used for a problem. 

A. Representation 
We can see a Sudoku puzzle as a 9×9 matrix, where each 

row, column and each 3×3 sub-square must contain all 
numbers from 1 to 9 only once.  

For representing the Sudoku puzzle in GA program, we 
represent each chromosome as a two dimensional integer array 
of size 9×9, with these conditions: 1) the numbers predefined 
by Sudoku setter should be fixed in their corresponding 
position in the chromosome and cannot be changed, 2) each 
row of the chromosome should contain numbers from 1to 9 
only once, and 3) each 3×3 sub-square of the general grid 
should also contain numbers from 1 to 9 only once. 

B. Fitness Function 
After testing different functions, we considered the fitness 

function to be the maximum possible number of mismatches 
in a chromosome minus the total number of mismatches in the 
given chromosome, where by mismatch we mean a case where 
a number appears more than one time in a column. We can see 
that the maximum possible number of mismatches that a 
Sudoku puzzle can have in the worst case is 81. Using this 
fitness function, it is obvious that as the number of 
mismatches reduce the fitness of the chromosome increases, 
which is intuitively reasonable. A chromosome with a fitness 
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of 81 is the solution to our Sudoku puzzle and the process will 
be stopped once such a chromosome is found. 

Using this fitness function, most chromosomes tend to have 
fitness values in a small range. That’s because random 

chromosomes hardly have lots of (or few) mismatches, having 
an initial fitness ranging from 40 to 60. This can deteriorate 
the efficiency of the GA by giving high probabilities of being 
selected as a parent to all the chromosomes. 

Fig. 3 The results obtained for optimizing (a) crossoverProb, (b) mutationProb1, (c) mutationProb2, and (d) maxValue 
 

Therefore, we use max-min normalization to project the 
fitness values of chromosomes to a smaller interval of [5, max 
Value], where we optimize the parameter maxValue 
empirically. Having fitness values in this interval, 
chromosomes with lower fitness values are less likely to be 
chosen as a parent. 

C. Crossover 
Before explaining about crossover operation, it is necessary 

to see that we can consider a Sudoku puzzle as a 3×3 matrix of 
sub-squares. In the rest of the paper, we call each row of this 
matrix a sub-square row. Because of the constraints we 
imposed on the chromosomes, our chromosomes have no 
mismatches in each sub-square row. Therefore, to do the 
crossover operation, first of all we choose two chromosomes 
from our population as parents, with the probability of 
selection being proportional to their fitness values. Then we 
generate two daughters with the first one having randomly two 
of her sub-square rows from one of the parents and one from 
the other, and the second daughter having the sub-square rows 
of the parents not used by the first daughter. These two 
daughters go to the next generation. 

Note that crossover operation happens by a probability 
crossoverProb which we optimize empirically. If the operation 
does not happen, the parents go to the next generation without 
any changes.  

D. Mutation 
We use two different mutation operations in our 

formulation. The first one is applied to a gene (a cell in the 

matrix) of the chromosome by probability mutationProb1. If 
this mutation is happening to a gene, another random non-
predefined gene in the same row is selected and the values in 
these two genes are swapped. Then if the new chromosome is 
not valid according to our constraints, we change the same 
numbers of these two genes in the other two matrix rows of 
the same sub-square row to get a valid chromosome. 

The second mutation is applied to each of the sub-square 
rows with probability mutationProb2. Each time a mutation is 
happening to a sub-square row, that row is completely 
replaced by a newly generated row.  

E. Other Criteria 
We set the maximum number of generations for solving a 

single Sudoku puzzle to be 100000. Since we tend to compare 
our results with the results of [1] and the maximum number of 
generations in [1] was set to be 100000, we chose the same 
number to make our comparisons more reasonable.  

As we mentioned earlier, we use a retrievable GA, in which 
after each ten thousand generations, if we haven’t found a 
solution, all chromosomes are killed and a new population of 
them is produced. 
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TABLE I 
OBTAINED RESULTS FROM USING OUR PROPOSED GA FOR SOLVING SUDOKU 

PUZZLES 
Difficulty rating Count Min Max Median Average Stddev 

1 star 100 12 6691 276 548.43 963.85 
2 stars 100 70 10593 697.5 1584.8 2439.8 
3 stars 100 84 70146 45965.5 1183.4 15599 
4 stars 97 809 90432 40540 35871 23576 
5 stars 79 1021 65659 36001 34911.4 19881 
Easy 100 11 507 78 97.51 76.6 

Challenging 51 135 72202 32444 40141 15011 
Difficult 17 1991 90282 27345 33273 24689 

Super difficult 20 309 76111 22187 25843 21846 
 

TABLE II  
OBTAINED RESULTS FROM USING THE GA METHOD IN [1] FOR SOLVING 

SUDOKU PUZZLES  
Difficulty 

rating Count Min Max Median Average Stddev 

1 star 100 184 23993 917 2466.6 3500.98 
2 stars 69 733 56484 7034 11226.8 11834.68 
3 stars 46 678 94792 14827 22346.4 24846.46 
4 stars 26 381 68253 22297 22611.3 22429.12 
5 stars 23 756 68991 17365 23288 22732.25 
Easy 100 101 6035 417 768.6 942.23 

Challengin
g 30 1771 89070 17755 25333.3 23058.94 

Difficult 4 18999 46814 26162 20534.3 12506.72 
Super 

difficult 6 3022 47352 6722 14392 17053.33 

IV. PARAMETER OPTIMIZATION 
We have four parameters in our proposed method which we 

need to find the best values for them. These parameters are: 
crossoverProb, mutationProb1, mutationProb2, and maxValue. 
In order to find the best values for these parameters, we tested 
different combinations of values for them over twenty Sudoku 
puzzles from www.websudoku.com with different levels of 
difficulty. Five of these puzzles were easy, five of them were 
medium, five of them were hard and the other five were evil. 

At the beginning, we tested some random combinations of 
values for these parameters and came up with this initial guess 
for the parameters: crossoverProb = 0.8, mutationProb1 = 0.2, 
mutationProb2 = 0.02 and maxValue = 20. 

Then to find the optimized values of the parameter, each 
time we fixed all the parameters except one of them and tried 
to solve all the twenty Sudoku puzzles for different values of 
this parameter. We assigned points to the values of this 
parameter according to the number of puzzles it could solve 
where an easy puzzle had only one point, medium had two 
points, hard had three points, and finally an evil puzzle had 
four points. After summing up the points for each of the 
values, the value with the maximum total points was selected 
as the optimized value for that parameter. Then we used this 
value for this parameter and tried to optimize the rest. 

We started optimizing the parameters in this order: 
crossoverProb, mutationProb1, mutationProb2, and maxValue. 
Fig. 3 demonstrates the results achieved in the experiments 
where the horizontal axis is the value to the parameter and the 
vertical axis is the total points.  

We can see that the best values for the parameters are 
crossoverProb = 0.65, mutationProb1 = 0.15, mutationProb2 = 
0.04 and maxValue = 20. We use these values in the next 
section to run our experiments and compare our results with 
obtained results from another GA-based method for solving 
Sudoku puzzles in [1]. 

V. EXPERIMENTS AND RESULTS 
In order to test our proposed method and compare it to other 

methods, we solved the Sudoku puzzles of different difficulty 
levels which Timo Mantere and Janne Koljonen [1] used in 
their paper. These puzzles are from two different sources. The 
first source categorizes the puzzles into five different groups 
according to their difficulty levels, where the easiest puzzles 
are called 1 star and the hardest ones are called 5 stars. The 
second source categorizes the puzzles into four different 
groups based on their difficulty levels and calls them Easy, 
Challenging, Difficult, and Super difficult to represent their 
difficulty levels.Like in [1], we ran our GA 100 times for each 
of the Sudoku puzzles. For each run, if the puzzle could be 
solved, we recorded the number of generations it took to solve 
the puzzle. Then we counted the number of times that our GA 
could solve the puzzle. We also calculated statistical measures 
such as minimum, maximum, median, average, and standard 
deviation of number of generations for solving the puzzle in 
100 runs. Table I represents the results of our proposed 
method and Table II represents the results obtained in [1]. We 
can see from the results that our proposed method is 
outperforming the previous method in terms of the number of 
times it has been able to solve a puzzle. While this increment 
is not very striking for some easier puzzles like 2 stars puzzle 
for which the increment is 31%, it is quite striking for more 
difficult puzzles such as 4 stars puzzle for which the 
increment is 71%. Our method is also outperforming the work 
in [1] in terms of decreasing the minimum number of 
generations that has passed to find the solution to a puzzle in 
most cases. This decrement can be seen for 7 out of 9 puzzles. 
However, we can see that our algorithm is not totally 
outperforming the algorithm in [1] in terms of average number 
of generations. The reason can be the way we optimized our 
parameters. The only criterion we used for optimizing the 
parameters was the number of times a puzzle was solved and 
not the average number of iterations. Including the average as 
another criterion for optimizing the parameters can result in a 
decrement in the average number of iterations. 

VI. CONCLUSION AND FUTURE DIRECTION 
Various methods and algorithms have been proposed to 

solve Sudoku puzzles. One of these methods is to formulate 
the problem as a genetic algorithm and try to solve it. Previous 
attempts of using genetic algorithm seem inefficient because 
of including only little information in their chromosomes.  

In this paper, we proposed a more efficient genetic 
algorithm by generating more-informed chromosomes. We 
demonstrated that our method can be used more efficiently 
than one of the other methods in the literature which also uses 
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genetic algorithms. We could increase the percentage of 
solving the puzzles with different difficulties up to 73%.  

We could also do a better job in terms of the minimum 
number of generations which is passed to solve a puzzle. In 7 
puzzles out of the 9 puzzles that we used for our experiments, 
we could decrease this minimum compared to results obtained 
in [1]. 

However, we could not do much better than [1] in terms of 
average number of generations. The reason can be the way we 
optimized our parameters because we only cared about solving 
the Sudoku puzzles not the average number of generations.  

In future, we can use a different objective function in our 
parameter optimization which also includes the number of 
generations it takes to solve the puzzle. We can do the same 
experiments to see if it can improve our proposed method in 
terms of the average number of generations for solving the 
puzzles or not. We may also consider other criterion such as 
median or standard deviation of they are of high importance to 
us. 
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