
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:5, 2014

741

Abstract—Sudoku is a logic-based combinatorial puzzle game

which is popular among people of different ages. Due to this
popularity, computer softwares are being developed to generate and
solve Sudoku puzzles with different levels of difficulty. Several
methods and algorithms have been proposed and used in different
softwares to efficiently solve Sudoku puzzles. Various search
methods such as stochastic local search have been applied to this
problem. Genetic Algorithm (GA) is one of the algorithms which
have been applied to this problem in different forms and in several
works in the literature. In these works, chromosomes with little or no
information were considered and obtained results were not
promising. In this paper, we propose a new way of applying GA to
this problem which uses more-informed chromosomes than other
works in the literature. We optimize the parameters of our GA using
puzzles with different levels of difficulty. Then we use the optimized
values of the parameters to solve various puzzles and compare our
results to another GA-based method for solving Sudoku puzzles.

Keywords—Genetic algorithm, optimization, solving Sudoku

puzzles, stochastic local search.

I. INTRODUCTION
UDOKU is a Japanese word consisting of two parts, su
and doku, where the first part means number and the

second means single. It has been originally called Number
Place which indicates the nature of the game, in which
numbers should be placed in appropriate places in a grid.
Indeed, it is a logical game which has attracted both young
and old people.

The first Sudoku was published in a puzzle magazine in
USA, 1979 [1]. Having a very challenging and addictive
nature, it has spread wildly all over the world. The objective of
the game is to take a 9×9 grid and fill in the open spots with
numbers from 1 to 9 so that each column and each row of the
grid contains each of the numbers only once. Furthermore,
each of the nine 3×3 sub-grids that together compose the total
9×9 grid (also called boxes, blocks, regions, and sub-squares)
must contain all of the digits from 1 to 9 only once.

Fig. 1 is an example of a Sudoku puzzle where 21 of the
cells initially contain a number. Fig. 2 represents the solution
to the Sudoku puzzle in Fig. 1.

As in Fig. 1, grids come with partially filled columns and
rows depending on the difficulty level of the puzzle. For
instance, in a beginner puzzle several numbers will be already
in the grid. In more advanced puzzles, only a few numbers are
in the grid. But this is not the only factor for determining the

Seyed Mehran Kazemi is with the Computer Science Department,
University of British Columbia (e-mail: smkazemi@cs.ubc.ca).

Bahare Fatemi is with the Computer Engineering and IT Department,
Amirkabir University of Technology (e-mail: b.fatemi@aut.ac.ir).

level of difficulty. There are also other factors such as the
number of occurrences of each number in the initial grid, the
position of numbers in the initial grids, etc. which are very
effective in the difficulty level of a Sudoku puzzle.

In this paper, we will examine the problem of proposing an
algorithm to solve Sudoku puzzles. We will introduce genetic
algorithms and then propose a way of applying this algorithm
to the problem of solving Sudoku puzzles efficiently. We
evaluate out model on Sudoku puzzles having different
difficulties and compare our results with another GA-based
method in the literature.

The rest of the paper is organized as follows: Section II
reviews the works available in the literature. Section III
describes our formulation of genetic algorithm to solve
Sudoku puzzles. Section IV is devoted to optimizing the
parameters of the GA. In Section V, we represent our
experiments and results and compare them to another existing
work which also uses genetic algorithm. Finally, Section VI
concludes the paper and points out some future directions.

II. LITERATURE REVIEW
Solving the generalized Sudoku problem is NP-complete, as

has been shown in [2]. Therefore, we cannot hope to find an
algorithm with polynomial time for all puzzles, unless P = NP
[3]. This means that there will be possibly many instances that
cannot be solved without one kind of search also being
necessary [4]. Researchers have tried to propose heuristic
algorithms or use existing local search methods such as
Genetic Algorithm (GA) to solve Sudoku puzzles.

Fig. 1 An example of a Sudoku puzzle

Seyed Mehran Kazemi, Bahare Fatemi

A Retrievable Genetic Algorithm for Efficient Solving
of Sudoku Puzzles

S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:5, 2014

742

Fig. 2 The solution to the Sudoku puzzle in Fig. 1

Pencil and pen [5] algorithm is one of the proposed methods

in the literature for solving Sudoku puzzles. This algorithm is
a tree-based search algorithm which backtracks on a tree until
a solution is found. Another well-known work in the literature
uses a meta-heuristic technique [4]. It is a stochastic search
based algorithm, which uses simulated annealing and is able to
solve logic-solvable puzzle-instances efficiently. Stochastic
optimization is another approach which researchers have tried
to apply to this problem. In this approach, the Sudoku puzzle
is solved using stochastic local search techniques. Cultural
Genetic Algorithm (CGA), Repulsive Particle Swarm
Optimization (RPSO), Quantum Simulated Annealing (QSA)
and the Hybrid method that combines Genetic Algorithm with
Simulated Annealing (HGASA) [6] are some of the methods
which use stochastic optimization approaches.

One of the methods to solve Sudoku puzzles, as well as any
other problem which requires searching a huge state space, is
genetic algorithm [7]. Genetic algorithms are computing
algorithms based on Darwinian evolution [8] which are
constructed in analogy with the process of evolution [9]. They
seem to be useful for searching very general and poorly
defined spaces. It is not, however, completely known for what
kinds of spaces they work best, but there are efforts to figure it
out [10]. First pioneered by John Holland in the 60s, GA has
been widely studied, experimented and applied to many fields
in the real world [11]. Not only does GAs provide alternative
methods to solve problems, they consistently outperform other
traditional methods in most of the problems. Many of the real
world problems involve finding optimal parameters, which
might be quite difficult for traditional methods, but ideal for
GAs.

KedarNath Das [12] has used GA to solve Sudoku puzzles.
In his paper, he proposed a GA algorithm, in which he models
his fitness function in a way that considers the puzzle-
character-dependant constraints and used GA to solve the
problem. He called his method retrievable GA, or simply ret-
GA, because after a certain number of iterations, the

population is reinitialized in his method. Since we also use this
idea of reinitializing the population, like in [12], we also use
the term retrievable for our GA method.

Timo Mantere and Janne Koljonen [1] also used GA to
solve Sudoku puzzles. In their paper, they create
chromosomes of the size of the Sudoku puzzle with two
special conditions. The first condition is that the numbers
initially given in the grid should be fixed in their
corresponding positions in the chromosome. The second one is
that no number can appear twice in each row. While these two
conditions cause chromosomes to contain some information,
they didn’t get promising results. One possibility for this may
be the fact that their chromosomes are not sufficiently
informed. Generating more-informed chromosomes may help
solving Sudoku puzzles using GA more efficiently.

In this paper, we try to generate chromosomes containing
more information. We add one more condition to the
conditions specified in [1] which is, in addition to each of the
rows; chromosomes are also forbidden to have common
numbers in each 3×3 sub-square.

In the next section, we represent how different genetic
algorithm operations, such as crossover and mutation, can be
applied to these chromosomes. We use some parameters in
different operations and try to optimize our parameters
empirically so as to make the proposed genetic algorithm more
efficient.

III. PROPOSED METHOD
In this section, we describe how we use genetic algorithm to

solve a Sudoku puzzle. We explain different functions and
operations which are required to specify how genetic
algorithm is used for a problem.

A. Representation
We can see a Sudoku puzzle as a 9×9 matrix, where each

row, column and each 3×3 sub-square must contain all
numbers from 1 to 9 only once.

For representing the Sudoku puzzle in GA program, we
represent each chromosome as a two dimensional integer array
of size 9×9, with these conditions: 1) the numbers predefined
by Sudoku setter should be fixed in their corresponding
position in the chromosome and cannot be changed, 2) each
row of the chromosome should contain numbers from 1to 9
only once, and 3) each 3×3 sub-square of the general grid
should also contain numbers from 1 to 9 only once.

B. Fitness Function
After testing different functions, we considered the fitness

function to be the maximum possible number of mismatches
in a chromosome minus the total number of mismatches in the
given chromosome, where by mismatch we mean a case where
a number appears more than one time in a column. We can see
that the maximum possible number of mismatches that a
Sudoku puzzle can have in the worst case is 81. Using this
fitness function, it is obvious that as the number of
mismatches reduce the fitness of the chromosome increases,
which is intuitively reasonable. A chromosome with a fitness

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:5, 2014

743

of 81 is the solution to our Sudoku puzzle and the process will
be stopped once such a chromosome is found.

Using this fitness function, most chromosomes tend to have
fitness values in a small range. That’s because random

chromosomes hardly have lots of (or few) mismatches, having
an initial fitness ranging from 40 to 60. This can deteriorate
the efficiency of the GA by giving high probabilities of being
selected as a parent to all the chromosomes.

Fig. 3 The results obtained for optimizing (a) crossoverProb, (b) mutationProb1, (c) mutationProb2, and (d) maxValue

Therefore, we use max-min normalization to project the
fitness values of chromosomes to a smaller interval of [5, max
Value], where we optimize the parameter maxValue
empirically. Having fitness values in this interval,
chromosomes with lower fitness values are less likely to be
chosen as a parent.

C. Crossover
Before explaining about crossover operation, it is necessary

to see that we can consider a Sudoku puzzle as a 3×3 matrix of
sub-squares. In the rest of the paper, we call each row of this
matrix a sub-square row. Because of the constraints we
imposed on the chromosomes, our chromosomes have no
mismatches in each sub-square row. Therefore, to do the
crossover operation, first of all we choose two chromosomes
from our population as parents, with the probability of
selection being proportional to their fitness values. Then we
generate two daughters with the first one having randomly two
of her sub-square rows from one of the parents and one from
the other, and the second daughter having the sub-square rows
of the parents not used by the first daughter. These two
daughters go to the next generation.

Note that crossover operation happens by a probability
crossoverProb which we optimize empirically. If the operation
does not happen, the parents go to the next generation without
any changes.

D. Mutation
We use two different mutation operations in our

formulation. The first one is applied to a gene (a cell in the

matrix) of the chromosome by probability mutationProb1. If
this mutation is happening to a gene, another random non-
predefined gene in the same row is selected and the values in
these two genes are swapped. Then if the new chromosome is
not valid according to our constraints, we change the same
numbers of these two genes in the other two matrix rows of
the same sub-square row to get a valid chromosome.

The second mutation is applied to each of the sub-square
rows with probability mutationProb2. Each time a mutation is
happening to a sub-square row, that row is completely
replaced by a newly generated row.

E. Other Criteria
We set the maximum number of generations for solving a

single Sudoku puzzle to be 100000. Since we tend to compare
our results with the results of [1] and the maximum number of
generations in [1] was set to be 100000, we chose the same
number to make our comparisons more reasonable.

As we mentioned earlier, we use a retrievable GA, in which
after each ten thousand generations, if we haven’t found a
solution, all chromosomes are killed and a new population of
them is produced.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:5, 2014

744

TABLE I
OBTAINED RESULTS FROM USING OUR PROPOSED GA FOR SOLVING SUDOKU

PUZZLES
Difficulty rating Count Min Max Median Average Stddev

1 star 100 12 6691 276 548.43 963.85
2 stars 100 70 10593 697.5 1584.8 2439.8
3 stars 100 84 70146 45965.5 1183.4 15599
4 stars 97 809 90432 40540 35871 23576
5 stars 79 1021 65659 36001 34911.4 19881
Easy 100 11 507 78 97.51 76.6

Challenging 51 135 72202 32444 40141 15011
Difficult 17 1991 90282 27345 33273 24689

Super difficult 20 309 76111 22187 25843 21846

TABLE II
OBTAINED RESULTS FROM USING THE GA METHOD IN [1] FOR SOLVING

SUDOKU PUZZLES
Difficulty

rating Count Min Max Median Average Stddev

1 star 100 184 23993 917 2466.6 3500.98
2 stars 69 733 56484 7034 11226.8 11834.68
3 stars 46 678 94792 14827 22346.4 24846.46
4 stars 26 381 68253 22297 22611.3 22429.12
5 stars 23 756 68991 17365 23288 22732.25
Easy 100 101 6035 417 768.6 942.23

Challengin
g 30 1771 89070 17755 25333.3 23058.94

Difficult 4 18999 46814 26162 20534.3 12506.72
Super

difficult 6 3022 47352 6722 14392 17053.33

IV. PARAMETER OPTIMIZATION
We have four parameters in our proposed method which we

need to find the best values for them. These parameters are:
crossoverProb, mutationProb1, mutationProb2, and maxValue.
In order to find the best values for these parameters, we tested
different combinations of values for them over twenty Sudoku
puzzles from www.websudoku.com with different levels of
difficulty. Five of these puzzles were easy, five of them were
medium, five of them were hard and the other five were evil.

At the beginning, we tested some random combinations of
values for these parameters and came up with this initial guess
for the parameters: crossoverProb = 0.8, mutationProb1 = 0.2,
mutationProb2 = 0.02 and maxValue = 20.

Then to find the optimized values of the parameter, each
time we fixed all the parameters except one of them and tried
to solve all the twenty Sudoku puzzles for different values of
this parameter. We assigned points to the values of this
parameter according to the number of puzzles it could solve
where an easy puzzle had only one point, medium had two
points, hard had three points, and finally an evil puzzle had
four points. After summing up the points for each of the
values, the value with the maximum total points was selected
as the optimized value for that parameter. Then we used this
value for this parameter and tried to optimize the rest.

We started optimizing the parameters in this order:
crossoverProb, mutationProb1, mutationProb2, and maxValue.
Fig. 3 demonstrates the results achieved in the experiments
where the horizontal axis is the value to the parameter and the
vertical axis is the total points.

We can see that the best values for the parameters are
crossoverProb = 0.65, mutationProb1 = 0.15, mutationProb2 =
0.04 and maxValue = 20. We use these values in the next
section to run our experiments and compare our results with
obtained results from another GA-based method for solving
Sudoku puzzles in [1].

V. EXPERIMENTS AND RESULTS
In order to test our proposed method and compare it to other

methods, we solved the Sudoku puzzles of different difficulty
levels which Timo Mantere and Janne Koljonen [1] used in
their paper. These puzzles are from two different sources. The
first source categorizes the puzzles into five different groups
according to their difficulty levels, where the easiest puzzles
are called 1 star and the hardest ones are called 5 stars. The
second source categorizes the puzzles into four different
groups based on their difficulty levels and calls them Easy,
Challenging, Difficult, and Super difficult to represent their
difficulty levels.Like in [1], we ran our GA 100 times for each
of the Sudoku puzzles. For each run, if the puzzle could be
solved, we recorded the number of generations it took to solve
the puzzle. Then we counted the number of times that our GA
could solve the puzzle. We also calculated statistical measures
such as minimum, maximum, median, average, and standard
deviation of number of generations for solving the puzzle in
100 runs. Table I represents the results of our proposed
method and Table II represents the results obtained in [1]. We
can see from the results that our proposed method is
outperforming the previous method in terms of the number of
times it has been able to solve a puzzle. While this increment
is not very striking for some easier puzzles like 2 stars puzzle
for which the increment is 31%, it is quite striking for more
difficult puzzles such as 4 stars puzzle for which the
increment is 71%. Our method is also outperforming the work
in [1] in terms of decreasing the minimum number of
generations that has passed to find the solution to a puzzle in
most cases. This decrement can be seen for 7 out of 9 puzzles.
However, we can see that our algorithm is not totally
outperforming the algorithm in [1] in terms of average number
of generations. The reason can be the way we optimized our
parameters. The only criterion we used for optimizing the
parameters was the number of times a puzzle was solved and
not the average number of iterations. Including the average as
another criterion for optimizing the parameters can result in a
decrement in the average number of iterations.

VI. CONCLUSION AND FUTURE DIRECTION
Various methods and algorithms have been proposed to

solve Sudoku puzzles. One of these methods is to formulate
the problem as a genetic algorithm and try to solve it. Previous
attempts of using genetic algorithm seem inefficient because
of including only little information in their chromosomes.

In this paper, we proposed a more efficient genetic
algorithm by generating more-informed chromosomes. We
demonstrated that our method can be used more efficiently
than one of the other methods in the literature which also uses

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:5, 2014

745

genetic algorithms. We could increase the percentage of
solving the puzzles with different difficulties up to 73%.

We could also do a better job in terms of the minimum
number of generations which is passed to solve a puzzle. In 7
puzzles out of the 9 puzzles that we used for our experiments,
we could decrease this minimum compared to results obtained
in [1].

However, we could not do much better than [1] in terms of
average number of generations. The reason can be the way we
optimized our parameters because we only cared about solving
the Sudoku puzzles not the average number of generations.

In future, we can use a different objective function in our
parameter optimization which also includes the number of
generations it takes to solve the puzzle. We can do the same
experiments to see if it can improve our proposed method in
terms of the average number of generations for solving the
puzzles or not. We may also consider other criterion such as
median or standard deviation of they are of high importance to
us.

REFERENCES
[1] T. Mantere and J. Koljonen, “Solving and rating sudoku puzzles with

genetic algorithms,” in New Developments in Artificial Intelligence and
the Semantic Web, Proceedings of the 12th Finnish Artificial
Intelligence Conference STeP, pp. 86–92, 2006.

[2] Y. Takayuki and S. Takahiro, “Complexity and completeness of finding
another solution and its application to puzzles,” IEICE transactions on
fundamentals of electronics, communications and computer sciences,
vol. 86, no. 5, pp. 1052–1060, 2003.

[3] M. R. Garey and D. S. Johnson, Computers and intractability, vol. 174.
Freeman New York, 1979.

[4] R. Lewis, “Metaheuristics can solve sudoku puzzles,” Journal of
heuristics, vol. 13, no. 4, pp. 387–401, 2007.

[5] J. F. Crook, “A pencil-and-paper algorithm for solving Sudoku puzzles,”
Notices of the AMS, vol. 56, no. 4, pp. 460–468, 2009.

[6] M. Perez and T. Marwala, “Stochastic optimization approaches for
solving Sudoku,” arXiv preprint arXiv:0805.0697, 2008.

[7] J. H. Holland, Adaptation in natural and artificial systems: An
introductory analysis with applications to biology, control, and artificial
intelligence. U Michigan Press, 1975.

[8] C. Darwin and J. W. Burrow, The origin of species by means of natural
selection: Or, The preservation of favoured races in the struggle for life.
Collier Books Nueva York^ eN. YNY, 1962.

[9] J. Heitkoetter and D. Beasley, “The hitchhiker’s guide to evolutionary
computing: A list of Frequently Asked Questions (FAQ),” USENET:
comp. ai. genetic, 1996. Available via anonymous FTP from rtfm. mit.
edu:/pub/usenet/news. answers/aifaq/genetic.

[10] E. K. Prebys, “The genetic algorithm in computer science,” MIT
Undergrad. J. Math, vol. 2007, pp. 165–170, 2007.

[11] J. Li and Z. Zhang, “A learning tool of genetic algorithm,” in Education
Technology and Computer Science (ETCS), 2010 Second International
Workshop on, 2010, vol. 1, pp. 443–446.

[12] K. N. Das, S. Bhatia, S. Puri, and K. Deep, “A retrievable GA for
solving Sudoku puzzles,” Citeseer, 2012.

